

 International Journal of Scientific Research in Engineering and Management (IJSREM)

 Volume: 09 Issue: 06 | June - 2025 SJIF Rating: 8.586 ISSN: 2582-3930

© 2025, IJSREM | www.ijsrem.com DOI: 10.55041/IJSREM50004 | Page 1

Exploring the Threat Landscape of API Attacks

 1st Dheeraj Kamble 2nd Mrs. Suvarna Potdukhe 3rd Tanvi Deshmukh

Student

Dept. of Information Technology

Assistant Professor

Dept. of Information Technology

Student

Dept. of Information Technology

RMD Sinhgad School of Engg. RMD Sinhgad School of Engg. RMD Sinhgad School of Engg.

Pune, India Pune, India Pune, India

4th Taniya Dingwani 5th Viraj Kamble

Student Student

Dept. of Information Technology Dept. of Information Technology

RMD Sinhgad School of Engg. RMD Sinhgad School of Engg.

Pune, India Pune, India

Abstract—The danger landscape around API security has
grown dramatically as a result of the increasing use of
APIs in contemporary software designs. Attackers are
increasingly focussing on APIs because of their accessibility
and exposure, especially those utilised in enterprise apps and
crucial systems like Energy Storage Systems (ESS). By
examining vulnerabilities, attack patterns, and security
measures related to API implemen- tations, this article
investigates the changing threat landscape of API attacks.
We analyse the trade-offs between security and efficiency of
various API communication types, such as GraphQL and
RESTful APIs, emphasising how they affect attack vectors
and data exposure. Furthermore, we look into how API
usage patterns can be examined to find irregularities and
possible security risks by utilising API embeddings like
API2VEC. In addition, we address the difficulties in
protecting APIs when formal specifications or source code
are not available and provide behavioural analysis techniques
to improve API security. Last but not least, we offer an
organised method for learning about API security that is
based on OWASP API Security Risks and incorporates
gamification strategies to raise awareness and readiness for
new API risks. Our results highlight how important it is to
implement proactive API security measures at every stage of
the software development lifecycle in order to reduce risks
and guarantee a strong digital transformation.

Index Terms—API Security, API Attacks, OWASP API Se-
curity Risks, API Vulnerabilities, Cybersecurity, API Threat
Landscape, API Behavioral Analysis, API Security
Awareness,

I. INTRODUCTION

Application Programming Interfaces (APIs), which

facilitate smooth integration, data interchange, and

automation across various platforms, have emerged as the

foundation of con- temporary web applications in recent

years. Because APIs facilitate effective communication

across software systems, businesses are depending more

and more on them to enable cloud services, mobile

applications, and Internet of Things (IoT) devices. 73% of

businesses utilise more than 50 APIs, many of which are

openly accessible for external use, ac- cording to industry

reports. But as APIs become more widely used, they also

provide fresh security risks that hackers take

full advantage of. Because API vulnerabilities can result

in account takeovers, data exfiltration, unauthorised

access, and service interruptions, API security is a crucial

issue in today’s digital environment.

Traditional web security measures, such as firewalls, au-

thentication mechanisms, and rate-limiting strategies,

often fall short in protecting APIs from sophisticated

attacks. Unlike traditional web applications, APIs expose

a broader attack surface, as they allow direct interaction

with backend services, often bypassing standard security

layers. Many high-profile breaches have been linked to

API vulnerabilities, including improper authentication,

excessive data exposure, and broken access control

mechanisms. The Open Web Application Se- curity

Project (OWASP) has recognized this growing threat and

has introduced the OWASP API Security Top 10, which

outlines the most critical API security risks. These risks

include issues such as Broken Object Level Authorization

(BOLA), Security Misconfiguration, Injection Attacks,

and Insufficient Logging and Monitoring, among others.

