Experimental Studies on Pervious Concrete

Krishna Pratap Singh Chauhan¹ (<u>krishnachauhan7986@gmail.com</u>), Pradyuman Yadav² (<u>yadavpradyuman77@gmail.com</u>), Keertiker Singh³(<u>singhkeertiker@gmail.com</u>), Priyanshu Thakur⁴(<u>thakurpriyanshu.tp@gmail.com</u>), Anand Mishra⁵(<u>anandmishra3236@gmail.com</u>) and Mrs. Anchal Negi⁶(<u>negianchal@akgec.ac.in</u>).

AJAY KUMAR GARG ENGINEERING COLLEGE, GHAZIABAD

Abstract Permeable concrete is a special kind of concrete, consisting of cement, coarse aggregate, water, and admixtures as required and other cementitious materials because no fine aggregates are used in the concrete matrix, voids are sufficient as to be permeable and body. Therefore, permeable concrete is also known as Permeable concrete and Porous concrete. There is a lot of research going on about the permeability of concrete. Compared to conventional concrete, the compressive strength is lower due to compression and voids. Thus, while permeable concrete has many advantages, its applications are limited. If the ductility of concrete has increased tensile and flexural strength, it can be used in many applications. Currently, the use of permeable concrete is mostly limited to short vehicular roads. If the property is improved, it could also be used for medium density high-traffic roads. At the same time, permeable concrete prevents surface runoff from stormwater, facilitates groundwater recharge, and makes the most efficient use of the available land Our project's main objectives is to improve the strength properties of permeable concrete. However, it should be noted that an increase in strength results in a decrease in the permeability of concrete. Therefore, the strength enhancement should not affect the permeability property because that property is what serves its purpose.

Keywords: Permeable Concrete 1; Compressive Strength 2; Flexural Strength 3; Porosity 4; Permeability 5.

1. Introduction

By the definition, pervious concrete is a mixture of gravel or granite stone, cement, water, little to no sand (fine aggregate). Pervious Concrete enhances porosity in concrete and has found to be a reliable stormwater management tool. Pervious concrete is a sustainable solution for stormwater management. This experimental study aims to explore its benefits and limitations. Pervious concrete helps in recharging groundwater, reducing stormwater runoff, and mitigating water pollution by filtering pollutants from stormwater. Experimental studies on pervious concrete involve various tests to assess its mechanical properties, permeability, and workability. These tests, including compression, permeability, and slump tests, are crucial for evaluating the suitability and performance of pervious concrete in different applications.

Compression testing is fundamental in determining the strength of pervious concrete. It involves subjecting cylindrical or cubic specimens to increasing compressive loads until failure occurs. This test provides valuable insights into the structural integrity and load-bearing capacity of pervious concrete. The results help engineers and researchers understand its suitability for use in pavements, sidewalks, and other structural applications.

Permeability testing assesses the ability of pervious concrete to allow water to pass through it. This test is significant as one of the primary purposes of pervious concrete is to facilitate stormwater management by allowing water infiltration into the ground. Permeability tests measure the rate at which water permeates through the concrete under controlled conditions, providing essential data for designing pervious concrete mixtures tailored to specific permeability requirements.

Slump testing is employed to evaluate the workability of fresh pervious concrete. Unlike conventional concrete, which is typically designed with high slump values for easy placement and consolidation, pervious concrete is characterized by minimal or zero slump due to its high porosity. Slump testing involves measuring the slump or deformation of the concrete mixture when subjected to a standard test method. While traditional slump tests may not be directly applicable to pervious concrete, modified methods can be employed to assess its consistency and ease of handling during placement.

These experimental studies play a crucial role in advancing the understanding and utilization of pervious concrete in construction and environmental engineering. By conducting comprehensive tests, researchers can optimize mixture proportions, enhance performance, and ensure the long-term durability of pervious concrete structures. Additionally, these studies contribute to the development of design guidelines and standards for incorporating pervious concrete into sustainable infrastructure projects.

