
 International Journal of Scientific Research in Engineering and Management (IJSREM)
 Volume: 06 Issue: 04 | April - 2022 Impact Factor: 7.185 ISSN: 2582-3930

© 2022, IJSREM | www.ijsrem.com DOI: 10.55041/IJSREM12134 | Page 1

FACIAL RECOGNITION SYSTEM

USING HETEROGENEOUS PROGRAMMING

Vaibhav Kovela1, Rishika2, Samantha3, Chandaka Babi4.

1,2,3Student, Department of Computer Science Engineering, Gitam University , Visakhapatnam.
5Assistant Professor, Department of Computer Science Engineering, Gitam University , Visakhapatnam.

Guide - Dr. Chandaka Babi

ABSTRACT

Face recognition technology is a biometric

technology that uses a person's face traits to

identify them. Face photos are collected by people,

and the recognition technology processes them

automatically. It starts with detection, which

involves differentiating human faces from other

things in the picture, and then moves on to

recognizing those faces that have been discovered.

In this research project, a deep learning model

based on the ResNet Network is created to

recognize the existence of a concerned individual's

face kept in the database. The most common HOG

Classifier was used to complete the detection task,

as it is lighter and more accurate than other

detectors currently in use. Face detection and

identification is a difficult process that needs a lot

of computational resources .We experimented with

highly-parallel Graphics Processing Units. We

have also compared the results of a typical CPU

based implementation with our GPU based

implementation to chalk out the efficiency and

factor of speed-up. We have also developed a

Graphical Interface using the Qt Platform to

provide ease of usage.

1. INTRODUCTION

Face and facial landmark feature identification on

photos is a crucial step in effective face recognition.

Face landmark detection is essential for a variety of

face analysis applications, including face

verification (identification), face morphing, and

face overlapping masks. Since the 1980s, rapid

facial recognition has become possible. The

problem was that these early implementations

could only recognize faces under extremely certain

circumstances: proper illumination, frontal picture,

and so on. Machine learning algorithms are capable

of detecting patterns in how faces are displayed on

photographs, making face identification one of the

most common challenges they solve. The goal of

this study was to find highly variable facial

patterns and detect them. These algorithms can

recognise faces in nearly every situation like in

poor light and occlusion.

The Proposed pipeline of the project is defined into

3 major stages :

 Pre Processing Stage

 Facial Detection and Facial Landmark

Detection

 Facial Recognition

Since each stage of the pipeline differs in the

computational requirements for optimized

implementation of the system , we have defined the

resource usage of each stage throughout the

pipeline. which delivers various plans to pass on a

message furtively.

2. LITERATURE SURVEY

Sharma [1] In 2009 introduced the first Graphical

Processing Unit(GPU) realization of a face

detection algorithm using CUDA. They reached a

detection at 19 fps on a (1280 × 960) video stream,

which is a good improvement in detection time.

However, the accuracy was only 81% with 16 false

positives on the CMU test set.

Kong and Deng [2] in 2010 proposed a GPU

accelerated OpenCV implementation that achieved

between 49.08 ms and 196.73ms (20,4-5,1 fps) on

images from (340x240) to (1280x1024).

The proposed approach by Devrari and Kumar [4]

in 2011 includes enhanced Haarlike features and

uses SVM (Support Vector Machine) for training

and classification. They achieved 3.3 fps on

(2592x1900) images.

http://www.ijsrem.com/

 International Journal of Scientific Research in Engineering and Management (IJSREM)
 Volume: 06 Issue: 04 | April - 2022 Impact Factor: 7.185 ISSN: 2582-3930

© 2022, IJSREM | www.ijsrem.com DOI: 10.55041/IJSREM12134 | Page 2

Chouchene [3] in 2015 proposed parallel

implementation of face detection on Nvidia 310M

GPU that could achieve 24 fps for small images

(32x32) and only 11 fps for bigger images

(1024x1024).

In their other work Mutneja and Singh, 2019

much more analysis was done for the algorithm

and they achieve 25 fps for (480x640) images. By

introducing guassian filters in the preprocessing

phase to eradicate noise existance and

Implementing contrast enhansement using (IMF-

CLAHE).

Patidar [6] in 2020 presented an optimized

parallel face detection system using CUDA on

GPU and achieved 1.28 fps in the FDDB image set.

Although interesting results were recorded, a lack

of information about the used classifier and

accuracy and false-positive and the test data set in

most of the works.