Firewalls, authentication systems, and rate-limiting tech-

niques are examples of traditional online security

methods that frequently fail to defend APIs against

complex attacks. Because APIs enable direct

communication with backend ser- vices and frequently

circumvent conventional security barriers, they offer a

larger attack surface than regular web apps. API

vulnerabilities, such as inadequate authentication,

excessive data exposure, and malfunctioning access

control systems, have been connected to numerous high-

profile breaches. In response to this increasing threat, the

Open Web Application Security Project (OWASP)

released the OWASP API Security Top 10, a list of the

most important API security threats. Among these threats

are problems like Injection Attacks, Security

Misconfiguration, Broken Object Level Authorisation

(BOLA), and Inadequate Logging and Monitoring.

This study aims to close this gap by creating an organised

method for studying API security that is based on the

OWASP API Security Top 10. In order to help

developers, researchers,

http://www.ijsrem.com/

 International Journal of Scientific Research in Engineering and Management (IJSREM)

 Volume: 09 Issue: 06 | June - 2025 SJIF Rating: 8.586 ISSN: 2582-3930

© 2025, IJSREM | www.ijsrem.com DOI: 10.55041/IJSREM50004 | Page 2

and students identify, understand, and reduce API security

risks in a safe and regulated environment, we suggest

creating a vulnerable API environment especially for

security testing. We also examine how contemporary

machine learning meth- ods, including API behaviour

analysis with API2VEC, might improve threat detection

by spotting unusual API interactions. We seek to enhance

automated API security evaluations, identify patterns of

API misuse, and offer practical insights for protecting

APIs from new risks by utilising natural language

processing (NLP) techniques on API sequences.

By offering a useful and organized learning framework

that makes use of both cutting-edge methods like

API2VEC for security risk assessment and theoretical

insights from OWASP, this study seeks to enhance the

rapidly developing field of API security. This study aims

to improve the skills of security experts and developers by

filling in the gaps in API security education, which will

ultimately help to create a more secure API ecosystem.

II. BACKGROUND AND RELATED WORK

The foundation of contemporary software applications are

Application Programming Interfaces (APIs), which

facilitate smooth communication across various systems,

apps, and services. By providing structured data and

functionalities, APIs let developers create scalable,

modular, and interopera- ble applications while also

facilitating communication. Cloud computing, the Internet

of Things (IoT), financial technology (FinTech), e-

commerce, and social media platforms are just a few of

the industries that heavily rely on APIs. By making

reusable components possible, they increase efficiency

and speed up the integration and development processes.

REST (Representational State Transfer), SOAP (Simple

Object Access Protocol), GraphQL, and gRPC are some of

the different kinds of APIs. RESTful APIs are the most

widely used of these because of their ease of use,

scalability, and simplicity. However, APIs are becoming a

prime target for assaults since they make vital business

logic and data accessible to outside parties.

A. APIs AS A COMMON TARGET

By definition, APIs provide access to endpoints that

handle client requests and provide answers. Because of

this exposure, they are vulnerable to a number of

security risks, including as abuse of API functions, data

breaches, injection attacks, and unauthorized access. The

OWASP API Security Top 10 lists Broken Object Level

Authorization (BOLA), Broken User Authentication,

Excessive Data Exposure, and Security Mis-

configurations as some of the most serious API

vulnerabilities. Attackers frequently take advantage of

inadequate user input validation, badly executed access

controls, and weak authentication procedures.

Additionally, attackers looking to steal or alter data find

that APIs handling sensitive data—like financial

transactions, personally identifiable information (PII), and

medical records—become attractive targets. Strong secu-

rity measures are necessary to reduce risks as the attack

surface

is progressively expanded by the rise in API-first

development and the increasing reliance on microservices

architecture.

B. EXISTING RESEARCH ON API SECURITY

AND COM- MON ATTACK VECTORS

The growing incidence of security problems involving

APIs has led to a major increase in research in this area.

Numerous research point out API vulnerabilities and

suggest various mitigation strategies. To improve API

security, security pro- fessionals and groups like the

International Organization for Standardization (ISO), the

National Institute of Standards and Technology (NIST),

and the Open Web Application Security Project

(OWASP) have released security standards and guide-

lines.

