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ABSTRACT  

Face recognition technology is a biometric 

technology that uses a person's face traits to 

identify them. Face photos are collected by people, 

and the recognition technology processes them 

automatically. It starts with detection, which 

involves differentiating human faces from other 

things in the picture, and then moves on to 

recognizing those faces that have been discovered. 

In this research project, a deep learning model 

based on the ResNet Network is created to 

recognize the existence of a concerned individual's 

face kept in the database. The most common HOG 

Classifier was used to complete the detection task, 

as it is lighter and more accurate than other 

detectors currently in use. Face detection and 

identification is a difficult process that needs a lot 

of computational resources .We experimented with 

highly-parallel Graphics Processing Units. We 

have also compared the results of a typical CPU 

based implementation with our GPU based 

implementation to chalk out the efficiency and 

factor of speed-up. We have also developed a 

Graphical Interface using the Qt Platform to 

provide ease of usage. 

 

1. INTRODUCTION 
 

Face and facial landmark feature identification on 

photos is a crucial step in effective face recognition. 

Face landmark detection is essential for a variety of 

face analysis applications, including face 

verification (identification), face morphing, and 

face overlapping masks. Since the 1980s, rapid 

facial recognition has become possible. The 

problem was that these early implementations 

could only recognize faces under extremely certain 

circumstances: proper illumination, frontal picture, 

and so on. Machine learning algorithms are capable 

of detecting patterns in how faces are displayed on 

photographs, making face identification one of the 

most common challenges they solve. The goal of 

this study was to find highly variable facial 

patterns and detect them. These algorithms can 

recognise faces in nearly every situation like in 

poor light and occlusion. 

 

The Proposed pipeline of the project is defined into 

3 major stages : 

 Pre Processing Stage 

 Facial Detection and Facial Landmark 

Detection 

 Facial Recognition  

 

Since each stage of the pipeline differs in the 

computational requirements for optimized 

implementation of the system , we have defined the 

resource usage of each stage throughout the 

pipeline. which delivers various plans to pass on a 

message furtively. 

 

 

2. LITERATURE SURVEY 
 

Sharma [1] In 2009 introduced the first Graphical 

Processing Unit(GPU) realization of a face 

detection algorithm using CUDA. They reached a 

detection at 19 fps on a (1280 × 960) video stream, 

which is a good improvement in detection time. 

However, the accuracy was only 81% with 16 false 

positives on the CMU test set. 

Kong and Deng [2] in 2010 proposed a GPU 

accelerated OpenCV implementation that achieved 

between 49.08 ms and 196.73ms (20,4-5,1 fps) on 

images from (340x240) to (1280x1024). 

The proposed approach by Devrari and Kumar [4] 

in 2011 includes enhanced Haarlike features and 

uses SVM (Support Vector Machine) for training 

and classification. They achieved 3.3 fps on 

(2592x1900) images. 
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Chouchene [3] in 2015 proposed parallel 

implementation of face detection on Nvidia 310M  

GPU that could achieve 24 fps for small images 

(32x32) and only 11 fps for bigger images 

(1024x1024). 

In their other work Mutneja and Singh, 2019 

much more analysis was done for the algorithm 

and they achieve 25 fps for (480x640) images. By 

introducing guassian filters in the preprocessing 

phase  to eradicate noise existance and 

Implementing contrast enhansement using (IMF-

CLAHE). 

Patidar [6] in 2020 presented an optimized 

parallel face detection system using CUDA on 

GPU and achieved 1.28 fps in the FDDB image set. 

Although interesting results were recorded, a lack 

of information about the used classifier and 

accuracy and false-positive and the test data set in 

most of the works. 

Fayez[5] in  2016 proposed an image scanning 

framework using General Purpose Graphical 

Processing Unit (GPGPU) in which they have 

implemented the Viola-Jones algorithm. They have 

achieved 37fps for (1920x1080) images. 

A Haar-based face detection for (1920x1080) video 

on Nvidia GTX 470 was proposed by Oro [7] in 

2011 and 2012 and achieved a performance of 35 

fps. (Tek and Gokmen, 2012) used  3 GPUs for the 

implementation and they achieved 99 fps with 

good detection rate even though the classifier was 

small. 

Hefenbrock [9] presented a multi-GPU 

implementation. They used a desktop server 

containing four Tesla GPUs for the implementation 

and achieved 15.2 fps. However, the integral image 

computation was not parallelized.  

Nguyen [8] in 2013 they used 5 Fermi GPUs and 

improved in efficiency by using a dynamic warp 

scheduling approach to eliminate thread divergence. 