Fayez[5] in 2016 proposed an image scanning

framework using General Purpose Graphical

Processing Unit (GPGPU) in which they have

implemented the Viola-Jones algorithm. They have

achieved 37fps for (1920x1080) images.

A Haar-based face detection for (1920x1080) video

on Nvidia GTX 470 was proposed by Oro [7] in

2011 and 2012 and achieved a performance of 35

fps. (Tek and Gokmen, 2012) used 3 GPUs for the

implementation and they achieved 99 fps with

good detection rate even though the classifier was

small.

Hefenbrock [9] presented a multi-GPU

implementation. They used a desktop server

containing four Tesla GPUs for the implementation

and achieved 15.2 fps. However, the integral image

computation was not parallelized.

Nguyen [8] in 2013 they used 5 Fermi GPUs and

improved in efficiency by using a dynamic warp

scheduling approach to eliminate thread divergence.

They used the technique of thread pool mechanism

to significantly alleviate the cost of creating,

switching, and terminating threads. They reported

realized 95.6 fps on (640x480) images.

3. METHODOLOGY

3.1 Histogram of Oriented Gradients:

In light of the condition, there are numerous

strategies of encoding wherein picture

decipherment is most well known method.

Practically all advanced record organizations can

be utilized for decipherment, yet the arrangements

that are more appropriate are those with a serious

level of overt repetitiveness. Overt repetitiveness

can be characterized as the pieces of an article that

give precision far more noteworthy than needed for

the article's utilization and show. The excess pieces

of an item are those bits that can be modified

without the change being distinguished without any

problem. Picture and sound documents particularly

conform to this necessity, while research has

likewise revealed other record organizes that can

be utilized for data stowing away. It very well may

be isolated primarily into four classifications:

The HOG Descriptor’s working is basically

divided into 5 phases

 Gradient Computation

 Orientation binning

 Descriptor blocks

 Block normalization

 Object recognition

3.1.1 Gradient Computation

This is a type of preprocessing step that is

frequently omitted in reality since preprocessing is

usually done according to the programmers' wishes

and requirements.

3.1.2 Orientation Binning

The creation of cell histograms is the second stage

in the process. Based on the values determined in

the gradient computation, each pixel within the cell

casts a weighted vote for an orientation-based

histogram channel. The histogram channels are

evenly spread over 0 to 180 degrees or 0 to 360

degrees, depending on whether the gradient is

"unsigned" or "signed." The cells themselves can

be rectangular or radial in shape, and the histogram

channels are evenly spread over 0 to 180 degrees

or 0 to 360 degrees, depending on whether the

gradient is "unsigned" or "signed."

3.1.3 Descriptor Blocks

The HOG descriptor is therefore the concatenated

vector of the components of all of the block areas'

normalised cell histograms. These blocks

frequently overlap, implying that each cell

contributes to the final description many times.

Rectangular R-HOG blocks and circular C-HOG

blocks are the two most common block geometries.

http://www.ijsrem.com/

 International Journal of Scientific Research in Engineering and Management (IJSREM)
 Volume: 06 Issue: 04 | April - 2022 Impact Factor: 7.185 ISSN: 2582-3930

© 2022, IJSREM | www.ijsrem.com DOI: 10.55041/IJSREM12134 | Page 3

The number of cells per block, the number of

pixels per cell, and the number of channels per cell

histogram are the three characteristics that define

R-HOG blocks.

3.1.4 Block Normalization

Rather of normalising each histogram separately,

the cells are first aggregated into blocks and then

normalised using all of the blocks' histograms. The

histograms of the four cells inside the block are

concatenated into a vector with 36 components for

this block normalisation (4 histograms x 9 bins per

histogram). To normalise this vector, divide it by

its magnitude.

3.1.5 Object Detection

HOG descriptors may be used to recognise objects

by feeding them into a machine learning system as

features. HOG descriptors, on the other hand, aren't

connected to any particular machine learning

technique.

3.2 Residual Networks (ResNet)

An artificial neural network called a residual neural

network (ResNet) is a type of artificial neural

network (ANN). Skip connections, or shortcuts, are

used by residual neural networks to hop past some

layers. The most common ResNet models include

double- or triple-layer skips with non-linearities

(ReLu) and batch normalisation in between. To

learn the skip weights, an extra weight matrix

might be employed. HighwayNets are the name for

these models. DenseNets are models that have

several parallel skips. A non-residual network can

be characterised as a plain network in the context

of residual neural networks.

There are two primary reasons for adding skip

connections: to minimise disappearing gradients

and to mitigate Degradation (accuracy saturation).

