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Abstract— Loom malfunctions are the main 

cause of faulty fabric production. A fabric 

inspection system is a specialized computer 

vision system used to detect fabric defects for 

quality assurance. In this paper, a deep- 

learning algorithm was developed for an on- 

loom fabric defect inspection system by 

combining the techniques of image pre- 

processing, fabric motif determination, 

candidate defect map generation, and 

convolutional neural networks (CNNs). A novel 

pairwise-potential activation layer was 

introduced to a CNN, leading to high accuracy 

of defect segmentation on fabrics with intricate 

features and imbalanced dataset. The average 

precision and recall of detecting defects in the 

existing images reached, respectively,  over 

90% and 80% at the pixel level and the 

accuracy on counting the number of defects 

from a publicly available dataset exceeded 

98%. 

Keywords- Convolutional neural network, 
activation function, fabric defects, imbalanced 
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I. Introduction 

A faulty mechanical motion or a yarn breakage 
on a loom can cause the weave structure to differ 
from the design, yielding a warp, weft, or point 
defect, such as harness misdraw, endout, mispick, 
and slub. Defects can reduce fabric price by 45% 
to 65% . In the modern weaving factories, weavers 
are required to check the fabric in weaving for 
intricate defects by cruising a number of looms 
periodically because some of the fabric defects are 
preventable or correctable if detected on time. 
Hence, the textile industry has been moving 
toward automating fabric inspection for consistent 
evaluation of fabric quality. Compared to the 60- 

75% defect detection accuracy of human visual 
judgment , a typical state-of-art automatic fabric 
inspection system can achieve a detection rate up 
to 90% . 

Most auto-fabric inspection systems are based 
on computer vision techniques including image 
acquisition and defect segmentation algorithms. 
The fabric defect detection algorithms can be 
categorized into statistical, spectral, modelbased, 
learning, structural, and hybrid approaches. The 
first five approaches for defect segmentation were 
reported to be sensitive to noise, computationally 
intensive , limited to certain types of defects], and 

inconsistent to changes in fabric structures and 
background . For the past decade, the hybrid 
approach has been adopted for higher robustness 
in handling variations in weave structures and 
defect types. Concepts from other fields, i.e., 
Bollinger Bands (BB) – a statistical chart of a 
financial instrument, and Elo rating (ER) – an 
evaluation method of player performance, have 
also been introduced to the fabric defect detection. 
Although BB and ER achieved a detection rate 
above 96% on patterned fabrics, they failed to 
detect defects smaller than the repetitive unit of a 
patterned fabric . 

Recently, convolutional neural networks 
(CNN) have been demonstrated for  effective 
image semantic segmentation. The CNNs, e.g. 
FCN , U-Net , SegNet , and their successors, all 
share the basic components—convolution, 
pooling, and activation functions, in which the 
pooling layer plays a role of avoiding overfitting 
and reducing the spatial dimensions. A deep 
network could reach over a hundred convolutional 
layers. For example, the VGGNet has 16 layers, 
while the ResNet possesses 152 layers. However, 
deep networks provide features with a global 
semantic meaning and abstract details that are not 
suitable for fine structure segmentation in an 

 

 

http://www.ijsrem.com/


          International Journal of Scientific Research in Engineering and Management (IJSREM) 

           Volume: 04 Issue: 03 | Mar -2020                                                                                           ISSN: 2582-3930                             

 

