
 International Journal of Scientific Research in Engineering and Management (IJSREM)

 Volume: 06 Issue: 06 | June - 2022 Impact Factor: 7.185 ISSN: 2582-3930

© 2022, IJSREM | www.ijsrem.com | Page 1

Face Detection and Recognition using Python Language

Rishabh Kalra, Jaspreet Singh

Ms. Gurpreet Kaur, Assistant Professor

Department of Computer Science

Mahavir Swami Institute of Technology, Jagdishpur, Haryana, India

Affiliated to Guru Gobind Singh Indraprastha University, New Delhi, India

ABSTRACT

Python is changing into a well-liked programming

language. it's a free, high-quality language with a

flat learning curve. it's a large assortment of free

libraries. during this paper computer vision

libraries are mentioned first. Then the face

detection and face recognition capabilities

available within the libraries are analyzed. A basic

description of the algorithm employed in the library

is provided. for every major step is given an

example of the ensuing image. although 2 sample

pictures are provided on paper, the algorithm was

analyzed in most images. The analysis confirmed

that Python is a tool of choice for face recognition

and recognition functions.

KEYWORDS

Python, Image Processing, OpenCV, Face Detection,

Face Recognition

1 INTRODUCTION

Python is a masterpiece of standard programming

developed by Guido van Rossum in 1991. It has a

design philosophy that emphasizes the readability

of the code. It supports a wide range of program

integration, priority, practical and process

integration paradigms and has a comprehensive

library. The first release was followed by Python

2.0 in 2000 and Python 3.0 in 2008. At the time of

writing this latest version is Python 3.7. Python is

a good choice for all researchers in the scientific

community because [1]:

• Free and open source

• a scripting language, meaning that it is

interpreted

• a modern language (object oriented, exception

handling, dynamic typing etc.)

• short, easy to read and fast to learn

• full of freely available libraries, especially

scientific libraries (linear algebra,

visualization tools, plotting, image analysis,

differential equations solving, symbolic

computations, statistics etc.)

• useful for a wide range of applications:

computer science, text, web sites, text

classification, etc.

• widely used in industrial applications

Compared to other programming languages such

as C / C ++, Java, and Fortran, Python is a higher-

level language. So, the computation takes

typically a little longer time, but it is very easy to

set it up. In the case of C and Fortran, wrappers

are also available. PHP and Ruby on the other

hand are high-level languages as well. Ruby can

be compared to Python but has no scientific

libraries. PHP on the other hand is a very web-

based language. Python can also be compared to

MATLAB, which has a very extensive scientific

library. However, it is not open source and free.

Scilab and Octave are open-source environments

such as MATLAB. Their language features

however are lower than those found in Python.

People often think that complex problems

require complex processes in order to produce

complex solutions. Python was developed with

http://www.ijsrem.com/

 International Journal of Scientific Research in Engineering and Management (IJSREM)

 Volume: 06 Issue: 06 | June - 2022 Impact Factor: 7.185 ISSN: 2582-3930

© 2022, IJSREM | www.ijsrem.com | Page 2

the exact opposite philosophy. It has a very flat

learning curve and software development

process for developers [4]. Used for program

management activities, by NASA both in

development and as a writing language in a few

of its programs, Industrial Light & Magic uses

Python in its production of special film effects

for a large budget feature, Yahoo! uses it (among

other things) to manage its discussion groups and

Google uses it to make the most of its web search

and search engine [3]. Since Python is also an

easy-to-learn language that is both powerful and

relevant from the beginning [2], we may soon

ask, who does not use it. As already mentioned,

Python has a wide range of libraries that can be

imported into a project for specific tasks. Not to

be overlooked in any mathematical science paper

NumPy and SciPy. NumPy is a library that

provides support for large, multi-dimensional

collections. Since images are actually two large

(grayscale) or three (color) three dimensions, this

library is essential for all image processing

activities. It should also be noted that many other

libraries (not just image processing) use NumPy

list representation. SciPy is a library built on the

same NumPy object and contains signal and

image processing modules, line algebra, Fourier

transform instant, etc. The last library mentioned

in this introductory section is Matplotlib. As the

name implies, this library is an editing library.

Although it is widely used in all scientific fields,

photographic processing relies heavily on it. This

paper discusses libraries and their strengths in the

field of image processing, image analysis and

general computer perspective. The

implementation of some of the most common

field algorithms is also displayed along with the

resulting images.

