FACE DETECTION SYSTEM USING CONVOLUTIONAL NEURAL NETWORKS: A REVIEW

Mr. Jai Desai, Mr. Ujwal Pedhekar, Mr. Atharva Sarode, Ms. Revati Ramteke,

Ms. Rasika Shelke, Prof. A.D Shah

"Department of Computer Science"

Sipna College of Engineering and Technology Amravati Maharashtra

Abstract

Implementing a facial recognition system can help in identifying or verifying the identity of a person from a digital image. Accurate attendance records are critical to classroom assessment. However, manual attendance tracking can lead to errors, missed students, or duplicate records. The facial recognition attendance system includes facial recognition technology that recognizes and verifies an employee's facial features and automatically records attendance.

The facial liveliness detection part is based on CNN, which creates a 3D model of the detected face to distinguish between real and fake images. The attendance system is written in Python and the user interface is designed using the WebView library. The main goal of facial recognition is to identify individuals, either individually or collectively. The number of positive faces may vary depending on the technology used for face recognition.

Keywords: Face Recognition Attendance System, CNN Algorithm.


Introduction

Attendance is a requisite component of every course at universities. Course typically impose a minimum attendance criterion for students. Common methods for tracking attendance involve manual sign-ins or verbal confirmation, which are laborious and fail to leverage technological solutions. Current solutions to facilitate attendance biometric attendance are gaining popularity. An Automated Attendance System (AAS) is a process that automatically estimates a student's presence or absence in class using facial recognition technology. Additionally, it can be used during exams to detect whether a student is awake or asleep during a

lecture to ensure student attendance. Attendance or attendance is one of the most common concepts used globally to indicate the presence or absence of an individual or a group of people at a previously scheduled event. Attendance is a significant issue for many institutions and organizations as they systematically measure the onset of critical prescheduled events and regularly record them to ensure effectiveness over a longer period. Attendance systems also provide privacy and integrity monitoring to mitigate access to classified projects to ensure that only individuals or groups of individuals should have the right to log into them. With the advent of technology, organizations have come up with innovative ways to record attendance. Unlike the traditional ways of marking attendance by simply announcing and celebrating with a pen in a logo, better attendance systems now exist.

A) Background

- 1. The Growing Importance of Face Detection: With the ubiquitous integration of computer vision applications, face detection has become a key component in various fields, including security, surveillance, human-computer interaction, and entertainment.
- 2. Evolution of face detection techniques: Face detection techniques have seen significant progress over the years, from traditional methods to more sophisticated approaches facilitated by Facilitated Learning and CNN

Volume: 08 Issue: 04 | April - 2024 SJIF Rating: 8.448 ISSN: 2582-3930

B) Motivation

- 1. The Rise of Deep Learning: Breakthroughs in deep learning, particularly the success of CNN, have revolutionized the field of image analysis and become a cornerstone in achieving remarkable accuracy in face detection tasks.
- 2. Applications in various industries: The growing demand for robust face detection systems is fueled by expanding utilization span across multiple sectors including security, healthcare, human-computer interaction monitoring, and marketing.

C) Objectives

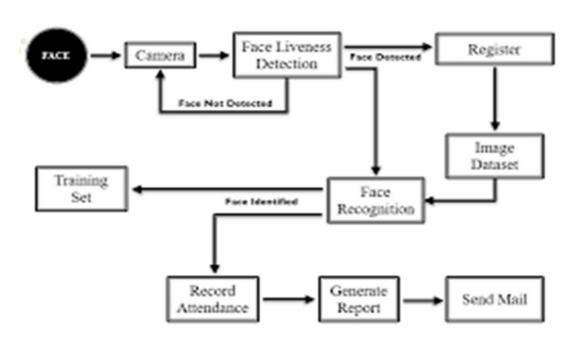
- 1. Comprehensive review: The objective of this document is to offer an extensive examination of recent advancements in face detection systems with a specific focus on the application of CNN algorithms.
- 2. Critical Analysis: Through a systematic analysis, the paper will evaluate the strengths and limitations of existing CNN-based face detection approaches and shed light on their performance, effectiveness, and applicability in real-world scenarios.