In summary, experimental studies on pervious concrete encompass a range of tests, including compression, permeability, and slump tests, aimed at evaluating its mechanical properties, water permeability, and workability. These tests provide essential data for designing, optimizing, and implementing pervious concrete in various construction applications, ultimately contributing to sustainable urban development and environmental conservation efforts.

2. Materials and Methods

The Materials used during the preparation of Pervious Concrete are Cement, Aggregates, Water and Admixtures. We have casted the cube of dimensions 150mmX150mmX150mm

With the help of materials like cement, aggregate, and water. Later we performed the permeability test and compressive strength test to find out the compressive strength of the casted cube. The study was conducted by preparing pervious concrete samples with different mix designs and curing conditions. The samples were tested for their porosity, permeability, and compressive strength. The results were analyzed to identify the optimal mix design and curing conditions for pervious concrete.

COMPRESSION TEST

A compressive strength test is a mechanical test used to measure how much more load a material may support when broken . Compressive strength: Compressive strength tests were done on a cube of size 150x150x150 mm at age of 7 days & 28 days curing. The average rate of loading as recommended by IS 5160 1959 was used on it by means of a standard testing machine having the capacity of 2000KN. Compressive strength is given by C=P/A where C is the compressive stress in N/mm2 and P is the compressive load in Newton

Compression test

Mix	Day of Curing	
	7 day	28 day
Mix-1	19.2 KN/mm ²	32KN/mm ²
Mix-2	23.1 KN/mm ²	38.5KN/mm ²
Mix-3	28.02 KN/mm ²	46.7KN/mm ²

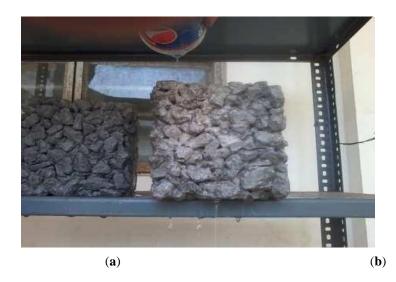
PEMEABILITY TEST

In the fields of construction, environmental studies and geology, the permeability test aids in ensuring that the structures stay intact and ecosystems are free from harm by understanding how easily liquids move through materials such as earth and rocks. It is essential that a good drainage system is installed at construction sites to avoid soil erosion – surface runoff increases rapidly following heavy downpours while flooding caused by water accumulated near the bases of structures accelerates these processes, hence endangering both people who live nearby as well as

animals living in those regions.

Comparison of Permeability Coefficient (k) for different Mix

Mix	Permeability Coefficient k mm/sec
Mix-1	6.29


nternational Journal of Scientific Research in Engineering and Management (IJSREM)

Volume: 08 Issue: 06 | June - 2024 SJIF Rating: 8.448 ISSN: 2582-3930

Mix-2	6.26
Mix-3	6.24

3. Results

Experimental studies on pervious concrete investigate its compressive strength and permeability. These tests involve varying parameters like cement content, aggregate size, and water-cement ratio. Findings show that while increasing cement content and decreasing water-cement ratio enhance compressive strength, they often reduce permeability. Permeability tests, conducted through methods like constant or falling head permeameter tests, assess water flow through pervious concrete. Aggregate gradation, compaction, and void structure influence permeability, with larger aggregates and higher void content generally improving it. Researchers also explore the impact of additives like fly ash and silica fume on both strength and permeability. Long-term durability studies assess resistance to environmental factors like freeze-thaw cycles and chemical degradation. Ultimately, these experiments aim to optimize pervious concrete mixtures for applications like stormwater management, balancing strength, permeability, durability, and environmental sustainability.

