

EXPERIMENTATION & DEVELOPMENT OF DUAL FUEL (DIESEL+CNG) TRACTOR

Pawan Kumar,	Siddharth
Mechanical Engineering Department,	Mechanical Engineering Department
Lingaya's Vidyapeeth	Galgotias University
Faridabad,India	Greater Noida,India
Email Id: pk.hooda92@gmail.com	Email Id: siddharthsingh@ galgotiasuniversity.edu,in

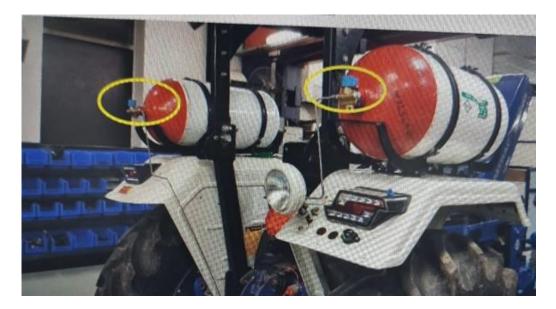
ABSTRACT: To Upgrade Tracror with dual Fuel technology which enables Its engine to run with combination of CNG and Diesel fuel. This experiment will provide following benefits to Tractor Customers

1.Savings on fuel expenditures

2.Reduce pollution mainly CO, NOx and PM emission

INTRODUCTION: Towards the effort of reducing the operating cost of tractor with diesel engines for farmer, We have proposed solutions of using CNG(gaseous fuel) as a fractional supplement for Diesel (liquid fuel).

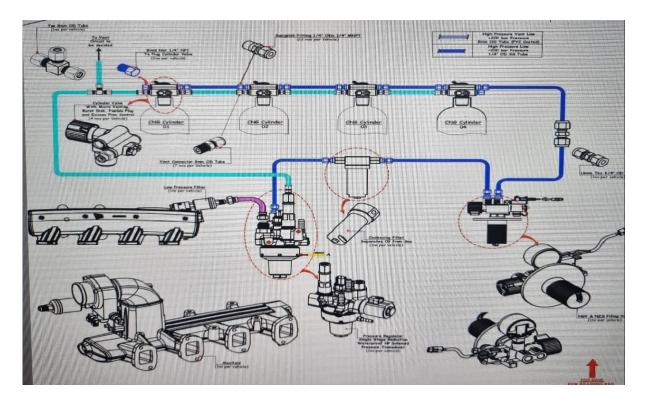
A dual-fuel (Diesel-CNG) engine is a basic diesel engine equipped with a dual-fuel conversion kit that allows the use of a clean-burning alternative fuel such as compressed natural gas. Diesel and natural gas are burned simultaneously in this engine. Natural gas is supplied in the cylinder in conjunction with intake air; the quantity of diesel injection is decreased accordingly.


There are number of potential benefits of Dual fuel engines such as higher compression ratio, fuel flexibility, and improved efficiency and less adjustment in current diesel engines. Due to less smock and PM emissions and high efficiency of diesel combustion it as an environmentally friendly technology.

Normally diesel is costlier then natural gas. The total Cost savings for dual fuel will depend upon the proportion of fuel added. For energy consumption and environmental pollution point of view, and availability of CNG dual fuel technology is a efficient technology to use.

EXPERIMENTAL DESIGN AND PROCEDURE: For experiment a tractor of 50HP being used, a separate CNG kit installed on tractor for which various parts detail given below

- 1.CNG cylinders
- 2.CNG Integrated dual filling kit
- 3.CNG high pressure coalescing filter
- 4.CNG high pressure regulator
- 5.CNG cylinder valve
- 6.CNG fuel indicator
- 7.Electronic control module
- 8.CNG single point injector assembly
- 9. Hose assembly LP HPR to SPI
- 10.Tubes and connectors



CNG kit on diesel engine setup.