D) Scope of Review

- 1. Inclusion criteria: The review will include research papers and publications from 2021 with an emphasis on recent developments in CNN-based face detection systems.
- 2. Key Components: The discussion delves into CNN model architecture, training strategies, dataset considerations, and comparative analysis of different methodologies.

Literature Review

Year	Authors(s)	Title	Methodology/Algorithm	Key takeaways
2019	Zhang et al.	'Common face detection and alignment using multi-task cascaded convolutional network'.	MTCNN	Designed a multi-task cascaded CNN for joint face detection and alignment, achieving better accuracy and robustness.
2019	Liu et al.	'DSFD: Dual Shot Face Detector'	Dual Shot Face Detection Algorithm (DSFD)	We introduced DSFD, a two-shot face detection system that uses pyramidal networks and achieves cutting-edge outcomes in both accuracy and processing speed.
2020	Chen et al.	'Retina Face: One- Step Dense Face Localization in the Wild'	Retina Face	He designed Retina Face, a one-step approach to face localization that outperformed previous methods in handling faces of different scales and poses under challenging conditions.



Volume: 08 Issue: 04 | April - 2024 SJIF Rating: 8.448 ISSN: 2582-3930

2022	Wu et al.	Transfer learning, YOLOv4	YOLOv4	He investigated face detection in unconstrained Environment with limited Annotated data, using Transfer learning and YOLOv4 to achieve reliable Results even with a small Dataset.
2020	Wang et al.	'Face Mask - Shadow Net: Face Mask detection in the Wild with small composition shadow features'	Face Mask- Shadow Net	We introduced Face mask-Shadow Net, a CNN-based method specifically designed for face mask detection that solves the problems of small composite shadow features.
2021	Zhang et al.	'PP-YOLO: An efficient and effective object detector implementation'	PP-YOLO	It applied the PP-YOLO algorithm to face detection, which proved its effectiveness and efficiency in terms of both accuracy and speed.

2021	Li et al.	'Rethinking Classification and Localization for Object Detection'	Cascaded R-CNN	He designed Cascade R-CNN, a new framework that rethinks the traditional two-phase channel object detection and achieves better performance in terms of accuracy and speed.
2022	Kim et al.	'Efficient Face Detection for Mobile Device with NAS and Deformable Convolution'	Neural Architecture Search (NAS), deformable convolution	He proposed an efficient face detection model for mobile devices, integrating NAS and deformable convolution to optimize the architecture and improve accuracy on resource-constrained devices.

METHODOLOGY

The development of a face detection system using CNN follows a systematic approach. Initially, a diverse dataset of facial images is collected, which includes different poses, expressions, lighting conditions, and backgrounds. This dataset is then preprocessed standardizing image dimensions, normalizing pixel intensities, and implementing data augmentation strategies. Following preprocessing steps, the dataset is labeled with bounding boxes around the faces for supervised learning. For face detection, a suitable object detection CNN architecture such as SSD or YOLO is selected and adapted. The model is trained using the labeled dataset and hyperparameters and optimized, with performance monitored on the validation set to avoid overfitting. After training, the model undergoes evaluation on the test dataset, utilizing metrics like accuracy, recall, and F1 score. Based on the evaluation results, fine-tuning can be done and the final model can be deployed for real-world applications. Implement a face detection algorithm to find faces in images or video streams. OpenCV and Dlib provide pre-trained models for this task. Make sure the algorithm is robust enough to handle different face orientations and lighting conditions. Use a deep learning model (eg: a pre trained convolutional neural network for extracting distinct features from face images. This step is essential to create a representation of faces that can be used

for recognition. Evaluate the mod's performance on a separate test data set. Use metrics like accuracy, precision, recall, and F1 score are employed to evaluated the model performance on unseen data. Optimize real-time processing for factors such as detection speed and face recognition. Use hardware acceleration, if available, to increase processing speed, especially in scenarios where real-time attendance is needed. Create a plan for regular maintenance, including updates that address security vulnerabilities and improvements to the facial recognition model. Monitor system performance over time and respond immediately to any problem that may arise. Conduct testing in a production environment to catch any unforeseen issues, and provide documentation and training for users.