2 PYTHON’S IMAGE PROCESSING

LIBRARIES

• There are several Python libraries related to

image processing and computer vision. What

will be presented in this paper are:

• PIL/Pillow

This library is best suited for image

manipulation (rotation, resize, etc.) and very

basic image analysis. (For example,

histogram)

• SimpleCV

Its library is intended (as the name suggests)

to be a simplified version of OpenCV. It does

not offer all OpenCV opportunities, but it is

easy to read and use.

• OpenCV

It is a very powerful and widely used

computer library. It is written in C / C ++, but

Python bindings are added during installation.

It also gives emphasis to real-time image

processing. Among these, which will not be

presented may need to be discussed in Ilastik.

It is a simple, easy-to-use tool for classifying

images, segmentation and analysis.

2.1 Python Imaging Library (PIL)

The Python Imaging Library (PIL) is a library

written by Fredrik Lundh. Since the last issue of

PIL began in 2009 it has become somewhat

outdated [5]. The follower who also supports

Python 3 is called the Pillow [6]. As a result, not

all of them can be installed at the same time. At

the time of writing, the latest version of Pillow is

5.1.0. The smallest program (pictured) can be

labeled as follows:

from PIL import Image

img=Image.open(’/image_path’)

img.show()

The pillow is able to extract a lot of information

from the image and make it possible to perform a

few general image conversion procedures,

including:

• manipulations per pixel,

• handling masking and transparency,

• filtering an image, such as blurring,

contouring, smoothing, or finding edges,

http://www.ijsrem.com/

 International Journal of Scientific Research in Engineering and Management (IJSREM)

 Volume: 06 Issue: 06 | June - 2022 Impact Factor: 7.185 ISSN: 2582-3930

© 2022, IJSREM | www.ijsrem.com | Page 3

• enhances image, such as sharpening, adjusting

brightness, color or contrast.

Some of them will be displayed. An image for

example can be easily rotated at a certain angle

(for us 45◦) and saved with the following code:

image_rotated=img.rotate(45)

image_rotated.save(’imagerotated.jpg’)

The color image can also be divided into different

parts (red, green and blue).

red,green,blue= img.split()

red.show()

An image can be easily sharpened or blurred. In this

case it is important, however, that we submit an

ImageFilter library. The required code is shown

below.

from PIL import ImageFilter

sharp=img.filter(ImageFilter.SHARPEN)

blurring=img.filter(ImageFilter.BLUR)

The image can be easily cut with the following

command

crop_img=img.crop((100,100,400,400))

It was shown that PIL / Pillow is much easier when

only basic image processing work is required. For

detailed analysis and computer perspective

SimpleCV and OpenCV are very suitable.

2.2 SimpleCV

SimpleCV is an interface for open-source machine

library in Python. As the name suggests is a

simplified version of OpenCV. It is easy to read and

use, as it is short, has a readable camera interface,

and makes it possible to perform image

manipulation, feature extraction, and format

conversion. At the time of writing however it is still

limited to Python2. Since most Python users have

now transferred to Python3, SimpleCV will not be

described in detail. Example given below.

from SimpleCV import Image image

= Image(’ronaldo.jpg’)

image.show()

As everything embedded in SimpleCV can be done

in OpenCV, which is still being developed,

OpenCV will be emphasized.

2.3 OpenCV

OpenCV is an open-source library of available

computer labs written in C and C ++ running under

Linux, Windows, Mac OS X, iOS, and Android.

Links are available in Python, Java, Ruby,

MATLAB, and other languages. The simplest

system used to display an image can be written as

follows:

import numpy as np

import cv2

image = cv2.imread(

’ronaldo.jpg’)

cv2.imshow(’image’,image)

cv2.waitKey(0)

cv2.destroyAllWindows()

Since OpenCV is now the most convenient

computerized library we will use it for the rest of

the paper.

3 FACE DETECTION

OpenCV enables us to perform even more

complex tasks with ease. There are for example

processes, which get the face (eyes in the

picture). The following sequence of instructions

does just that.

Cascade_face=cv2.CascadeClassifier

(’C:\\Users\\...\\Cascade_Face.xml’)

cascade_eye=cv2.CascadeClassifier

(’C:\\Users\\...\\Cascade_Eye.xml’)

image=cv2.imread(’ronaldo.jpg’)

gray=cv2.cvtColor (image,

cv2.COLOR_BGR2GRAY)

faces=cascade_face.detectMultiScale

(gray, 1.3, 5)

for (x,y,w,h) in faces:

cv2.rectangle(image,(x,y),(x+w,y+h),(255

,0,0),2)

roi_gray = gray[y:y+h, x:x+w] roi_color

= image[y:y+h, x:x+w]

eyes = cascade_eye.detectMultiScale
(roi_gray)

for (ex,ey,ew,eh) in eyes:

cv2.rectangle(roi_color,(ex,ey),

(ex+ew,ey+eh),(0,255,0),2)

http://www.ijsrem.com/

 International Journal of Scientific Research in Engineering and Management (IJSREM)