They used the technique of thread pool mechanism 

to significantly alleviate the cost of creating, 

switching, and terminating threads. They reported 

realized 95.6 fps on (640x480) images. 

 

 
 
3. METHODOLOGY  
 

3.1 Histogram of Oriented Gradients: 

 

In light of the condition, there are numerous 

strategies of encoding wherein picture 

decipherment is most well known method. 

Practically all advanced record organizations can 

be utilized for decipherment, yet the arrangements 

that are more appropriate are those with a serious 

level of overt repetitiveness. Overt repetitiveness 

can be characterized as the pieces of an article that 

give precision far more noteworthy than needed for 

the article's utilization and show. The excess pieces 

of an item are those bits that can be modified 

without the change being distinguished without any 

problem. Picture and sound documents particularly 

conform to this necessity, while research has 

likewise revealed other record organizes that can 

be utilized for data stowing away. It very well may 

be isolated primarily into four classifications:  

 

The HOG Descriptor’s working is basically 

divided into 5 phases 

 Gradient Computation 

 Orientation binning 

 Descriptor blocks 

 Block normalization 

 Object recognition 

3.1.1 Gradient Computation 

This is a type of preprocessing step that is 

frequently omitted in reality since preprocessing is 

usually done according to the programmers' wishes 

and requirements. 

 

3.1.2  Orientation Binning 

The creation of cell histograms is the second stage 

in the process. Based on the values determined in 

the gradient computation, each pixel within the cell 

casts a weighted vote for an orientation-based 

histogram channel. The histogram channels are 

evenly spread over 0 to 180 degrees or 0 to 360 

degrees, depending on whether the gradient is 

"unsigned" or "signed." The cells themselves can 

be rectangular or radial in shape, and the histogram 

channels are evenly spread over 0 to 180 degrees 

or 0 to 360 degrees, depending on whether the 

gradient is "unsigned" or "signed." 

 

3.1.3 Descriptor Blocks 

The HOG descriptor is therefore the concatenated 

vector of the components of all of the block areas' 

normalised cell histograms. These blocks 

frequently overlap, implying that each cell 

contributes to the final description many times. 

Rectangular R-HOG blocks and circular C-HOG 

blocks are the two most common block geometries. 

http://www.ijsrem.com/
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The number of cells per block, the number of 

pixels per cell, and the number of channels per cell 

histogram are the three characteristics that define 

R-HOG blocks. 

 

3.1.4 Block Normalization 

Rather of normalising each histogram separately, 

the cells are first aggregated into blocks and then 

normalised using all of the blocks' histograms. The 

histograms of the four cells inside the block are 

concatenated into a vector with 36 components for 

this block normalisation (4 histograms x 9 bins per 

histogram). To normalise this vector, divide it by 

its magnitude. 
 

3.1.5 Object Detection 

HOG descriptors may be used to recognise objects 

by feeding them into a machine learning system as 

features. HOG descriptors, on the other hand, aren't 

connected to any particular machine learning 

technique. 

 

3.2 Residual Networks (ResNet) 
 

An artificial neural network called a residual neural 

network (ResNet) is a type of artificial neural 

network (ANN). Skip connections, or shortcuts, are 

used by residual neural networks to hop past some 

layers. The most common ResNet models include 

double- or triple-layer skips with non-linearities 

(ReLu) and batch normalisation in between. To 

learn the skip weights, an extra weight matrix 

might be employed. HighwayNets are the name for 

these models. DenseNets are models that have 

several parallel skips. A non-residual network can 

be characterised as a plain network in the context 

of residual neural networks. 

There are two primary reasons for adding skip 

connections: to minimise disappearing gradients 

and to mitigate Degradation (accuracy saturation). 

When more layers are added to a sufficiently deep 

model, the training error increases. The weights 

adjust throughout training to muffle the upstream 

layer and magnify the previously skipped layer. 

Only the weights for the neighbouring layer's link 

are changed in the simplest instance, with no 

explicit weights for the upstream layer. When a 

single nonlinear layer is stepped over, or when the 

intermediate layers are all linear, this method 

works well. If not, an explicit weight matrix for the 

missed connection should be learnt. 

In the early phases of training, skipping layers 

effectively simplifies the network by employing 

fewer layers. Because there are fewer layers to 

propagate through, the influence of disappearing 

gradients is reduced, which speeds up learning. As 

the network learns the feature, it progressively 

recovers the skipped levels. When all layers are 

extended at the conclusion of training, it stays 

closer to the manifold and so learns quicker. The 

feature space is explored further by a neural 

network with no remnant pieces. This makes it 

more susceptible to disturbances that lead it to 

depart off the manifold, and thus takes additional 

training data to recover. 