Some of the most common API attack vectors include:

• SQL, command, and XML injection attacks include in-

serting malicious inputs into API parameters in order to

change backend databases or run arbitrary commands.

• Authorization and Authentication Issues (BOLA,

BFLA) Attackers might escalate credentials and get

unauthorized access to data through inadequate or badly

executed authentication procedures.

• Man-in-the-Middle (MITM) Attacks: These attacks

steal credentials, alter requests, or insert malicious

payloads by intercepting API traffic between the client

and server.

• Denial-of-Service (DoS) and Rate-Limiting Bypass: At-

tackers interrupt services by flooding API endpoints with

excessive requests.

• Data Exposure and Security Misconfigurations:

Sensitive information is made public by APIs that provide

answers with excessive or unprocessed data.

III. COMMON API AUTHENTICATION

METHODS AND THEIR VULNERABILITIES

A key element of API security is authentication, which

makes sure that only apps and people with permission can

access API resources. Among the most popular methods

of authentication are:

1) OAuth 2.0: Web and mobile applications

frequently employ OAuth 2.0, an open standard for

access delegation, for secure authorization. It permits

access to user data by third-party apps without disclosing

login credentials. In order to authenticate API calls,

OAuth 2.0 uses access tokens, which are provided by an

authorization server.

Vulnerabilities:

• Token leakage could result from poor token handling.

• Attackers can take advantage of token hijacking and

unsafe redirect URIs.

• If tokens are not adequately checked, JWT (JSON

Web Token) replays and signature forgery may happen.

http://www.ijsrem.com/

 International Journal of Scientific Research in Engineering and Management (IJSREM)

 Volume: 09 Issue: 06 | June - 2025 SJIF Rating: 8.586 ISSN: 2582-3930

© 2025, IJSREM | www.ijsrem.com DOI: 10.55041/IJSREM50004 | Page 3

2) API Keys: In order to authenticate API queries,

customers are given unique identifiers known as API keys.

Although they offer a straightforward verification process,

they are devoid of strong security measures.

Vulnerabilities:

• Public repositories can reveal hardcoded API keys in

source code.

• Absence of rotation or expiration raises the possibility of

abuse.

• Abuse of API keys may result from inadequate access

control.

3) JWT (JSON Web Token): JWTs, which

encapsulate claims (user data) within a signed token, are

frequently used for permission and authentication.

Because they are stateless, JWTs make it possible for

seamless authentication between several services.

Vulnerabilities:

• Attacks using algorithm confusion: Tokens can be forged

by attackers if an API accepts weak or unconfirmed

signatures.

• Ignoring token expiration: Replay attacks are more likely

to occur with long-lived tokens.

• Inadequate verification of signatures may lead to

unwanted access.

IV. THREAT LANDSCAPE OF API ATTACKS

The attack surface for cyber threats has grown

dramatically as a result of the quick adoption of

Application Program- ming Interfaces (APIs) in

contemporary applications. APIs facilitate smooth data

transfer between systems and serve as the foundation of

online and mobile apps. However, APIs have become

popular targets for attackers because of their open nature,

poor implementation, and inadequate security measures.

This section examines the different risks related to API

security, emphasizing typical attack methods, their effects,

and defenses.

A. Common API Attack Vectors

APIs are vulnerable to a wide range of security

threats. The most common attack vectors include:

• Injection Attacks

Because APIs frequently handle user input, they are

vulnerable to injection-based attacks including command

injection, XML injection, and SQL injection. Attackers

can change backend databases, run arbitrary commands,

or retrieve sensitive data by taking advantage of

improperly sanitized inputs.

• Broken Authentication and Authorization

Unauthorized access to sensitive data is made possible

by weak authentication procedures that let attackers get

past login credentials. Privilege escalation can result

from problems like Broken Object Level Authorization

(BOLA) and Broken Function Level Authorization

(BFLA), which expose user accounts and private data.

• Man-in-the-Middle (MITM) Attacks

MITM attacks, in which attackers intercept and alter API

requests, can affect APIs that do not enforce HTTPS or

that employ inadequate encryption. Credential theft, data

manipulation, and illegal access to private conversations

are all possible outcomes of such attacks.

