
 International Journal of Scientific Research in Engineering and Management (IJSREM)

 Volume: 08 Issue: 06 | June - 2024 SJIF Rating: 8.448 ISSN: 2582-3930

© 2024, IJSREM | www.ijsrem.com DOI: 10.55041/IJSREM35726 | Page 1

FastAPI vs. The Competition: A Security Feature Showdown with a Proposed

Model for Enhanced Protection

Utkarsh Khandelwal1, Ashwini KB2

1Department of Information Science Engineering, R.V. College of Engineering, India
2Department of Information Science Engineering, R.V. College of Engineering, India

---***---
Abstract - API security is of paramount importance in

modern web applications, as it protects sensitive data and

ensures authorized access to resources. FastAPI, a Python-

based web framework, offers various security features to

developers for building secure APIs. This paper examines the

security features provided as well as supported by FastAPI, The

provided features consists of OAuth2 authentication,

Dependency injection and Security Schemas and Scopes,

whereas the supported security features includes Json Web

Token (JWT) authentication, Cross Site Request Forgery

(CSRF) token support and HTTPS support. The supported

features can be implemented by using python libraries and

middlewares. The proposed model combines the JWT token

authentication, OAuth2 authentication, and Security Scopes

and schema security features to enhance the security in the

FastAPI application. The proposed model defines scopes for

users and uses JWT to generate tokens and using OAuth2

authentication service to only allow a user who has the specific

permissions and scopes to access and perform actions in the

scope specific API endpoints. The model hence allows secure

and safe working of applications by eliminating the threat of

unauthorized users to corrupt the application code. The focus

on performance and security makes FastAPI an excellent

choice for developers seeking to build secure APIs. Overall,

this paper highlights the importance of API security and

showcases FastAPI's security features, demonstrating how

developers can leverage FastAPI to build robust, performant,

and secure APIs.

Key Words: FastAPI, Flask, Django, OAuth2, JWT (JSON

Web Token), CSRF (Cross Site Request Forgery)

1.INTRODUCTION (Size 11, Times New roman)

The ever-expanding world of web applications hinges on

the seamless exchange of data facilitated by APIs (Application
Programming Interfaces). As APIs become the cornerstone of
complex systems, ensuring their security becomes paramount.
Traditional approaches to API development often require
developers to integrate external libraries for crucial security
features, introducing complexity and potential vulnerabilities.
This paper presents FastAPI, a high-performance web
framework that revolutionizes API development by offering a
potent combination of developer experience and built-in
security features.

 FastAPI empowers developers to prioritize security
without sacrificing efficiency. Core features like OAuth2
authentication, JSON Web Tokens (JWTs), and dependency
injection simplify the process of building secure APIs.
Additionally, automatic documentation fosters transparency
and facilitates secure API usage. By comparing FastAPI's
security strengths to those of other popular frameworks, this

paper will demonstrate its advantages in areas like user
authentication, data validation, and fostering a secure
development environment.

 The proposed model demonstrates a FastAPI
application implementing OAuth2 password grant flow for user
authentication and authorization. It utilizes JWT (JSON Web
Tokens) for secure access token generation and leverages
dependency injection to manage user access control. The code
defines an oauth2_scheme with different scopes ("read",
"write", "admin") and an in-memory database to store tokens
and user scopes. The verify_token function validates tokens
and checks required scopes for access. The get_current_user
dependency retrieves user information based on the provided
token and ensures the user has the necessary scopes for the
requested endpoint. Login functionality is implemented in the
/token endpoint, issuing JWTs upon successful authentication.
Protected endpoints like /admin/ and /secure-endpoint require
specific scopes ("admin" and "read" respectively) for access,
demonstrating authorization control through dependency
injection. This model serves as a basic example of securing
FastAPI applications with OAuth2, JWT, and dependency
injection for robust authorization and authentication.

2. Security Features
FastAPI provides various security features to improve

security in the API while building them for any application.