© 2020, IJSREM      |  www.ijsrem.com Page 2 
 

image, mainly because the traditional 
convolutional filters have large receptive fields, 
and fine structures are further reduced by pooling 
layers . From the perspective of computer vision, 
most fabric defects are considered as fine 
structures since they are indicated only by a small 
number of pixels in an image. To improve the fine 
structure segmentation, further processing is 
needed to be embedded in a CNN to fine tune the 
coarse outputs of the CNN. Another common 
problem in the neural network learning process is 
that samples from a real-life application may not 
always evenly distribute among classes. 
Applications, such as medical diagnosis, credit 
fraud detection, computer vision, etc., are 
brimming with imbalanced datasets. The methods 
of handling an imbalanced dataset can be 
categorized into datalevel, algorithmic-level and 
hybrid approaches . As of the data-level approach, 
over-sampling and under-sampling are the 
common strategies to adjust the class distribution 
of a dataset. A synthetic minority oversampling 
technique (SMOTE) allows samples to be 
randomly created based on the density distribution 
. The algorithmic-level approach assigns different 
cost values to minority and majority samples . It is 
difficult, however, for such a cost-sensitive 
approach to unify a general framework since it is 
often specific to a paradigm. AdaBoost algorithms 
bridged the sampling and cost-sensitive 
approaches together by iteratively updating cost 
weights. Yuan et al. introduced a regularization 
term in the SAMME algorithm to penalize the 
weight of a classifier that misclassifies the second- 
roundmisclassified examples . 

In this proposed system, we adopt a hybrid 
approach that utilizes statistical defect information 
and a CNN for fabric defect detection. The motif 
of a fabric is firstly calculated using the 
autocorrelation of a fabric image to represent the 
repeated texture in the fabric. A motif-center-point 
map, namely node map, is then generated by 
normalized cross-correlation (NCC) taking the 
motif as the template. The distributions of node 
points can indicate the regularity of fabric textures 
in the image, from which a statistical rule can be 
derived to relate the node point count in a motif 
region to the defect judgment. The statistical rule 
can be utilized as an activation reference, called 
pairwise potential activation layer, in a newly 
designed CNN to improve the fabric defect 
detection performance. significantly influence the 
success rate and the response speed of object 
recognition . In a similar way, a convolutional 

neural network selects only suitable ones from a 
tremendous amount of generated features for 
object identification. 

 

II. RELATED WORK 

A. ACTIVATION LAYER IN CNN 

To identify an object, a human brain tries to pick 

up useful information, such as shape, color, smell, 

feeling, and prior knowledge. Among these 

features, prior knowledge can significantly 

influence the success rate and the response speed 

of object recognition [28]. In a similar way, a 

convolutional neural network selects only suitable 

ones from a tremendous amount of generated 

features for object identification. 

 

 

B. FINE STRUCTURE SEGMENTATION ON 

CNNS 

Different approaches were proposed to improve 
the segmentation of fine structures. Firstly, the 
method of retrieving the features from earlier 
layers was presented in [29] and [30] to better 
estimate fine structures, such as boundary, hollow 
area, etc. An alternative way was to conduct a 
super-pixel representation of an original image to 
enhance the localized details [31]. The main 
drawback of this strategy is that it leads to a poor 
prediction if wrong features are retrieved in the 
very beginning. 

Secondly, a nonlinear model was applied to 
produce accurate semantic segmentation based on 
a label map. The nonlinear model can be a support 
vector machine (SVM) [32], a random forest [33], 
or a Conditional Random Field (CRF) [34]. The 
DeepLab is the pioneer that utilized the CRF as a 
post-processing procedure after a CNN. The 
DeepLab treated the prediction of a CNN as the 
unary potential and took the generated energy map 
as the pairwise potential to form a CRF 
presentation. Because the potentials of a CRF 
integrate the prior probability, the pairwise 
potential, and the Gaussian smooth term that 
encourages similar pixels having similar posterior 
[35], [36], a CRF is able to assist recovering the 
details of the CNN output. Although the CRF post- 
processing significantly improves the fine 
structure segmentation in an image, it does not 
fully take advantage of the strength of a CRF since 
it is isolated from the CNN learning process. It 
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needs to be noted that a simple combination of a 
CNN and a CRF may not be an optimal solution 
since it wastes many features generated by the 
CNN because of limited latent features in CRF. 
Zheng et al. formulated dense CRF as a Recurrent 
Neural Network (RNN) so that the CRF energy 
could be calculated during the CNN training [21], 
but its performance relied on the recurrently 
computed forward pass, which was time- 
consuming [37]. 