This network uses a 34-layer plain network 

architecture inspired by VGG-19 in which then the 

shortcut connection is added. These shortcut 

connections then convert the architecture into 

residual network.  

 

Residual Block : This design introduces the notion 

of a Residual Network to overcome the problem of 

vanishing/exploding gradients. A technology called 

skip connections is used in this network. The skip 

connection links straight to the output after 

skipping a few stages of training. 

 

 

3.3 Parallel Computation 
 
Parallel computing is a method of utilising 

numerous computer resources at the same time. To 

facilitate effective use of these resources, the 

operating system must be built correctly. When 

processors have several cores, a well-designed 

programme may make optimal use of all of them. 

Typically, this type of application is divided down 

into separate components that may be addressed in 

parallel. 

 

3.3.1 Graphical Processing Unit (GPU) 
GPUs were created with the purpose of processing 

vertices and polygons, creating 3D objects for 

video games, and displaying data on displays in 

near real-time. GPUs did not become a key 

accelerator for a wide range of calculations until 

the development of programmable shaders and 

high-level languages. Demanding applications may 

take use of the GPU's massive parallelism in this 
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new era of GPU computing. A GPU's hundreds of 

cores enable it to speed data-parallel applications 

while also attaining lower power budgets (when 

compared to a CPU). In the general purpose market, 

GPUs have progressed quickly, and they are now 

widely employed by the scientific community to 

speed up computations. 

 

3.4 Experimental Setup  

 

In order to give us with an acceptable computing 

platform, we chose a desktop PC with a decent 

GPU and a respectable frame rate. The features of 

this machine are described in Table 1. We take use 

of the NVIDIA Pascal Architecture's acceleration. 

This GPU contains 384 CUDA cores and 2 GB of 

GDDR5X RAM memory, allowing it to accelerate 

neural network models with tremendous 

computational power. With 8 GB of DDR3 RAM 

memory overclocked to 2.7 GHz, the Core i5 CPU 

has four physical cores and eight logical cores 

thanks to hyper-threading. 

  

Table 1: Desktop Characteristics 

 

CPU  Intel i5 @ 3.9 GHz 

GPU  Nvidia MX250 

RAM 8 GB 

SSD 250 GB 

 

4. IMPLEMENTATION 

 

We investigated the HOG Descriptor's 

performance and accuracy in identifying faces and 

producing descriptors in the first stage of 

development. We used Dlib's Predefined package 

to implement HOG. We upscaled the image by two 

times during the preparation step. After that, we 

input the picture to the HOG Detector to acquire 

the Facial detections, also known as Face chips. 

We bundle them in a specified format before 

feeding them to the ResNet Network to acquire the 

descriptors for that face. 

 

In a subsequent stage, we input the structure from 

the HOG Detector to the ResNet network, which is 

a Dlib Library-predefined GPU-implemented 

network. The descriptors are provided by the 

network model once we feed it the photos. We 

compare the picture descriptors provided with 

those in the database. We consider it positive if the 

distance between the descriptors is less than the 

given threshold. Figures 1 and 2 depict our pipeline 

in action. 

 
Fig. 1 : Main Recognition Pipeline 

 

Fig. 2 : New Face Addition 

 
5. RESULTS 

 
The resultant system was very accurate in 

recognising faces and the our system could predict 

faces at a frame rate of 14 fps on an average 

whereas frame rate of the algorithm when 

implemented on CPU was 5 fps average. The given 

below are some of our output images . 

 

 

 
 Fig. 3: Home Page with options 
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Fig. 4 : Results from a live camera input 

 
Fig. 5 : Results from an individual image 
 
6. CONCLUSION 
 

The major goal of this thesis was to see if it was 

possible to do real-time face identification in video 

streams. Using our parallel pipeline system, we 

were able to demonstrate that the framework can 

handle a 480p quality video at a reasonable frame 

rate. We may apply this framework to other 

applications with the objective of proving real-time 

face detection performance. There are a significant 

variety of image/video processing applications that 

can benefit from a comparable CPU-GPU platform 

using an accelerated system that can combine the 

performance of a GPU with the speed and 

flexibility of a CPU with many cores. There is a lot 

of space for more study into putting single stage 

detectors on GPU to boost calculation performance, 

which might eventually detect in real-time which is 

the final goal of this project.  

Combining single and multistage detectors with a 

Deep Neural Network-based object detector might 

make this more lighter and more precise than 

previous efforts. Additional optimizations might be 

sought to increase the framework's speed. 
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