There are several types of security features provided such as

OAuth2 Authentication, JSON Web Tokens (JWT),

Dependency Injection, Security Schemes and Security Scopes,

etc.

http://www.ijsrem.com/

 International Journal of Scientific Research in Engineering and Management (IJSREM)

 Volume: 08 Issue: 06 | June - 2024 SJIF Rating: 8.448 ISSN: 2582-3930

© 2024, IJSREM | www.ijsrem.com DOI: 10.55041/IJSREM35726 | Page 2

Provided Security Features:

 FastAPI prioritizes security by offering a comprehensive set

of features to help you build robust and secure APIs. As shown

in Figure 1, FastAPI provides OAuth2, Dependency Injection

and Security schemas and scopes as inbuilt or provided security

features.

 A cornerstone of this security is its built-in support for

OAuth2 authentication. OAuth2 is an industry-standard

protocol that allows applications to obtain limited-time access

to user accounts on external services like GitHub, Bitbucket, or

Jira. By implementing OAuth2 with bearer tokens and

passwords using the OAuth2PasswordBearer library, you can

ensure that only authorized users can access your API

endpoints. This is crucial for protecting sensitive data and

functionalities within your application.

 FastAPI's dependency injection system further strengthens

your API's security posture. Dependency injection is a core

concept in FastAPI that promotes code modularity and

separation of concerns. This translates to security benefits by

allowing you to control how dependencies like database

sessions or authentication mechanisms are injected into your

code. By managing these dependencies in a controlled and

testable manner, you can ensure that sensitive operations are

handled securely and can be easily audited if needed.

 Beyond authentication and dependency injection, FastAPI

empowers you to create fine-grained access control within your

API using security schemes and scopes. Security schemes

allow you to define different methods for authenticating users,

such as API keys placed in headers, query parameters, or

cookies, or traditional HTTP Basic authentication. This

flexibility caters to various authentication needs. Additionally,

security scopes let you specify the level of access granted by a

token. You can define specific scopes for different

functionalities within your API, ensuring that users only have

access to the resources they are authorized for. This adherence

to the principle of least privilege minimizes the potential

damage caused by unauthorized access.

Supported Security Features:

 FastAPI offers a range of features to enhance the security

posture of your APIs. As shown in Figure 1, FastAPI provides

JSON Web Tokens(JWT), CSRF Token and HTTP Support as

supported security features.

 While OAuth2 provides a robust foundation for user

authentication, FastAPI can be seamlessly integrated with

JSON Web Tokens (JWT) for stateless authentication. JWTs

are compact tokens used for exchanging claims between parties

and are often used in conjunction with OAuth2. You can

leverage libraries like fastapi_jwt for verifying and decoding

JWTs, ensuring secure access to protected resources within

your API.

 Beyond authentication, FastAPI allows you to implement

Cross-Site Request Forgery (CSRF) protection using

middleware or libraries like starlette-wtf. CSRF attacks exploit

a user's authenticated session to perform unauthorized actions.

By implementing CSRF protection, you can safeguard your

API from such attacks.

 FastAPI also integrates with HTTPS (HyperText Transfer

Protocol Secure). HTTPS encrypts communication between the

client and server, protecting data from eavesdropping and man-

in-the-middle attacks. You can run your FastAPI application

with HTTPS using standard ASGI servers like uvicorn. This

ensures that sensitive data transmitted between users and your

API remains confidential. Combined, these features empower

you to build secure and reliable APIs.

3. COMPARATIVE ANALYSIS WITH OTHER

FRAMEWORKS AND API TYPES

 There are other frameworks used for developing APIs such

as Django, Flask, Express.js, etc. API types such as

Representational State Transfer (REST), and QueryLanguage

like GraphQL. We have compared the above given other

options with FastAPI as shown in Table 1 on the basis of

security services to determine how FastAPI is better than them.

Table 1: Comparison between different frameworks on

basis of Security Features

4. PROPOSED MODEL

OAuth2 Implementation for Secure API Access with

Scopes: In the proposed model, we implemented OAuth2

authentication to secure API endpoints, ensuring that only

authorized users can access the specified resource. This

implementation leverages FastAPI, a modern and high

performing framework for building APIs.

