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Abstract: Throughout the world, thousands of 

passengers travel by air, their quality depends on that 

of the equipment used. Predictive maintenance is 

increasingly used to estimate. The remaining useful life 

of system components and in particular turbofan 

engines as an essential component. It is used to predict 

failure before it occurs, optimize component design, 

extend equipment life, and reduce maintenance costs. 

However, the algorithms proposed in the literature to 

date to determine the remaining useful life lack 

precision with a quadratic error around 20 while the 

physical models have errors of the order of 0.02. The 

problem here is how to increase the accuracy of 

predicting the remaining useful life of a turbofan 

engine. The objective of this study is to develop a more 

realistic and accurate algorithm for calculating the 

remaining useful life of a turbofan engine. To do this, 

we considered the degradation of the high pressure 

compressor and the fan as essential organs of the 

turbojet engine and we used deep learning, known for 

its high precision linked to a great capacity for 

extracting information. More specifically, it involved 

acquiring data on a turbojet engine in operation, pre-

processing this data, developing the prediction model, 

training the model and finally validating the approach 

in comparison with other diagnostic methods. and to 

model these defects. We compared two deep learning 

architectures per application against the CMAPSS 

dataset to assess their performance. The LSTM 

architecture we developed prevailed with an RMSE of 

13.76, well positioned compared to the literature 

architecture. 

 
Keywords. Time series prediction, remaining 

lifetime, turbofan engine, deep learning. 

1. INTRODUCTION 
 
In recent years, the development of modern 

aircraft technology has led to a complex aircraft 

system, where high reliability, quality and safety 
are required in a competitive environment [1] . 

Indeed, according to the Aviation Safety Network 

[2] , millions of passengers fly around the world 
every day and their safety is a critical aspect. In 

the past, engineers were content with corrective 

maintenance [3], today the abundance of 

operating data has opened up the prospect of fault 
prognosis based on operating conditions. 

Therefore, the time has come for predictive 

maintenance, which makes it possible to predict 
failure before it occurs, but also to optimize the 

design of components, extend the life of 

equipment and reduce maintenance costs [4] . 

 
Thus, three main methods of calculating 

remaining useful life can be used: an approach 
based on a physical/mathematical model of 

degradation, an approach based on operating data 

from the healthy state to the fault state and a 
hybrid approach [4] . The approach by a a physical 

model has a high accuracy with an error around 

0.02 [5] but considerable knowledge of the studied 
system is necessary to create a model. On the other 

hand, the method based on operating data does 

not require expert knowledge of the system but 

has a low precision of the order of 20 in squared 
error due to the absence of a precise physical 

model. 
 

The predicting of the remaining useful life 

time therefore becomes approximate and can 

have serious consequences. A late prediction 
implies that the failure has already occurred, 

which can affect the safety of passengers and 

crew in flight [6] and an early prediction leads to 
additional maintenance costs at non-optimized 

periods [7]. 
 

1.1. The turbojet 

 
The turbojet is a propulsion system which 
transforms the chemical energy potential 
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contained in a fuel, associated with the oxidizer 
that is the ambient air, into kinetic energy making 
it possible to generate a reaction force in a 
compressible medium in the opposite direction to 
the ejection [8]. Turbofans are jet 
engines derived from turbojet engines. They are 
distinguished from them essentially by the fact 
that the thrust is not obtained only by the ejection 
of hot gases, but also by a flow of cold air. 

 

1.2. The main indicators of deterioration of a 

turbojet engine 

 
The aircraft’s dashboard has a set of instruments 
for controlling engine power and supervising its 
operating parameters. It is important to 
understand that none of the isolated instruments 
can assess the health of the engine, they must be 
considered together. The essential control 
parameters on a turbojet engine are: 

 
 Engine compression ratio (EPR around 

25): this parameter measures the thrust 
generated by the engine, it is the ratio of 
the air pressure at the turbine outlet to the 
air pressure at the compressor inlet . It is 
a recognized and certified engine 
performance indicator [9]. 

 Rotor rotation speed, it represents the 
number of revolutions per minute 
(RPM). It is expressed as a non- 
dimensional ratio that compares rotor 
RPM to 100% rated speed representing 
a high power situation. The high 
pressure compressor RPM (N2) is used to 
supervise the operating limit conditions 
[9]. 

 Exhaust Gas Temperature (EGT). It is 
used to monitor the health and 
mechanical integrity of the engine. It is 
high for values >2500. 