When more layers are added to a sufficiently deep

model, the training error increases. The weights

adjust throughout training to muffle the upstream

layer and magnify the previously skipped layer.

Only the weights for the neighbouring layer's link

are changed in the simplest instance, with no

explicit weights for the upstream layer. When a

single nonlinear layer is stepped over, or when the

intermediate layers are all linear, this method

works well. If not, an explicit weight matrix for the

missed connection should be learnt.

In the early phases of training, skipping layers

effectively simplifies the network by employing

fewer layers. Because there are fewer layers to

propagate through, the influence of disappearing

gradients is reduced, which speeds up learning. As

the network learns the feature, it progressively

recovers the skipped levels. When all layers are

extended at the conclusion of training, it stays

closer to the manifold and so learns quicker. The

feature space is explored further by a neural

network with no remnant pieces. This makes it

more susceptible to disturbances that lead it to

depart off the manifold, and thus takes additional

training data to recover.

This network uses a 34-layer plain network

architecture inspired by VGG-19 in which then the

shortcut connection is added. These shortcut

connections then convert the architecture into

residual network.

Residual Block : This design introduces the notion

of a Residual Network to overcome the problem of

vanishing/exploding gradients. A technology called

skip connections is used in this network. The skip

connection links straight to the output after

skipping a few stages of training.

3.3 Parallel Computation

Parallel computing is a method of utilising

numerous computer resources at the same time. To

facilitate effective use of these resources, the

operating system must be built correctly. When

processors have several cores, a well-designed

programme may make optimal use of all of them.

Typically, this type of application is divided down

into separate components that may be addressed in

parallel.

3.3.1 Graphical Processing Unit (GPU)
GPUs were created with the purpose of processing

vertices and polygons, creating 3D objects for

video games, and displaying data on displays in

near real-time. GPUs did not become a key

accelerator for a wide range of calculations until

the development of programmable shaders and

high-level languages. Demanding applications may

take use of the GPU's massive parallelism in this

http://www.ijsrem.com/

 International Journal of Scientific Research in Engineering and Management (IJSREM)
 Volume: 06 Issue: 04 | April - 2022 Impact Factor: 7.185 ISSN: 2582-3930

© 2022, IJSREM | www.ijsrem.com DOI: 10.55041/IJSREM12134 | Page 4

new era of GPU computing. A GPU's hundreds of

cores enable it to speed data-parallel applications

while also attaining lower power budgets (when

compared to a CPU). In the general purpose market,

GPUs have progressed quickly, and they are now

widely employed by the scientific community to

speed up computations.

3.4 Experimental Setup

In order to give us with an acceptable computing

platform, we chose a desktop PC with a decent

GPU and a respectable frame rate. The features of

this machine are described in Table 1. We take use

of the NVIDIA Pascal Architecture's acceleration.

This GPU contains 384 CUDA cores and 2 GB of

GDDR5X RAM memory, allowing it to accelerate

neural network models with tremendous

computational power. With 8 GB of DDR3 RAM

memory overclocked to 2.7 GHz, the Core i5 CPU

has four physical cores and eight logical cores

thanks to hyper-threading.

Table 1: Desktop Characteristics

CPU Intel i5 @ 3.9 GHz

GPU Nvidia MX250

RAM 8 GB

SSD 250 GB

4. IMPLEMENTATION

We investigated the HOG Descriptor's

performance and accuracy in identifying faces and

producing descriptors in the first stage of

development. We used Dlib's Predefined package

to implement HOG. We upscaled the image by two

times during the preparation step. After that, we

input the picture to the HOG Detector to acquire

the Facial detections, also known as Face chips.

We bundle them in a specified format before

feeding them to the ResNet Network to acquire the

descriptors for that face.

In a subsequent stage, we input the structure from

the HOG Detector to the ResNet network, which is

a Dlib Library-predefined GPU-implemented

network. The descriptors are provided by the

network model once we feed it the photos. We

compare the picture descriptors provided with

those in the database. We consider it positive if the

distance between the descriptors is less than the

given threshold. Figures 1 and 2 depict our pipeline

in action.

Fig. 1 : Main Recognition Pipeline

Fig. 2 : New Face Addition

5. RESULTS

The resultant system was very accurate in

recognising faces and the our system could predict

faces at a frame rate of 14 fps on an average

whereas frame rate of the algorithm when

implemented on CPU was 5 fps average. The given

below are some of our output images .