III. METHODS 

A. DEFECT PROBABILITY MAP GENERATION 

The autocorrelation measurement of an image 
I(i, j), i ∈ (0,N), j ∈ (0, M), is to shift the image 
in the vertical and horizontal direction with 
different scales, which the function is described 
as, 

ρ (x, y) = PN−1 i=0 PM−1 j=0 I(i, j)I(i + x, j + 
y) PN−1 i=0 PM−1 j=0 I(i, j) 2 (2) 
where x and y represent the image shifting 
scales in the horizontal and vertical directions. 
The efficiency of this calculation can be 
improved by the Fast Fourier Transform (FFT) 
in (3), 

ρ (x, y) = ABS(IFFT 2(FFT 2 (I). ∗ Conj(FFT 2 
(I)))) PN−1 i=0 PM−1 j=0 I(i, j) 2 (3) 
Fig.1a is a fabric image containing defects, Fig. 
1c illustrates its autocorrelation map, and Figs. 
1d and 1e are the side views of the 
autocorrelation map in the warp and the filling 
directions. The average period intervals are 
about 7 pixels in the warp direction, and about 
16 pixels in the filling direction, which define 
the size of the weave repeating unit (fabric 
motif). The fabric motif can be generated by 
averaging pixels in every 7 × 16 non-defective 
area. In this research, if either the horizontal 
peak interval or the vertical interval is 3 pixels 
above the corresponding averaged interval, this 
area will be excluded from the fabric motif 
calculation. The calculated fabric motif of Fig. 
1a is shown in Fig.1b. The red –box in Fig. 1e 
indicates a defect region in Fig.1a. However, 
the approximate 16-pixel peak-to-peak interval 
of the defect region is not distinguishable with 
other regular fabric texture. Therefore, further 
processing is needed. Using the calculated 
motif image (Fig.1b) as a template, a fabric 
motif map of the image (Fig.1a) can be 
generated by calculating its localized 

correlations with the template. Compared to the 
sum of absolute difference (SAD), the sum of 
squared differences (SSD), and the hamming 
distance (SHD), the normalized cross- 
correlation (NCC) proves to be more robust for 
calculating motif center points. To eliminate the 
intensity differences between the template and 
the image, the mean values should be 
subtracted. Therefore, the zero-mean NCC 
(ZNCC) is used for the fabric motif map  
generation. The calculation of the ZNCC on an 
image 

B. PAIRWISE POTENTIAL ACTIVATION 

LAYER 

Unlike the prediction on a standalone sample 
by traditional discrete classifiers, a Conditional 
Random Field (CRF) considers sample’s 
neighbors to be a random variable distribution 
in an undirected graphical model. Of an image, 
a single pixel is meaningful only if its 
neighbors is taken into account. Therefore, the 
application of a CRF can be extended to the 
image segmentation, in which random fields 
describe the correlations among different pixels 
sharing similar properties. Let’s denote an 
image as I, which has a pixel vector X = {x1, 
x2, ... , xn} and a corresponding label set L = 
{l1, l2, ... , ln}. According to the Hammersley- 
Clifford theorem, CRF obeys the Gibbs 
distribution . 

 

C. NETWORK ARCHITECTURE 

Figure presents a CNN for the fabric defect 
detection. To achieve state-of-art detection result, 
the fabric defect probability map is introduced to 
the network as a dynamic activation layer, namely 
pairwise potential activation layer (PPAL). The 
probability map, which contains the prior 
knowledge or defect statistical rules, is critical to 
the judgment of the probable defect areas. The 
new 7-layer CNN includes, (1) the original image 
input layer. (2) the first hidden layer – the first 
convolutional layer with 32 × 5 × 5 kernels. (3) the 
second hidden layer – another convolutional layer 
with 16 × 5 × 5 

(4) the pairwise potential activation layer. Instead 
of using activation function, each feature in the 
output of the previous convolutional layer is 
multiplied by this specific activation map with one 
3×3 convolutional kernel, which takes more 
pixels’ properties into consideration. 
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(5) the fourth hidden layer with 8×5×5 kernels to 
convolute the 16 prior knowledge (statistical rules) 
imposed feature maps. 