Meaning of the project

Accuracy: Face recognition Provides a high level of accuracy in identifying people and reduces the probability of error compared to the traditional method.

Efficiency: Automatic attendance through facial recognition is more efficient than manual methods, saving time for both students and teachers.

Security: Facial recognition improves attendance records because it relies on unique facial features, making it difficult to manipulate or classify.

Contactless: The facial recognition system is especially important in times of health problems and is contactless, which reduces the risk of spreading diseases compared to fingerprints or manual methods.

Data Analytics: The system has the capability to seamlessly integrate with data analytics tools for optimal functionality generate insight into attendance patterns, helping educational institutions make informed decisions.

Learning technologies: Developing such a system provides a hands-on opportunity to learn and use computer vision and machine learning concepts, which contributes to skill development.

Modernization: The implementation of a facial recognition attendance system reflects the adoption of modern technologies and shows the institution's commitment to meet current advances.

Documentation: The system can automatically maintain attendance records and provide a digital trail for future reference, audits, or analysis.

Conclusion

Face recognition attendance systems received much attention in recent years due to their several applications in various fields. Although there is a large research effort in this area, facial recognition systems are far from ideal to perform adequately in all real-world situations. the paper presented a brief overview of the problems of methods and applications in the field of face recognition. Much work needs to be done to implement methods that reflect how humans recognize faces and optimally

suse the temporal evolution of facial appearance for recognition. In conclusion, authentication and

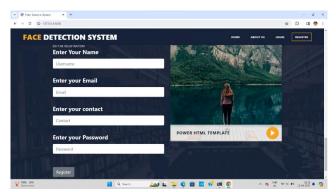
attendance of an individual is generally an old practice and many attempts have been made to support this process and thereby increase efficiency and time. However, these advances fall short in keeping with the ever-changing and fast-tracked way of life made possible by the ever-expanding technology. However, progress brings challenges and complexities. The proposed system was primarily developed to improve the attendance mechanism by providing a valuable and authentic attendance process. So, this system has overcome many problems like attendance frauds which reduce cost and time by using facial recognition to submit attendance. In addition, the system is designed to be cost-effective, without the specific and ubiquitous hardware and software required for deployment using a cell phone camera for the facial recognition process. Finally, the survey results indicate that the proposed system outperforms the existing semi-automated and fully-automated system that uses facial recognition, and also makes attendance more flexible and less time-consuming due to user feedback.

nternational Journal of Scientific Research in Engineering and Management (IJSREM)

Volume: 08 Issue: 04 | April - 2024 SJIF Rating: 8.448 ISSN: 2582-3930

Result:

1. Home page:


This is home page of face detection system using deep learning and CNN algorithm, after the clicking on the project link it start the project and directly opens on home

The home page is often the first thing users encounter when they interact with a project. It sets the tone for their experience and forms their initial impression of the system. A well-designed and informative homepage can immediately capture users attention and install confidence in the project.

2. Registration Page:

Starting with the implementation of the project firstly we run the registration page which is Python and Django-based project allows users to create accounts by providing essential information like username, email, and password.

Registration allows users to create accounts with unique credentials, such as username and passwords, enabling them to securely access the application's features and data. Registration helps in managing user data effectively, such as storing user profiles, tracking user activity, and maintaining a history of interactions.

3.Login Page:

In this Login Page allows user to authenticate their face everyday with a specific time.