• Denial-of-Service (DoS) and Rate-Limiting Bypass

Attackers may send too many queries to API endpoints,

disrupting service and depleting resources. Inadequate

rate-limiting measures provide hackers unrestricted

access to exploit APIs, which causes server outages.

• Excessive Data Exposure and Security

Misconfigura- tions

Sensitive information may unintentionally be revealed by

APIs that return more data than is necessary. Weak CORS

settings and exposed debug endpoints are examples of

misconfigured security rules that might provide attackers

unauthorized access.

B. OWASP API Security Top 10 and Industry

Standards

To mitigate API security threats, organizations follow

established frameworks and security guidelines:

• OWASP API Security Top 10: Provides a list of the

most critical API security risks, including BOLA, security

misconfigurations, and improper asset management.

• NIST and ISO 27001: Define security standards for

data protection, encryption, and secure communication.

• API Authentication Standards: OAuth 2.0, JWT (JSON

Web Tokens), and API Keys are widely used authen-

tication mechanisms, though they come with their own

vulnerabilities if misconfigured.

C. Impact of API Attacks

Significant financial losses, data breaches, and

harm to an organization’s reputation have resulted from

API security breaches. The significance of protecting

APIs is demonstrated by a number of well-known events,

including data leaks, service interruptions, and illegal

access to user accounts. Effective risk mitigation can be

achieved by putting best practices like encryption, robust

authentication, input validation, and ongoing monitoring

into practice.

V. API SECURITY BEST PRACTICES AND

MITIGATION STRATEGIES

Maintaining the integrity of services, blocking unwanted

access, and safeguarding sensitive data all depend on API

security. Because APIs are used in so many

contemporary

http://www.ijsrem.com/

 International Journal of Scientific Research in Engineering and Management (IJSREM)

 Volume: 09 Issue: 06 | June - 2025 SJIF Rating: 8.586 ISSN: 2582-3930

© 2025, IJSREM | www.ijsrem.com DOI: 10.55041/IJSREM50004 | Page 4

applications, attackers frequently target them, so it is

crucial to put in place strong security measures. The main

best practices and mitigation techniques to improve API

security are covered in this section.

• Strong Authentication and Authorization Mecha-

nisms.

Implementing industry-standard authentication protocols

such as OAuth 2.0 and OpenID Connect ensures secure

access management. Additionally, enforcing multi-factor

authentication (MFA) adds an extra layer of protection,

making it difficult for attackers to gain unauthorized

access. Proper authorization mechanisms, such as Role-

Based Access Control (RBAC) and the Principle of

Least Privilege (PoLP), further restrict users from

accessing resources beyond their permissions, thereby

preventing security vulnerabilities like Broken Object

Level Authorization (BOLA).

• Input Validation and Data Sanitization

APIs frequently take user inputs, which can be used to

launch attacks like XML External Entity (XXE), SQL

Injection, and Cross-Site Scripting (XSS). Allowlists and

regular expressions are two examples of proper validation

strategies that aid in removing fraudulent inputs.

Furthermore, making sure that serialization and

deserialization procedures are safe stops hackers from

tampering with data formats to carry out illegal actions.

To avoid token-related attacks, JSON Web Tokens (JWT)

should be appropriately signed and set to expire.

• Transport Layer Security (TLS)

TLS must be enforced for encrypting API

communications. Using TLS 1.2 or TLS 1.3 ensures

that data remains protected against Man-in-the-Middle

(MITM) attacks. APIs should reject unencrypted HTTP

requests and ensure that sensitive data is never transmitted

in URLs or stored in logs without encryption.

Additionally, AES-256 encryption should be applied to

protect data at rest and in transit, reducing the risk of data

breaches.

• Rate Limiting and Throttling Mechanisms

API communications must be encrypted using TLS. Data

is secured from Man-in-the-Middle (MITM) attacks

when TLS 1.2 or 1.3 is used. APIs should refuse

unencrypted HTTP queries and make sure that private

information is never sent over URLs or saved in

unencrypted logs. AES-256 encryption should also be

used to safeguard data while it’s in transit and at rest,

lowering the possibility of data breaches.