 Volume: 06 Issue: 06 | June - 2022 Impact Factor: 7.185 ISSN: 2582-3930

© 2022, IJSREM | www.ijsrem.com | Page 4

cv2.imshow(’img’,image)

cv2.waitKey(0)

cv2.destroyAllWindows()

The result is shown in Fig. 1. For the picture in

Fig. 1 algorithm works perfectly. However, if a

complex image is used, the effect (especially of

the eyes) is not so good. See example Figure 2.

The algorithm itself uses so-called Haar feature-

based cascade classifiers. It was suggested as an

effective way to get something done by Paul

Viola and Michael Jones [9]. The number of

these features can be quite large. But most of

them are not important. A good example is that

the eye area is usually darker than the nose and

cheeks. A second positive factor may be for

example based on the fact that the eyes are

usually darker than the bridge of the nose.

Figure 1. An example of face detection

Figure 2. An example of face detection

With a growing number of such features, we can

increase the reliability of the algorithm.

Classification is always true and possible. It should

also be noted, that the reliability is reduced by

decreasing the number of pixels in the surface area.

4 FACE RECOGNITION

The facial attention field can be defined as a

study area where facial images are collected into

sets that are part of a single person. Perhaps it is

easier to understand if we use Facebook as an

example. In the past, Facebook could see faces

(see previous section), but then the user had to

tag someone by clicking on the image and

specifying its name. Facebook now has the

ability to tag everyone in the photo

automatically. This is achieved by face

recognition algorithms. In Python this function

can be achieved using convolutional neural

networks and OpenCV. The whole system relies

heavily on various libraries. Therefore, module

methods, face recognition, argparse, picle and os

should be included in the Python project.

Initially, some photographs of a person we wish

to know should be collected. This can be done

manually, or by using Microsoft's Bing API

search. Ideally, a data set should contain at least

30 images per person. No other people should be

present in the photos used for the training. Two

sample images (one for each individual) are

shown in Fig. 3.

Figure 3. Sample images of Bob Kelso and John Dorian

The network structure used for face recognition

is based on the ResNet-34 neural network [10].

The Python Visual Library however has a few

layers and the number of filters is reduced by

half. The network was trained in a database of

about 3 million images (mainly VGG data set

[11] and data set of scrubs [12]). The algorithm

is built in four steps:

http://www.ijsrem.com/

 International Journal of Scientific Research in Engineering and Management (IJSREM)

 Volume: 06 Issue: 06 | June - 2022 Impact Factor: 7.185 ISSN: 2582-3930

© 2022, IJSREM | www.ijsrem.com | Page 5

1. Find all faces:

In the first step we can use the face detection

algorithm described in the previous section

[9], which is the most widely used. The facial

library however uses the most advanced

History of the Oriented Gradients (HOG)

method [13]. Colored images should first be

converted into greyscale. Then with each pixel

in the picture we look at where the image turns

black. So, we get a matrix of gradients (see

Fig. This matrix is largely independent of a

different light from the first image. It is but

much larger that it can be changed. So 16x16

size submatrices were built. Then the main

direction of each submatrix is found.

Figure 4. A sample of an original image and its histogram of

gradients

2. Posing and Projecting Faces

This step deals with the problem facing the

image which may be pointing elsewhere and

not directly to the camera. There are several

solutions to this problem. The Python Library

uses a method with 68 landmarks present on

any surface [14]. An example of such a picture

is shown in Fig. 5. Then the machine learning

algorithm is trained to detect these 68 local

symbols on any surface. The face is then

altered using an affine alignment so that the

eyes and mouth are as focused as possible.

Figure 5. A face with the landmarks

3. Encoding Faces

The Deep Convolutional Neural Network is

trained to produce 128 measurements per

face. The training process uses three images

at a time (photo of a celebrity, another photo

of the same person and a photo of another

person) [15]. This step requires a large

database and a lot of computer power. But

it should be done only once. Some pre-

trained neural networks are also available

online.

4. Finding a person's name in encoding

The last step is actually very basic. The

analytical face is compared to the face we

have on our website. The Python Library

uses a Support vector (SVM) machine to do

just that. In fact, any other division

algorithm can be used.

The performance of the algorithm is illustrated in

the diagram shown in Fig. 6. It can be seen that it

works well, despite the fact that both Bob Kelso

and John Dorian do not look directly at the camera.