(6) the last hidden layer – single 5 × 5 kernel is 
used to generate the output image. 

(7) backpropagation with loss calculation is 
performed by taking ground truth images as 
references. 

(8) the middle position insertion of the PPAL is to 
ease off the influence of the probability map. If the 
PPAL is inserted at the output layer, the output 
will be similar to the probability map, which 
weakens the convolutional features. 

 

IV. EXPERIMENTS 

 

A. DATASETS 

To evaluate the effectiveness of the proposed 

PPAL convolutional neural network (PPAL- 

CNN), we created a fabric defect dataset using 

our designed on-loom fabric imaging system. The 

dataset contains 1160 fabric images of 500 × 500 

pixels, which include vertical defects, horizontal 

defects, isolated defects, and defect-free fabrics, 

as shown in Fig. 4. In order to provide the ground 

truth information for the CNN training, each 

image was manually inspected to mark defects 

areas. We also used the TILDA—a Textile 

Texture Database developed by the texture 

analysis group of the DFG (Deutsche 

Forschungsgemeinschaft) as a verification set. 

Each TILDA image has a text description about 

defect areas in the image. 

 

B. EVALUATION ON DIFFERENT 

ACTIVATION FUNCTIONS IN NEURAL 

NETWORKS 

 

A visual comparison on loss curves was 

performed among four CNNs that have the same 

structure with different activation functions, i.e. 

Sigmoid, Tanh, ReLU, and PPAL. In order to 

avoid small gradient issues in the flat regions of 

Sigmoid and Tanh activation functions, the cross- 

entropy loss function was chosen. Two different 

learning rates, 10−10 (slow) and 10−4 (fast), were 
used to check if the learning rate influenced the 

network learning process. Fig. 5 lists the loss 

curves calculated from the output layer during the 

106 learning iterations of the networks with the 

four different activation functions under the two 

learning rates. Regardless of learning rate, the 

three activation functions, Sigmoid, Tanh and 

ReLU, show fluctuation, and the network with 

Sigmoid or Tanh activation function is not 

convergent. ReLU loss curve at the 10−4 learning 
rate has a sudden decrease after the firstthousand 

iterations. This may be because the fast learning 

rate causes the learning to be trapped in the local 

minimum a normal learning process that start 

converging after 2 × 105 iterations . However, the 

same network seems difficult to be convergent at 

the 10−10 learning rate. Thus, the 10−4 learning 
rate was chosen for the PPAL-CNN in the fabric 

defect detection. displays the prediction results of 

using the CNNs that have the same structures  

with the four aforementioned activation functions 

of the 106 th training-iterationmodel at the 10−4 
learning rate. In comparison with the ground truth 

, the predicted result of each activation function is 

consistent with the loss curves depicted in. 

Among the four activation functions, Sigmoid 

appears to be the worst because of the highest loss 

value, and PPAL-CNN demonstrates the best 

defect detection result. 

C. EVALUATION ON FABRIC DEFECT 

DATASET AT PIXEL LEVEL 

 

A 4-folder cross-validation was performed on 
the 1160 fabric images. Since the accuracy is 
measured by true positive and true negative 
samples, it will not be suitable for our imbalanced 
fabric defect dataset. Therefore, the 3-metrics, 
precision, recall and F1-score, that are derived 
from the confusion matrix are applied to evaluate 
the detection accuracy at the pixel level. The 
precision represents the rate of the correctly 
detected defect pixels over all the predicted defect 
pixels. The recall is the ratio between correctly 
detected defect pixels and defect pixels marked in 
the ground truth image, which represents the 
integrity of the correctly detected defect region. 
The F1-score is the harmonic average of precision 
and recall. Fig. 7 illustrates the curves of the three 
metrics of the training set (blue) and the testing set 
(red) from 5000 to 106 iterations. 