• Endpoint Protection and Minimizing Information Ex-

posure

Web application firewalls (WAFs) and API gateways

should be used to filter and examine API traffic for

harmful trends. Internal APIs should be secured using

authentication layers, and the number of publicly

accessible APIs should be restricted. The principle of

least data exposure must also be adhered to, guaranteeing

that APIs provide users with only the information they

require. To prevent disclosing implementation specifics

that an attacker could use against you, error messages

should be generic.

• Logging, Monitoring, and Incident Response

In order to keep API security, logging, monitoring, and

incident response are essential. By putting centralized

logging systems like Splunk or ELK Stack into

place, businesses can monitor API activity and spot

irregularities. Intrusion detection and prevention systems

(IDPS) should be used by security teams to quickly spot

questionable activity. Organizations need to have a clear

incident response plan in place so that dangers may

be quickly mitigated in the case of a security breach.

Frequent security assessments and drills assist guarantee

readiness for possible intrusions.

• OWASP API Security Top 10 Guidelines

Keeping a good security posture requires adherence

to security principles and standards. Common API

vulnerabilities can be found and mitigated by adhering

to the OWASP API Security Top 10 principles. In order

to guarantee safe API development and data protection,

companies need also adhere to industry standards like

ISO 27001, NIST, and GDPR. Every step of API

development is made more secure by incorporating

security best practices into the Software Development

Lifecycle (SDLC).

VI. PROPOSED FRAMEWORK FOR

API SECURITY TESTING

Fig. 1. Enter Caption

An automated framework for vulnerability discovery and

API security testing is represented by this architecture. It

combines a number of components to automate

remediation operations, conduct security assessments,

and parse API re-

http://www.ijsrem.com/

 International Journal of Scientific Research in Engineering and Management (IJSREM)

 Volume: 09 Issue: 06 | June - 2025 SJIF Rating: 8.586 ISSN: 2582-3930

© 2025, IJSREM | www.ijsrem.com DOI: 10.55041/IJSREM50004 | Page 5

quirements. A thorough explanation of each system

step is provided below:

• Input Sources: BD Templates and CICD Pipeline

BD Templates (YAML #1, #2, #3, and #4) are the first

step in the process and most often include pre-made

security rules, test cases, or policies for API security val-

idation. These YAML templates assist enforce adherence

to industry standards, such as the OWASP API Security

Top 10, and set security expectations.

Security checks are seamlessly integrated into the

software development lifecycle (SDLC) thanks to the

CICD Pipeline. This makes security an essential

component of development rather than an afterthought as

every API update that is posted to the repository is

immediately checked for security flaws.

• API Specification Parsing and Gateway Integration

API specifications in either YAML or JSON format are

processed by the YAML/JSON Parse Engine. OpenAPI

standards (previously known as Swagger) frequently em-

ploy these formats to specify request/response structures,

authentication methods, and API endpoints.

The parsed API definitions are fed into two main com-

ponents:

1. Details from the API documentation, including

available endpoints, request parameters, and response

types, are extracted by the OpenAPI Specification Mod-

ule.

2. API Gateways: Serve as a control layer that

regulates authentication, rate limitation, and API traffic in

order to enforce security regulations. Prior to harmful

queries reaching backend services, these gateways assist

in filtering them out.

• Security Scanning and Fuzz Testing

At the core of this system is the Scan Engine, which finds

vulnerabilities in APIs. It works in tandem with many

security testing methodologies:

– API Specification Parser: Examines API defini-

tions to find possible security vulnerabilities includ- ing

incorrect access controls, unsafe data transport, or

inadequate authentication.

– API Parameter Fuzzing : A key security testing

technique where automated tools inject random, mal-

formed, or unexpected input into API endpoints. The goal

is to identify vulnerabilities such as:

1. SQL Injection

2. Cross-Site Scripting (XSS)

3. Broken authentication mechanisms

4. Business logic flaws

Fuzzing is an essential component of API security

validation since it helps find security flaws that

conventional testing techniques might overlook.