In John Dorian's case the head is placed almost

perpendicular to the camera axis. It should also be

noted that the whole image is very dark and

proportional. Despite this the algorithm was able to

detect both completely. Another example is shown

in Fig. 7). In this case there is no problem with

light. John Dorian

http://www.ijsrem.com/

 International Journal of Scientific Research in Engineering and Management (IJSREM)

 Volume: 06 Issue: 06 | June - 2022 Impact Factor: 7.185 ISSN: 2582-3930

© 2022, IJSREM | www.ijsrem.com | Page 6

Figure 6. An example of the Face detection algorithm

is once again looking at Bob Kelso. And his

emotions are reflected in his facial expressions.

In the case of Bob Kelso, we see that he smokes

pipe and has a strange face. Otherwise, the

algorithm is able to detect both correctly.

Figure 7. Another example of the Face detection algorithm

5 CONCLUSION

The paper is divided into two parts. In the first a

brief overview of the most common Python

libraries related to image processing and computer

view is provided. The second part uses the OpenCV

library. In this section libraries for face detection

and face recognition are described and analyzed.

Face detection and face recognition are two areas

of intensive research, as they enable better

interaction between computer systems or robots on

the one hand and humans on the other. The Python

Library is becoming the fastest and most reliable

tool for face detection and face recognition. Since

Python is an advanced programming language the

library is well suited to be used as a face

recognition (recognition) for a wide-ranging

project without the need for detailed theater

knowledge of the theater algorithms used. Thus, in

our view it has a bright future.

In the future it would be very interesting to explore

Python's opportunities and its emotional libraries.

This field is the hottest topic in the study of the

human machine interface. By using the results of

this study, you may have significantly improved the

social features of robots or software packages that

the user can adapt to. It provides the most reliable

answer to human machine interaction.

REFERENCES

[1] C. Fuhrer, J. E. Solem, and O. Verdier, Scientific

Computing with Python 3, Packt Publishing Ltd, 2016.

(references)

[2] S. Nagar, Introduction to Python: For Scientists and

Engineers, Bookmuft, 2016.

[3] M. L. Hetland, Beginning Python: from novice to

professional, 3rd Ed., Apress, 2017.

[4] R. V. Hattem, Mastering Python: master the art of

writing beautiful and powerful Python by using all of

the features that Python 3.5 offers, Packt Publishing,

2016.

[5] http://www.pythonware.com/products/pil/

[6] http://python-pillow.org/

[7] https://en.wikipedia.org/wiki/Python Imaging Library

[8] A. Kaehler, and G. Bradski, Learning OpenCV:

computer vision in C++ with the OpenCV library, 2nd

Ed.,” O’Reilly, 2016.

[9] P. Viola, and M. Jones, “Rapid object detection using

a boosted cascade of simple features,” Proceedings of

the 2001 IEEE Computer Society Conference on

Computer Vision and Pattern Recognition, vol. 1, pp.

I-511-I-518, 2001.

[10] K. He, X. Zhang, S. Ren, and J. Sun, Deep residual

learning for image recognition,” In Proceedings of the

http://www.ijsrem.com/

 International Journal of Scientific Research in Engineering and Management (IJSREM)

 Volume: 06 Issue: 06 | June - 2022 Impact Factor: 7.185 ISSN: 2582-3930

© 2022, IJSREM | www.ijsrem.com | Page 7

IEEE conference on computer vision and pattern

recognition, pp. 770-778, 2016.

[11] O. M. Parkhi, A. Vedaldi, and A. Zisserman, “Deep

face recognition,” In British Machine Vision

Conference, vol. 1, no. 3, p. 6, September, 2015.

[12] H. W. Ng, and S. Winkler, “A data-driven approach to

cleaning large face datasets,” IEEE International

Conference on Image Processing (ICIP), pp. 343347,

2014.

[13] N. Dalal, and B. Trigs, “Histograms of oriented

gradients for human detection,” IEEE Computer

Society Conference on Computer Vision and Pattern

Recognition (CVPR), vol. 1, pp. 886-893, 2005.

[14] V. Kazemi, and J. Sullivan, “One millisecond face

alignment with an ensemble of regression trees,”

Proceedings of the IEEE Conference on Computer

Vision and Pattern Recognition, pp. 1867-1874, 2014.

[15] F. Schroff, D. Kalenichenko, and J. Philbin, “Facenet:

A unified embedding for face recognition and

clustering,” Proceedings of the IEEE conference on

computer vision and pattern recognition, pp. 815-823,

2015.

http://www.ijsrem.com/