The configuration of tractor for the experiment is given below

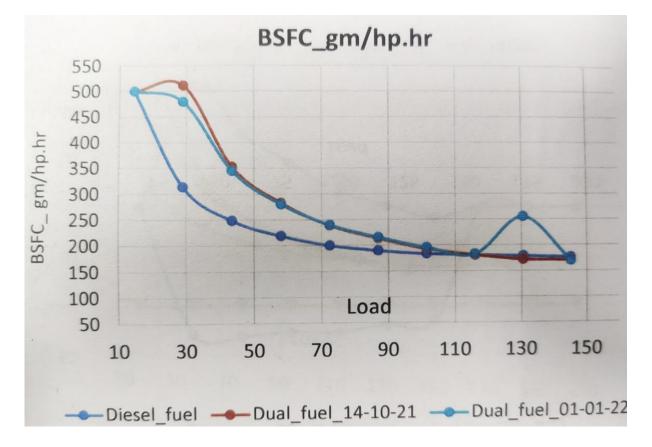
MODEL	49.5 HP
RATED RPM	1850
ENGINE CC	3680
ENGINE CYLINDER	4
BORE/STROKE	98/122
TRACTOR COFIG.	PS/DC/OIB/169X28

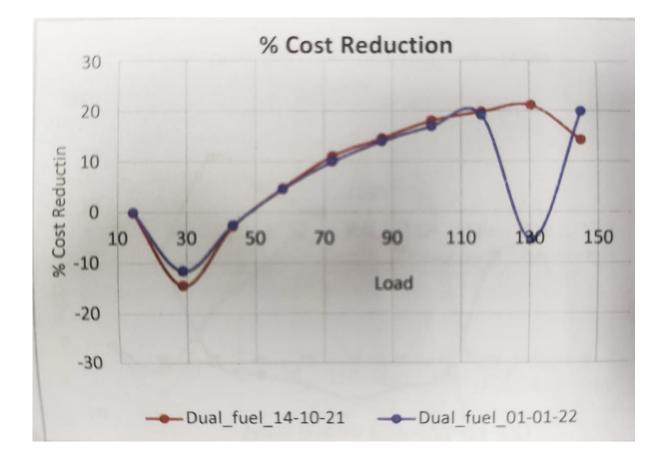
Circuit diagram for CNG Kit

T

RESULT AND DISCUSSIONS:-

Below are the observation with dual fuel (Diesel + CNG) test result.


- ERPM drop is better by 30-40 with different application ٠
- Ltr/Acr is better by 35-36% ٠
- Ltr/hrs is better by 30-32% ٠
- Acr/hrs is better by 2-3% •


COMPARISION @1800 Erpm DIESEL VS DIESEL+CNG					
D+CNG					
ENGINE	TORQUE	PTO SPEED	POWER	FUEL CONSUPTION	
RPM	NM	RPM	Ps	Kg/hr	L tr/hr
1800	0	537	0	198	2.37
1783	50	532	4	2.4	2.87
1798	100	537	8	1.94	2.32
1787	150	533	11	2.28	2.72
1775	200	530	15	2.62	3.14
1764	250	527	19	2.97	3.55
1756	300	524	22	3.36	4.02
1748	350	522	26	4.16	4.98
1731	400	517	29	4.8	5.74
1717	450	513	33	5.16	6.17
1703	500	508	36	6.05	7.24
1682	550	502	39	7.17	8.58
1667	600	498	43	7.74	9.26
1590	650	475	44	7.95	9.51

COMPARISION @1800 Erpm DIESEL VS DIESEL+CNG							
DIESEL							
ENGINE	TORQUE	PTO SPEED	POWER	FUEL CONSUPTION		%DELTA Kg/hr	%DELTA Ltr/hr
RPM	NM	RPM	Ps	Kg/hr	L tr/hr		
1800	0	537	0	1.95	2.3	-1.9	
1786	50	533	4	2.35	2.8	-2.22	
1773	100	529	8	2.77	3.3	30	
1761	150	526	11	3.22	3.9	29.28	
1754	200	523	15	3.69	4.4	28.91	
1746	250	521	19	4.15	5	28.56	
1737	300	518	22	4.63	5.5	27.45	
1727	350	516	26	5.15	6.2	19.1	
1717	400	513	29	5.65	6.8	15.07	
1706	450	509	33	6.15	7.4	16.15	
1694	500	506	36	6.69	8	9.58	28.34
1679	550	501	39	7.3	8.7	1.79	
1667	600	498	42	7.8	9.3	0.69	
1565	650	467	43	787	9.4	-1.11	

T

CONCLUSION

The operating cost of tractor reduced significantly, As shown in below table the cost reduction per hr is Rs 83.25 along with the significant reduction in PM exhaust gases.