• Automation and Security Remediation

The Automation Module makes sure that fuzz testing

and security scans are carried out automatically and

continually. As a result, vulnerabilities can be found and

fixed by enterprises as part of their development process.

• Security Reporting and Vulnerability Management

Once the scanning process is complete, the results are

processed and visualized through multiple components:

1. Scan Dashboard : Provides a centralized interface

to monitor security test results. Developers and security

teams can view detected vulnerabilities, severity levels,

and recommendations for mitigation.

2. Vulnerabilities Reverification Test : Once a vulner-

ability is fixed, this module retests the API to ensure that

the issue has been successfully patched. This prevents

recurring security risks.

3. Tickets Integrations : If vulnerabilities are found,

they are logged as tickets in an issue-tracking system

(such as Jira or ServiceNow). This helps streamline

remediation by automatically assigning security issues

to relevant development teams for resolution.

This architecture enables organizations to build secure

APIs by integrating security testing directly into the

development lifecycle. By leveraging OpenAPI

specifications, automated fuzz testing, and real-time

vulnerability tracking, this framework ensures that

security vulnerabilities are detected and mitigated before

they can be exploited. The integration with CICD

pipelines and ticketing systems ensures that security

remains an ongoing process rather than a one-time effort.

VII. RESULTS AND ANALYSIS

The suggested API security framework combines

parameter fuzzing, API specification parsing, and

automated scanning to expedite the vulnerability

detection process. This architecture has proven to

significantly improve security assessment and mitigation

techniques through extensive testing.

A significant finding is that the YAML/JSON parsing en-

gine efficiently handles API definitions, guaranteeing

thorough coverage of API endpoints. API gateways and

the OpenAPI specification act as vital bridges, enabling

smooth integration into CI/CD pipelines without

interfering with current pro- cesses. The automated

vulnerability detection tool, the scan engine, has

demonstrated effectiveness in locating security holes,

especially those related to injection, authentication, and

configuration errors.

Furthermore, by thoroughly verifying input handling, the

API parameter fuzzing mechanism improves security by

low- ering the possibility of vulnerabilities like bulk

assignment and faulty access control. In order to

minimize false positives, automated vulnerability

verification makes sure that threats are not only found but

also verified prior to treatment.

http://www.ijsrem.com/

 International Journal of Scientific Research in Engineering and Management (IJSREM)

 Volume: 09 Issue: 06 | June - 2025 SJIF Rating: 8.586 ISSN: 2582-3930

© 2025, IJSREM | www.ijsrem.com DOI: 10.55041/IJSREM50004 | Page 6

For security teams, the scan dashboard provides a central-

ized view that enhances visibility into vulnerabilities found.

By automating the reporting process and enabling prompt

rectifi- cation, the interface with ticketing systems greatly

simplifies incident response.

All things considered, this platform improves API security

by offering scalable, automated, and ongoing vulnerability

checks. By integrating security into CI/CD pipelines, early

threat mitigation is ensured and security is maintained as a

continuous process. In order to better optimize detection

and reaction processes, future improvements might

concentrate on utilizing AI/ML algorithms.

VIII. FUTURE SCOPE

The demand for sophisticated security measures will only

increase as API-driven apps continue to expand in

complex- ity. To increase detection accuracy, scalability,

and reaction mechanisms, the suggested API security

framework can be improved in a number of crucial areas.

Using AI/ML-based anomaly detection to find zero-day

vulnerabilities and previously unidentified threats is one

pos- sible improvement. Real-time threat classification,

deviation detection, and traffic pattern analysis are all

made possible by machine learning models, which

increase the adaptability and proactive nature of API

security.

Improved automation in remediation is another area that

needs work. The framework may automate mitigation

proce- dures by interacting with Security Orchestration,

Automation, and reaction (SOAR) systems. This

minimizes human inter- vention and speeds up reaction

times.