Overall, the three metrics monotonically 
increase with the training iterations, indicating an 
ascending defect detection accuracy. In the recall 
chart (Fig. 7b), the training curve is slightly above 
the testing curve before the 9 × 105 th iteration. At 
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the 9 × 105 th iteration, the testing curve tends to 
fall, suggesting a convergent point of the training 
process. Although the precision of the detected 
defects keeps improving as the training epoch 
increases, the small drop of the recall (integrity) at 
the 9 × 105th iteration indicates the reductions in 
both false positive and true positive defect pixels 

 

D. EVALUATION ON THE IMBALANCED 

DATASET WITH DIFFERENT 

PROPORTIONS OF DEFECT PIXELS 

 

According to the proportions of the defect pixels 

in the fabric ground truth images, we clustered the 

1160 fabric images into 21 groups. Group #1 

indicates defect-free images, and groups #2 - #20 

represent the proportion of defect pixels with 5% 

increment. Among the 1160 images, there are 432 

defectfree images and 635 images with defect 

pixel proportions being less than 35%. In other 

words, 92% of the fabric images in the dataset 

have small proportion or none of defect pixels. 

Those defect regions above 35%couldbe the fabric 

selvage regions. The highest proportion (95- 

100%) of defects does not exist in the dataset. 

 

E. EVALUATION ON DETECTION 

ACCURACY ACCORDING TO DEFECT 

COUNT 

 

In the 1160-fabric-image dataset, totally 1191 

fabric defects were found in 728 fabric images. 

We inspected each predicted defect image 

according to its corresponding ground truth 

image. If the predicted defect pixels occupied over 

50% in the bounding box of the defect area in the 

ground truth image, the prediction was considered 

to be correct. Therefore, according to the defect 

counts in the dataset, 1177 of 1191 defects were 

correctly detected, yielding a 98.82% detection 

accuracy. It is found that there were 51 over 

counted defects that should be defect-free areas in 

the 38 ground truth images. In the 38 false 

predicted fabric images, 13 of them should be 

defect-free images. Therefore, at the image level, 

the detection rates of defect-free images, defect 

images, and total 1160 fabric images are (432 − 
13)/432     =     96.99%,     (728     −     25)/728   = 

96.57%,(1160 − 38)/1160 = 96.72%, 

correspondingly. 

F. EVALUATION ON TILDA DATASET 

 

The TILDA dataset provides 43 sample images, 

and each of them represents a type of fabric 

texture. Table 5 presents the defect detection 

results of the 11 images from TILDA. 

 

The 11 sample fabric images have variations in 

textures, lighting conditions, and defect 

morphologies. Visually, most detection results 

show the same defect locations as in the ground 

truth images, even if the detection integrities of 

the defects are smaller than the ground truth. Due 

to the possible fabric texture incompletion near 

the image edges, 

5-pixel regions around image edges were omitted 

during the defect segmentation process, which 

explains the failure defect detection around the 

bottom area in images 5 and 6 of PPAL-CNN. 

 

The results of the 3-metrics evaluation on TILDA 

are listed in Table 6. The higher precision and the 

lower recall are in agreements with the visual 

judgment. Moreover, the recall and precision of 

the TILDA images are consistent with the 

previously used 1160 images, which demonstrates 

the reliability of the proposed algorithm. PPAL- 

CNN seems able to detect various types of fabric 

defects on diverse textures under different 

imaging conditions. Figure 8 illustrates an F1- 

score comparison among the proposed method 

and other four state-of-the-art fabric defect 

detection methods (BVM, TDVSM, PGLSR and 

LSF-GSA), which demonstrates the superiority of 

the proposed method. At the image level, the 

defect detection rate on TILDA was 95.34%. 
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