System Architecture

 The following figure shows the system architecture of the

proposed model.

Figure 2: System architecture of the Proposed Model

http://www.ijsrem.com/

 International Journal of Scientific Research in Engineering and Management (IJSREM)

 Volume: 08 Issue: 06 | June - 2024 SJIF Rating: 8.448 ISSN: 2582-3930

© 2024, IJSREM | www.ijsrem.com DOI: 10.55041/IJSREM35726 | Page 3

OAuth2 Scheme and Token Management

 We defined an OAuth2 password flow scheme with different

scopes (read, write, admin) to control access to various

endpoints. This configuration is achieved using FastAPI's

OAuth2PasswordBearer, which specifies the token URL and

the available scopes.

from fastapi.security import OAuth2PasswordBearer

oauth2_scheme = OAuth2PasswordBearer(

 tokenUrl="token",

 scopes={

 "read": "Read access",

 "write": "Write access",

 "admin": "Admin access",

 }

)

Token Validation and Scope Validation

 A key aspect of the implementation is verifying tokens and

validating the required scopes for each API request. Here, we

use an in-memory database to store tokens and their associated

user scopes for demonstration purposes.

def verify_token(token: str, required_scopes: List[str]):

 try:

 payload = jwt.decode(token, "secret_key",

algorithms=["HS256"])

 except jwt.exceptions.DecodeError:

 raise HTTPException(

 status_code=status.HTTP_401_UNAUTHORIZED,

 detail="Invalid token",

 headers={"WWW-Authenticate": "Bearer"},

)

 user_scopes = tokens_db[token]["scopes"]

 for scope in required_scopes:

 if scope not in user_scopes:

 raise HTTPException(

 status_code=status.HTTP_403_FORBIDDEN,

 detail="Not enough permissions",

 headers={"WWW-Authenticate": f'Bearer

scope="{required_scopes}"'},

)

 return tokens_db[token]

This function was implemented to ensure that only valid tokens

with the necessary scopes can access protected resources.

Authentication and Authorization Flow

 Authentication and Authorization process involves following

steps:

1. Requesting a Token: Users are authenticated by

sending their credentials to the ‘/token’ endpoint. If the

credentials are valid then they will receive a SHA256 encoded

token.

curl -X POST "http://127.0.0.1:8000/token" -H "Content-Type:

application/x-www-form-urlencoded" -d

"username=user1&password=secret"

2. Accessing Protected Endpoints: To access the

protected endpoints, users need to use their obtained token by

including it in the Authorization header.

curl -X GET "http://127.0.0.1:8000/secure-endpoint" -H

"Authorization: Bearer {token}"

Login Endpoint and Dependency Injection

 Login endpoint was implemented so that it can simulate the

user authentication and issue a token with appropriate scopes

on basis of the user signing in and its allowed scopes.

@app.post("/token")

async def login(form_data: OAuth2PasswordRequestForm =

Depends()):

 user = fake_users_db.get(form_data.username)

 if not user or user["password"] != form_data.password:

 raise HTTPException(

 status_code=status.HTTP_400_BAD_REQUEST,

 detail="Incorrect username or password"

)

 payload = {

 "username": form_data.username,

 "scopes": user["scopes"]

 }

 access_token = jwt.encode(payload, "secret_key",

algorithm="HS256")

 tokens_db[access_token] = {"username":

form_data.username, "scopes": user["scopes"]}

 return {"access_token": access_token, "token_type":

"bearer"}

 For dependency injection we used FastAPI’s dependency

injection to ensure that the users with valid tokens and required

scopes can access certain endpoints.

async def get_current_user(security_scopes: SecurityScopes,

token: str = Depends(oauth2_scheme)):

 credentials_exception = HTTPException(

 status_code=status.HTTP_401_UNAUTHORIZED,

 detail="Could not validate credentials",

 headers={"WWW-Authenticate": f'Bearer

scope="{security_scopes.scope_str}"'},

)

 user = verify_token(token, security_scopes.scopes)

 if user is None:

 raise credentials_exception

 return user

http://www.ijsrem.com/

 International Journal of Scientific Research in Engineering and Management (IJSREM)