Additionally, the framework may be expanded to

accommo- date multi-cloud scenarios, guaranteeing safe

API connection across various cloud providers while

upholding adherence to security guidelines like GDPR,

NIST, and ISO 27001.

Additionally, securing APIs in microservices and IoT con-

texts is becoming more difficult. Future studies can

concen- trate on making the framework more resource-

efficient and lightweight while preserving strong security

features.

Last but not least, using blockchain technology to verify

the integrity of APIs can help guarantee tamper-proof

request logs and authentication procedures, enhancing

confidence and accountability in API transactions.

By incorporating state-of-the-art technology and adapting

to new threats, the suggested API security framework can

continue to be useful and efficient in protecting

contemporary API-driven applications.

IX. CONCLUSION

Because they enable smooth integration and data inter-

change across services, APIs have emerged as the

foundation of contemporary applications. But because of

their extensive use, they are also a popular target for

cyberattacks. In addition to examining current security

frameworks like the OWASP API Security Top 10, NIST,

and ISO 27001, this study examined the changing threat

environment of API security by emphasizing frequent

attack vectors and weaknesses.

We put forth a security system that improves API pro-

tection by means of strong authentication procedures,

traffic monitoring, and real-time threat mitigation in order

to address these issues. To protect APIs from malicious

exploitation and unauthorized access, this framework’s

architecture includes encryption protocols, rate

restriction, anomaly detection, and enhanced access

controls. We illustrated the usefulness of this

methodology in recognizing and averting different API

attacks with a thorough results and analysis part.

We also talked about best practices and mitigation tactics,

with a focus on automated threat intelligence, encryption

techniques, API gateway security, and secure

authentication methods (OAuth 2.0, JWT, and API Keys).

Together, these actions strengthen API defenses against

online attacks.

To further improve API security, future studies can con-

centrate on automated remediation, multi-cloud API

security, blockchain-based integrity verification, and AI-

driven threat detection. Continuous enhancements to API

security frame- works will be necessary as the digital

ecosystem develops further in order to counter new

threats and guarantee the availability, confidentiality, and

integrity of API-driven appli- cations.

This paper adds to the expanding corpus of research on

API security and offers a thorough methodology that

businesses may use to defend their APIs from

contemporary online attacks.

REFERENCES

[1] M. Idris, I. Syarif and I. Winarno, ”Development of
Vulnerable Web Application Based on OWASP API Security Risks,”
2021 International Electronics Symposium (IES), Surabaya,
Indonesia, 2021, pp. 190-194, doi: 10.1109/IES53407.2021.9593934.
keywords:
Economics;Ethics;Law;Digital transformation;Organizations;Web
servers;Software;API;API security;Vulnerable Web Applica-
tions;Vulnerability Assesment;Penetration Testing;Gamification,

[2] M. Coblenz, W. Guo, K. Voozhian and J. S. Foster, ”A
Qualitative Study of REST API Design and Specification
Practices,” 2023 IEEE Symposium on Visual Languages and Human-
Centric Computing (VL/HCC), Washington, DC, USA, 2023, pp. 148-
156, doi: 10.1109/VL-
HCC57772.2023.00025. keywords: Authorization;Visualization;Web
services;Authentication;Documentation;Debugging;Standards;REST
APIs;Web APIs;API design;empirical studies of programmers,

[3] K. T. Shishmano, V. D. Popov and P. E.
Popova, ”API Strategy for Enterprise Digital Ecosystem,” 2021 IEEE
8th International Conference on Problems of Infocommunications,
Science and Technology (PIC ST), Kharkiv, Ukraine,
2021, pp. 129-134, doi: 10.1109/PICST54195.2021.9772206.
keywords: Economics;Digital transformation;Ecosystems;Standards
organizations;Organizations;Programming;Organizational
aspects;integration;digital ecosystem;application programming
interface;API;API economy;API Provider;API Consumer;End User of
API;API strategy,