4. Discussion

Experimental studies on pervious concrete, particularly focusing on compressive strength and permeability, are crucial for optimizing its performance. Compressive strength tests reveal how alterations in mixture proportions impact the material's ability to withstand load, with findings often highlighting the trade-offs between strength and permeability. Permeability tests assess the material's ability to facilitate water flow, a key factor in applications like stormwater management. By examining variables such as aggregate

IJSREM e-Journal II

size, compaction level, and void structure, researchers can tailor mix designs to achieve desired permeability rates without compromising structural integrity. Moreover, the influence of additives like fly ash and silica fume on both compressive strength and permeability is explored, offering potential solutions for enhancing performance. Through these experiments, a deeper understanding of pervious concrete's properties emerges, guiding the development of durable, efficient, and environmentally sustainable materials for various construction needs

5. Conclusion

Experimental studies on pervious concrete, encompassing assessments of compressive strength and permeability, offer invaluable insights into optimizing its functionality. These investigations have revealed the intricate balance between enhancing structural integrity through measures like adjusting cement content and water-cement ratio, while simultaneously preserving the material's permeability. Through permeability tests, researchers have identified factors such as aggregate gradation and void structure as pivotal in regulating water flow. Additionally, the impact of additives like fly ash and silica fume has been elucidated, providing avenues for enhancing both strength and permeability. Ultimately, these studies contribute to the development of pervious concrete formulations tailored to specific applications, such as stormwater management, by achieving optimal combinations of strength, permeability, and durability. With a deeper understanding of its properties gained through experimentation, pervious concrete emerges as a promising solution for sustainable construction practices, offering efficiency without compromising performance.

Literature Review

Pervious concrete is gaining traction in India due to its ability to address water scarcity and urban flooding. However, research suggests a need for further investigation into its long-term performance and adaptation of testing methods for Indian standards.

Benefits of Pervious Concrete in India:

- Water Management: Pervious pavements allow rainwater to infiltrate through the concrete matrix, replenishing groundwater and reducing storm water runoff. This is crucial in regions facing water scarcity.
- **Flood Mitigation:** By facilitating infiltration, pervious concrete helps prevent urban flooding, a common problem in Indian cities.

Indian Standards and Pervious Concrete:

- **Standardization Needs:** Current Indian concrete testing protocols might not be entirely suitable for pervious concrete due to its unique properties, such as high porosity.
- **Research Gap:** Studies suggest a need for research on developing or adapting testing methods for pervious concrete based on Indian standards. This would ensure proper evaluation and design of pervious concrete pavements.

Additional Considerations:

- Long-Term Performance: Since pervious concrete is a relatively new technology in India, long-term performance data is scarce. Include studies that explore the durability and effectiveness of pervious concrete pavements over time.
- **Material Optimization:** Explore research on optimizing pervious concrete mix design using locally available materials in India.

IJSREM II

Volume: 08 Issue: 06 | June - 2024 SJIF Rating: 8.448 ISSN: 2582-3930

References:

- GHMC, India Launched 'Model Pilot Project': Pervious Concrete Road Pavement' at Sports Complex [International Society for Concrete Pavements]: This news article describes a pilot project in Hyderabad that implemented pervious concrete for a sports complex pavement. It highlights the innovative and environmentally friendly nature of this material [News article on International Society for Concrete Pavements concretepavements.org].
- "Published Thesis: "Structural Design Guidelines for Pervious Concrete Pavements": https://www.concretepavements/
- Omkar Deo, N. Neithalath (2010) Compressive behavior of pervious concretes and a quantification of the influence of random pore structure features
- Karthik H. Obla (2010), pervious concrete: An overview, Pervious concrete is a special high porosity concrete used for flatwork applications. It allows water from precipitation and other sources to pass through, thereby reducing the runoff from a site and recharging ground water levels
- Y Zhuge & C. Lian (2009) University of Southern Queensland: Development of environmentally friendly and structural enhanced permeable concrete pavement material
- Pervious Concrete by ACI Report No. 522 R 06
- ASTM C-1701 "Standard Test Method for Inltration Rate of In Place Pervious Concrete" Annual Book of ASTM Standards 4(2), 2009, West Conshohocken, PA ASTM International.
- Best Strategic Advances In Pervious Concrete Technology, D. Huffman.