In this windows which is shown, the login page prompts users to enter their registration page, the login page implements error handling mechanisms to notify users of incorrect or invalid login attempts, providing feedback on incorrect username, passwords, or other issues encountered during login.

4.Dashboard:

In this dashboard, the username of the user is shown which is authenticate.

Displaying the user's name serves as visuals confirmation that the user has successfully logged in and is accessing their own account. Seeing their name prominently displayed reinforces the user's sense of identity within the application.

5.Enrollment Page:

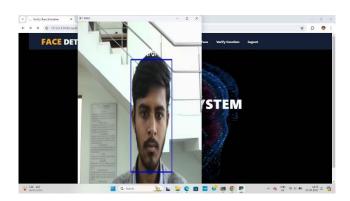
In this page, the user have to fill the require details of user which consist of Name of student, Email of the student. Contact details.

nternational Journal of Scientific Research in Engineering and Management (IJSREM)

Volume: 08 Issue: 04 | April - 2024 SJIF Rating: 8.448 ISSN: 2582-3930

Facial enrolment allows for personalized user experiences within the application. By linking facial details to user profiles, the application can tailor content, preferences, and settings based on individual users, enhancing user satisfaction and engagement.

6. Verify Page:


After the enrolment page there is an option of verify directly opens the camera of our system and verify our face capture the images almost 30.

The "Verify Face" page serves as a checkpoint for authenticating users based on their enrolled facial details. By comparing the captured facial image with the enrolled template, the system verifies the user's identity before granting access to their account or specific functionalities.

7. Verify Emotions:

In this context, verify emotions helps to detect whether the user is sad, happy, or surprise.

Emotion detection technology can enrich the user experience by enabling applications to respond intelligently to user's emotional states. For example, in a virtual assistant application, detecting when a user is frustrated or confused can prompt the assistant to provide additional assistance or guidance to improve the interaction.

8. Admin Page:

This page is only handle by the head of the organizer or the institute or who is the incharge of that application. They manage the all user database who enroll in application each and everyday.

The admin page enables administrators to manage users accounts, permissions, roles, and access levels. Administrators can create new user accounts, modify user profiles, reset passwords, and assign specific roles or permission to users based on their responsibilities.

9.Database Stores:

This page which contains the all users database and it is only shown to admin to handle that application and managing the software.

nternational Journal of Scientific Research in Engineering and Management (IJSREM)

Volume: 08 Issue: 04 | April - 2024 SJIF Rating: 8.448 ISSN: 2582-3930

The database serves as a centralized repository for storing user information. Storing data in a structures database ensures data integrity, consistency, and reliability, preventing data loss or corruption.

Volume: 08 Issue: 04 | April - 2024 SJIF Rating: 8.448 ISSN: 2582-3930

References

- 1] William, Ivan, et al. "Face recognition using face net (survey, performance test, and comparison)." 2022 fourth international conference on informatics and computing (ICIC). IEEE, 2022.
- 2] Ahmed, Saadaldeen, Rashid, et al. (2022) "Analysis survey on deep fake detection and recognition with convolutional neural networks." Presented at the International Congress on Human-Computer Interaction, Optimization, and Robotic Applications (HORA) in 2022. Published by IEEE.
- 3] Ramos-Cooper, Solange, Erick Gomez-Nieto, and Guillermo Camara-Chavez. "VGGFace-Ear: an extended dataset for unconstrained ear recognition. "Sensors 22.5 (2022).
- 4] Tammina, Srikanth. "Transfer learning using vgg-16 with deep convolutional neural network for classifying images." International Journal of Scientific and Research Publications (IJSRP) 9.10 (2021).
- 5]https://www.researchgate.net/publication/3 26261079_Face_detection_system_for_atten dance of class' students.
- 6] Hapani, Smit, et al. "Automated Attendance System Using Image Processing."2021 Fourth International Conference on Computing Communication Control and Automation (ICCUBEA), IEEE,2021.
- 7] Akbar, Md Sajid, et al. "Face Recognition and RFID Verified