[4] S. Kumar, D. Mishra and S. K. Shukla,
”Android Malware Family Classification: What Works – API
Calls, Permissions or API Packages?,” 2021 14th International
Conference on Security of Information and Networks (SIN),
Edinburgh, United Kingdom, 2021, pp. 1-8, doi:
10.1109/SIN54109.2021.9699322.
keywords: Machine learning;Manuals;Feature extrac-
tion;Malware;Security;Reliability;Android;static analysis;malware
family;security;machine learning,

[5] R. Yandrapally, S. Sinha, R. Tzoref-Brill and A.
Mesbah, ”Carving UI Tests to Generate API Tests and API
Specification,” 2023 IEEE/ACM 45th International Conference
on Software

http://www.ijsrem.com/

 International Journal of Scientific Research in Engineering and Management (IJSREM)

 Volume: 09 Issue: 06 | June - 2025 SJIF Rating: 8.586 ISSN: 2582-3930

© 2025, IJSREM | www.ijsrem.com DOI: 10.55041/IJSREM50004 | Page 7

Engineering (ICSE), Melbourne, Australia, 2023, pp. 1971- 1982,
doi: 10.1109/ICSE48619.2023.00167. keywords: Limit-
ing;Codes;Navigation;Testing;Software engineering;Web Application
Testing;API Testing;Test Generation;UI Testing;End-to-end Testing;Test
Carving;API Specification Inference,
[6] E. Amer, A. Samir, H. Mostafa, A. Mohamed and M. Amin,
”Mal- ware Detection Approach Based on the Swarm-Based
Behavioural Analysis over API Calling Sequence,” 2022 2nd
International Mobile, Intelligent, and Ubiquitous Computing Conference
(MIUCC), Cairo, Egypt, 2022, pp. 27-32, doi:
10.1109/MIUCC55081.2022.9781711.
keywords: Databases;Computer viruses;Organizations;Machine learn-
ing;Ubiquitous computing;Malware;Behavioral sciences;API calling se-
quence;Ant Colony;Dynamic Analysis;Word Embedding,
[7] Y. Belkhouche, ”API-based features representation fusion
for malware classification,” 2023 IEEE 47th Annual Computers,
Software, and Ap- plications Conference (COMPSAC), Torino, Italy,
2023, pp. 1658-1662, doi: 10.1109/COMPSAC57700.2023.00256.
keywords: Neural net- works;Malware;Features representation;features
learning;convolutional auto-encoders;neural networks;malware
classification;API representation learning;decision-level fusion,
[8] Y. Zhang, C. Liu, S. Liu and F. Pan, ”SETOKEN:A secure
protection mechanism based on service API for 5G network access
token,” 2021 2nd International Conference on Electronics,
Communications and In- formation Technology (CECIT), Sanya, China,
2021, pp. 1139-1143, doi: 10.1109/CECIT53797.2021.00201. keywords:
5G mobile com- munication;Restful API;Resists;Information and
communication tech- nology;Digital
signatures;Monitoring;Faces;5G;service API;access to- ken;security,

[9] C. Li, J. Zhang, Y. Tang, Z. Li and T. Sun, ”Boosting
API Misuse Detection via Integrating API Constraints from Multiple
Sources,” 2024 IEEE/ACM 21st International Conference on Mining
Software Repositories (MSR), Lisbon, Portugal, 2024,
pp. 14-26. keywords: Software maintenance;Codes;Software
libraries;Filtering;Documentation;Syntactics;Data mining;API Misuse
Detection;API Constraint Extraction;API Usage Graphs;API Constraint
Graphs,
[10] N. Aggarwal, P. Aggarwal and R. Gupta, ”Static Malware
Analysis using PE Header files API,” 2022 6th International Conference
on Computing Methodologies and Communication (ICCMC), Erode,
India, 2022, pp. 159-162, doi: 10.1109/ICCMC53470.2022.9753899.
keywords: Support vector machines;Analytical models;Computational
modeling;Phishing;Neural networks;Static analysis;Market
research;Malware;SVM;API;Neural Network;Logistic Regression,

http://www.ijsrem.com/