PARAMETER	FIELD TEST RESULTS				
IMPLEMENT	9X9 DISC 13 TYNE 8		8 FT		
	HARROW	CULTIVATOR	ROTAVATOR		
OPERATING RPM	1800				
BASE RESULTS OF TRACTOR 50HP WITH DIESEL+CNG					
AREA COVERAGE, ACR/Hrs	2.5-2.6	4.9-5.0	1.7-1.75		
FUEL CONSUPTION, Ltr/ACR	1.6-1.7	0.9-1.0	3.6-3.8		
FUEL CONSUPTION, Ltr/HrS	4.2-4.3 4.5-4.6		6.0-6.1		
TRACTOR 50HP DIESEL+ CNG W.R.T TRACTOR 50HP DIESEL					
AREA COVERAGE, ACR/Hrs	3%	3%	2%		
FUEL CONSUPTION, Ltr/ACR	38%	32%	34%		
FUEL CONSUPTION, Ltr/HrS	36%	30%	32%		
CAPABILITY	1	1	1		

REFERENCES

[1] Dr.S.S.Thipse; "Alternative Fuels : Concepts, Technologies and Developments" ; Jaico Publishing House 2012.

[2] Ghazi A. Karim CRC press - Dual-Fuel Diesel Engines

[3] James Speight; "Natural gas: A basic handbook"; Gulf publishing company 2007 edition; ARAI library.

[4] Lino Guzzella, Christopher Onder; "Introduction to modelling and control of internal combustion engine systems"; second edition springer; ARAI library.

[5] Emission standards for off-road vehicles; https://www.dieselnet.com/standards/in/nonroad.php [6] Lim O., Lida N., Cho G., and Narankhuu J., "The research about Engine optimisation and Emission characteristics of Dual fuel engine fuelled with Natural gas and Diesel," SAE Technical paper 2012-32-0008, 2012, doi:10.4271/2012-32-0008.

[7] Shen J., Qin J., and Yao M., "Turbocharged diesel/CNG Dual Fuel engines with intercooler: Combustion Emissions and Performances". SAE Technical paper 2003-01-3082, 2003, doi:120.4271/2003-01-3082.

[8] Thipse, S., Kavathekar, K., Rairikar, S., Tyagi, A. et al., "Development of Environment Friendly Diesel-CNG Dual Fuel
Engine for Heavy Duty Vehicle Application in India," SAE Technical Paper 2013-26-0015, 2013, doi:10.4271/2013-26-0015

[9] Thipse, S., Kulkarni, A., J Vispute, S., Rairikar, S. et al., "Development of Dual Fuel (Diesel-CNG) Engine for SUV Application in India," SAE Int. J. Engines 8(1):341-349, 2015, doi:10.4271/2015-26-0058.

[10] Chougule, V., Chhaganlal Vora, K., Suryavanshi, Y., and gunjegaonkar, D., "Design and Simulation of 2.5 L Dual Fuel (Diesel-CNG) Engine for Performance Parameters," SAE Technical Paper 2013-01-2885, 2013, doi:10.4271/2013-01-2885.

[11] Meng, X., Nithyanandan, K., Lee, T., Li, Y. et al., "An Experimental Study of the Combustion, Performance and Emission Characteristics of a CI Engine under Diesel-1-Butanol/CNG Dual Fuel Operation Mode," SAE Technical Paper 2016-01-0788, 2016, doi:10.4271/2016-01-0788.

[12] Talekar, A., Lai, M., Zeng, K., Yang, B. et al., "Simulation of Dual-Fuel-CI and Single-Fuel-SI Engine Combustion Fueled with CNG," SAE Technical Paper 2016-01-0789, 2016, doi:10.4271/2016-01-0789 [13] Xu, S., Anderson, D., Singh, A., Hoffman, M. et al., "Development of a Phenomenological Dual-Fuel Natural Gas Diesel Engine Simulation and Its Use for Analysis of Transient Operations," SAE Int. J. Engines 7(4):1665-1673, 2014, doi:10.4271/2014-01-2546.

[14] Yoshimoto, Y., Kinoshita, E., Luge, S., and Ohmura, T., "Combustion Characteristics of a Dual Fuel Diesel Engine with Natural Gas (Lower limit of Cetane Number for Ignition of the Fuel)," SAE Int. J. Fuels Lubr. 5(3):1165-1173, 2012, doi:10.4271/2012-01-1690.

[15] Papagiannakis, R., Hountalas, D., Rakopoulos, C., and Rakopoulos, D., "Combustion and Performance Characteristics of a DI Diesel Engine Operating from Low to High Natural Gas Supplement Ratios at Various Operating Conditions," SAE Technical Paper 2008-01-1392, 2008, doi:10.4271/2008-01-1392.