 Fuel flow indicator: this parameter 
indicates the quantity of fuel supplied to 
the injectors in kilograms per hour. It is 
used to monitor fuel consumption, engine 
performance and speed regulation. 
Abnormally high fuel flow may indicate a 
leak between the fuel control system and 
the injection nozzles. Particularly when 
EPR and RPM are normal or low [9]. 

 
Air temperature indicator: outside the aircraft. 
This temperature can be recorded from specific 
locations and the actual value can mean different 
things depending on the particular aircraft. 

This temperature is generally used to help select 
the EPR in those engines where the thrust is 
defined by the EPR [9].Of all the indicators cited 
above, [10] has established that the static pressure 
at the outlet of the high pressure compressor 
(Ps30) and the ratio of fuel flow to Ps30 (Phi) 
have the greatest impact on engine degradation, 
this which suggests that the most critical 
component is the high pressure compressor. 
Thus, major recent works use datasets that only 
model high-pressure compressor degradation as 
the cause of failure. 

 
However, we question this assumption, 

indeed although the high pressure turbine is the 
central element of propulsion for the turbojets 
for military use, in the turbojets for civil use, it 
is the fan which contributes for more than 80% 
thrust [11]. In the rest of the work we will be 
particularly interested in the high pressure 
compressor and the fan, this can be justified by 
the recurrence and the gravity of the phenomena 
which directly impact these two organs during the 
flight: overvoltage, stall, ingestion of debris, hot 
start, seizing have direct effects on the high 
pressure compressor [6] . But also, they are the 
organs at the origin of the propulsion and without 
which, there is no flight. Finally, the part of the 
engine cycle most susceptible to instability is the 
compression phase [9]. 

 
1.3. Fault diagnosis techniques 

 
 

1.3.1. Remaining useful life (RUL) prediction 

 
Engine Optimization will allow us to model its 
functional or dysfunctional behavior: it is a 
question of identifying which are the parameters 

and entries which will make it possible to have an 
optimization of the system to improve its 
performances. This involves simulating the 
mathematical system under different conditions 
and thus determining which parameter will 
produce the best result [12-14]. 

 
To model a defect, a model of the system 

is required. Generally, a model is an official 
formulation of all the knowledge about the 
functioning of the system and the related faults. 

 
The remaining useful life (RUL) of a 

machine is the expected life or time of use 
remaining before the machine will require repair 
or replacement. Units of life can be quantities 
such as distance traveled (miles), fuel consumed 
(gallons), repeat cycles performed, or time 
elapsed since start of operation (days). 



 

 

Similarly, the evolution of time can mean the 

evolution of a value with such an amount [15]. 
 

Generally, estimating the RUL of a system 
comes down to developing a model that can 
perform the estimation based on the temporal 
evolution of the condition indicator values, such 
as the model that compares the evolution from a 
condition indicator to time series of systems that 
worked until failure. Such a model can calculate 
the most likely failure time of the current system. 
This model corresponds better to the CMAPSS 
data set 

 

which contains the operating-to-failure 
data. Figure 1 presents steps to built a RUL 
prediction algorithm [16]. 

 

 
 

Figure 1: Steps to build a prediction algorithm 

 

In recent years, deep learning techniques 
have outperformed traditional machine learning 
models. Deep learning has proven to be an 
effective solution in view of its ability to 
automatically learn the temporal dependencies 
present in time series [17]. 

 

1.3.2. Short-long term memory network (LSTM) 

 
LSTM network are an improvement of recurrent 
neural networks (RNN). RNNs were introduced 
as a variant of ANN (Artificial Neural Network) 
for time-dependent data. While MLPs ignore 
temporal relationships within the input data, 
RNNs connect each time step with previous ones 
to model the time dependence of the data, 
providing native RNN support for the given 
sequences [18]. 

 
In 1997, LSTM networks were introduced 

as a solution to the problems of ERNN (Elman 
Recurrent Neural Networks). LSTMs are able to 
model temporal dependencies in broader 

horizons without forgetting short-term patterns. 
LSTM networks are differentiated from ERNNs 
in the hidden layer, also known as the LSTM 
memory cell. LSTM cells use a multiplicative 
input gate to control the memory units, 
preventing them from being modified by 
irrelevant disturbances [16]. 

 
1.3.3. Short-long term memory network (LSTM) 

 
CNNs are a family of deep architectures 

originally designed for computer vision tasks. 