 Volume: 08 Issue: 06 | June - 2024 SJIF Rating: 8.448 ISSN: 2582-3930

© 2024, IJSREM | www.ijsrem.com DOI: 10.55041/IJSREM35726 | Page 4

5. CONCLUSION

 In conclusion, FastAPI provides several security features that

enhance the security of APIs and protect against common

vulnerabilities. Some of the key security features offered by

FastAPI include OAuth2 authentication, JSON Web Tokens

(JWT), dependency injection, security schemes and scopes,

CSRF protection, and HTTPS support. By incorporating

OAuth2 authentication, FastAPI ensures secure access to API

endpoints through the use of bearer tokens and password

verification. JWT integration allows for stateless

authentication, enabling secure transfer of claims between

parties. FastAPI's dependency injection system enables

modularization and separation of concerns, enhancing security

by managing sensitive operations and dependencies in a

controlled and testable manner. FastAPI's support for security

schemes and scopes allows for granular access control,

enforcing authentication and authorization based on user roles

and required scopes. While FastAPI does not provide built-in

CSRF protection, it can be implemented using middleware or

third-party libraries. When comparing FastAPI to other

frameworks, such as Flask or Express.js, FastAPI stands out for

its built-in support for OAuth2 and JWT authentication, type

hinting, automatic documentation generation, and validation.

FastAPI's focus on high performance and security make it a

strong choice for developers building secure APIs.

 The proposed model uses OAuth2 authentication along with

JWT token and Security scope and schemas to improve the

security provided by a FastAPI application. The proposed

model combines all the security features and works so that the

scopes of the users are decided and while login the model will

generate the JWT token which consists all the information

about access about the user and then using OAuth2

authentication scheme we will verify the token and after

decoding the token user will only be able to access the

endpoints which have allowed scopes i.e if the user does not

have admin access then he won’t be able to access endpoints

requiring admin access. This model will increase security in the

system and does not allow anonymous users to perform attacks

that can compromise the system.

 In summary, FastAPI provides a comprehensive set of

security features that help developers build secure APIs. Its

support for OAuth2, JWT, dependency injection, security

schemes, and scopes, along with its emphasis on performance

and type hinting, make it a powerful framework for developing

secure and efficient applications.

REFERENCES

1. A. Chatterjee, M. W. Gerdes, P. Khatiwada and A. Prinz,

"SFTSDH: Applying Spring Security Framework With TSD-Based

OAuth2 to Protect Microservice Architecture APIs," in IEEE

Access, vol. 10, pp. 41914-41934, 2022, doi:

10.1109/ACCESS.2022.3165548. keywords:

{Security;Authentication;Protocols;Medical

services;Privacy;Electronic healthcare;Prototypes;API

Security;TSD;spring framework;HTTP;OAuth2;eCoach},

2. L. Ferretti, M. Marchetti and M. Colajanni, "Verifiable Delegated

Authorization for User-Centric Architectures and an OAuth2

Implementation," 2017 IEEE 41st Annual Computer Software and

Applications Conference (COMPSAC), Turin, Italy, 2017, pp.

718-723, doi: 10.1109/COMPSAC.2017.260.keywords:

{Authorization;Protocols;Cryptography;Data

structures;Servers;Data

models;integrity;oauth;identity;correctness;outsourcing;authorizat

ion;access control;cloud},

3. Sherwin John C.Tragura, Building Python Microservices with

FastAPI: Build secure, scalable, and structured Python

microservices from design concepts to infrastructure , Packt

Publishing, 2022.

4. Chen, Junqiao. (2023). Model Algorithm Research based on Python

Fast API. Frontiers in Science and Engineering. 3. 7-10.

10.54691/fse.v3i9.5591.

http://www.ijsrem.com/