 Fig. 3: Home Page with options

http://www.ijsrem.com/

 International Journal of Scientific Research in Engineering and Management (IJSREM)
 Volume: 06 Issue: 04 | April - 2022 Impact Factor: 7.185 ISSN: 2582-3930

© 2022, IJSREM | www.ijsrem.com DOI: 10.55041/IJSREM12134 | Page 5

Fig. 4 : Results from a live camera input

Fig. 5 : Results from an individual image

6. CONCLUSION

The major goal of this thesis was to see if it was

possible to do real-time face identification in video

streams. Using our parallel pipeline system, we

were able to demonstrate that the framework can

handle a 480p quality video at a reasonable frame

rate. We may apply this framework to other

applications with the objective of proving real-time

face detection performance. There are a significant

variety of image/video processing applications that

can benefit from a comparable CPU-GPU platform

using an accelerated system that can combine the

performance of a GPU with the speed and

flexibility of a CPU with many cores. There is a lot

of space for more study into putting single stage

detectors on GPU to boost calculation performance,

which might eventually detect in real-time which is

the final goal of this project.

Combining single and multistage detectors with a

Deep Neural Network-based object detector might

make this more lighter and more precise than

previous efforts. Additional optimizations might be

sought to increase the framework's speed.

7. REFERENCES

 [1] Sharma, B., Thota, R., Vydyanathan, N., and

Kale, A. (2009). Towards a robust, real-time face

processing system using cuda-enabled gpus. In

2009 International Conference on High

Performance Computing (HiPC), pages 368–377.

IEEE.

[2] Kong, J. and Deng, Y. (2010). Gpu accelerated

face detection. In 2010 International Conference on

Intelligent Control and Information Processing,

pages 584–588. IEEE.

[3] Chouchene, M., Sayadi, F. E., Bahri, H.,

Dubois, J., Miteran, J., and Atri, M. (2015).

Optimized parallel implementation of face

detection based on gpu component.

Microprocessors and Microsystems, 39(6):393–

404.

[4] Devrari, K. and Kumar, K. V. (2011). Fast face

detection using graphics processor. International

Journal of Computer Science and Information

Technologies, 2(3):1082–1086.

[5] Fayez, M., Faheem, H., Katib, I., and Aljohani,

N. R. (2016). Real-time image scanning framework

using gpgpu-face detection case study. In

Proceedings of the International Conference on

Image Processing, Computer Vision, and Pattern

Recognition (IPCV), page 147. The Steering

Committee of The World Congress in Computer

Science, Computer

[6] Patidar, S., Singh, U., Patidar, A., Munsoori, R.

A., and Patidar, J. (2020). Comparative study on

face detection by gpu, cpu and opencv. Lecture

Notes on Data Engineering and Communications

Technologies, 44:686–696.

[7] Oro, D., Fernandez, C., Saeta, J. R., Martorell,

X., and ´ Hernando, J. (2011). Real-time gpu-based

face detection in hd video sequences. In 2011 IEEE

International Conference on Computer Vision

Workshops (ICCV Workshops), pages 530–537.

IEEE.

[8] Nguyen, T., Hefenbrock, D., Oberg, J., Kastner,

R., and Baden, S. (2013). A software-based

dynamic-warp scheduling approach for load-

balancing the viola– jones face detection algorithm

http://www.ijsrem.com/

 International Journal of Scientific Research in Engineering and Management (IJSREM)
 Volume: 06 Issue: 04 | April - 2022 Impact Factor: 7.185 ISSN: 2582-3930

© 2022, IJSREM | www.ijsrem.com DOI: 10.55041/IJSREM12134 | Page 6

on gpus. Journal of Parallel and Distributed

Computing, 73(5):677–685.

[9] Hefenbrock, D., Oberg, J., Thanh, N. T. N.,

Kastner, R., and Baden, S. B. (2010). Accelerating

viola-jones face detection to fpga-level using gpus.

In 2010 18th IEEE Annual International

Symposium on FieldProgrammable Custom

Computing Machines, pages 11–18. IEEE.

[10] Bilaniuk, O., Fazl-Ersi, E., Laganiere, R., Xu, C., Laroche,
D., and Moulder, C. (2014). Fast lbp face detection on low-
power simd architectures. In Proceedings of the IEEE
Conference on Computer Vision and Pattern Recognition
Workshops, pages 616–622.

[11] Li, E., Wang, B., Yang, L., Peng, Y.-t., Du, Y., Zhang, Y.,
and Chiu, Y.-J. (2012). Gpu and cpu cooperative accelaration
for face detection on modern processors. In 2012 IEEE
International Conference on Multimedia and Expo, pages
769–775. IEEE.

http://www.ijsrem.com/