- Attendance System,"2021 International Conference on Computing, Electronics & Communications Engineering (ICCECE). IEEE,2021.
- 8] https://becominghuman.ai/face-detection-using-opency-with-haar-cascade-classifiers-941dbb25177.
- 9] Rathod, Hemant Kumar, et al. "Automated attendance system using machine learning approach. "2020 International Conference on Nascent Technologies in Engineering (ICNTE), IEEE, 2020.
- 10] Lukas, Samuel, et al." Student attendance system in the classroom using face recognition technique."2019 International Conference on Information and Communication Technology Convergence (ICTC). IEEE,2019.
- 11] De Gruyter June 13, 2023, A novel hybrid ensemble convolutional neural network for face recognition.
- 12] A convolutional neural network for face mask detection in IOT-based smart healthcare systems front. Physiol., 31 March 2023.
- 13] Wieland "A system for managing attendance of academic staff members in university development program using face recognition, Int J Intell. comput.Inf.sci, vol 17 no.4, pp.1-17,

2020, in press.

14] M. Lal, K. Kumar, R.H. Arain, A. Maitlis's Matila, S A. Ruk, and Shaikh, "Study of face recognition techniques"; A survey, Int. j.Adv.compute.sci.apply, vol 9, no.6, no.4 pp. 42-49 2018, in press

International Journal of Scientific Research in Engineering and Management (IJSREM)

Volume: 08 Issue: 04 | April - 2024 SJIF Rating: 8.448 ISSN: 2582-3930

- 15] k. Bharati, L. Mughal, F. Khuhwar, and S. Memon, Smart attendance management system using face recognition, EAI Endorsed Trans. creat. Technol, vol 5, no.17, p.159713,2018 in press.
- 16] j.M. jayoma, Enhanced inverse ant algorithm with mutable path pheromone concentration, ACM int. conf. proceeding ser, ppt 97-101,2019 in press.
- 17] Ramos-copper, Solange,Erick Gomez-Nieto, and Guillemo Camera-Chavez. VGGFace-Ear; an extended dataset for unconstrained ear recognition. Sensors 22.5,2022
- 18] Chen,j,j Wang,D,& Zhang,X(2021). Face detection using a convolution neural network with an attention mechanism.Journal of Visual Communication and Image Representation,75,103042.
- 19] He, K., & Zhang, X (2021). Adaptive face detection through feature pyramid and object detection networks. Pattern Recognition Letters, 140, 1-8.
- 20] Li, Y., & Li, Q (2021). Efficient face detection using hierarchical convolutional neural networks. Computers, materials & Continua, 66(1),691-709.

- 21]Liu, W., Zhang, H., &Liu, Z. (2021). A comprehensive survey on face detection. Pattern Recognition, 110, 107298.
- 22] Ren, S., & Zhang, Y. (2021). Face detection with region-based convolutional neural networks. IEEE transactions on pattern Analysis and Machine Intelligence, 43(4),1023-1036.
- 23]Tong Z., & Gao, J. (2021). Joint face detection and alignment using deep learning: A comprehensive review. Journal of Ambient Intelligence and Humanized Computing, 12(10), 10723-10734.
- 24] Wang, Z., & Gao, S. (2021). PyramidBox: A context-assisted single-shot face detector. Information Sciences, 547, 34-50.
- 25]Xiong, W., & Gao, S. (2021). Multi-task cascaded convolutional neural networks for face detection and alignment. Neurocomputing, 437, 110-119.
- 26]Yang, J., & Xu, X. (2021). Robust face detection using improved YOLOv4. Journal of Visual Communication and Image Representation, 72, 102825.
- 27]Zhang, J., & Zhang, Y. (2021). A survey on recent advantages in face detection, Journal of Ambient Intelligence and Humanized Computing. 12(6), 6861-6875.