They are considered state-of-the-art for many 

classification tasks such as object recognition, 

speech recognition and natural language 

processing. 

 
CNNs can automatically extract features 

from high-dimensional raw data with a grid 

topology such as pixels in an image, without the 

need for any feature engineering. 

 

The model learns to extract meaningful 

features from the raw data using the 

convolutional operation, which is a sliding filter 

that creates feature maps and aims to capture 

repeated patterns in different regions of the data. 

This feature extraction process provides CNNs 

with an important characteristic called distortion 

invariance, which means that features are 

extracted regardless of their location in the data 

[16]. 

 

The work of [16] demonstrated that among 

all recent deep learning models, long short-term 
memory networks (LTSM) and convolutional 
networks (CNN) are the best alternatives. While 
LSTM gets the most accurate prediction, CNN 
makes the most repeatable prediction. In the rest 
of our study, we will present its two approaches. 
Our objective being to build an algorithm of great 
precision, we have therefore chosen to use the 
deep learning approach because of its adaptability 
and the reliability it offers to model the faults of 
a turbojet engine, therefore the purpose of 
optimize it better. 

 
2. Materials and methods 

 
To determine the remaining useful life, we will 
develop two deep learning algorithms, one based 
on convolutional neural networks and the other 
based on short and long memory networks, then 
we will apply the prediction algorithms useful 
remaining lifetime on the CMAPSS dataset. 
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2.1. Materials 

 
It is a question here of presenting not only the 
experimental device used for data collection, but 
also the different software used for numerical 
simulations. 

 

2.1.1. Digital simulation device 

 
In this work, we used the digital simulation data 

C-MAPSS (Commercial Modular Aero 

Propulsion System Simulation) Commercial 

Modular AeroPropulsion System Simulation, is 
a state-of-the-art turbofan engine simulator 

developed by NASA. It is a 90,000 thrust class 

engine model and the package includes an 
atmospheric model capable of simulating 

operations at altitudes ranging from sea level to 

40,000 ft, 

 
Mach numbers from 0 to 0.90 and sea level 

temperatures from -60 to 103°F. In addition, all 

gains for the fan speed controller and the four 
limit regulators are programmed so that the 

controller and regulators operate as expected. 

Over the full range of flight conditions and power 

levels. 
 

CMAPSS provides 14 inputs for simulating 

the effect of faults and deterioration on any of the 
5 rotating engine elements and 58 outputs which 

include the response surfaces of various sensors 

and operating margins. 
 

Inputs are: Fuel Flow, Blower Efficiency, 

Blower Flow, Blower Compression Ratio, LPC 
Efficiency, LPC Flow, LPC Compression Ratio, 

HPC Efficiency, HPC Flow, HPC compression, 

HPT efficiency, HPT throughput, LPT efficiency, 
HPT throughput. 

 

The table presents some information about 

the state of degradation and deterioration of the 
engine. 

 

2.1.2. Software used 
 

MATLAB was at the heart of this work, allowing 

us to carry out all the stages of construction of our 
algorithm, in particular, the preprocessing of the 

data, the construction of the architecture of the 

neural network, the training of the neural 

network and the neural network performance 
evaluation. To do this, we used Matlab's Deep 

Learning toolbox, which offers an environment 

for designing and implementing deep neural 
networks. 

 
2.2. Methods 

 

The flowchart of figure 2 presents the stages of 

construction of the algorithm 1. The stages 

presented in the flowchart will be examined in 
more detail in the following. 

 

2.2.1. Acquiring c-mapss data. 

 
In the CMAPSS, the sensor data generated by this 

simulation based on the input parameters are 

summarized in Erreur ! Source du renvoi 

ntrouvable.1, which are processed and produce 

the output data. 
 

 

 
Figure 2: Prediction Algorithm Construction Flow 

Chart 



 

 

To ensure that CMAPSS generates realistic data, 
the data was compared to those published by 

GoebelIt turned out that the qualitative responses 

were similar. Indeed, by increasing the flow rate 
and the efficiency, the response surfaces were 

similar to those of [18-19]. To obtain the output 

data, the performance and throughput were 

incremented for each module (HPC, HPT and 
LPT) and CMAPSS was compiled under different 

random conditions.unctional parameters were 

varied exponentially as ordered in [18]. 
Maintenance times between missions have been 

modeled such as noise, which influences 

performance parameters, namely throughput and 

efficiency; which improves by remaining within 
certain limits, therefore the performance losses 

are not monotonous. 
 

The mechanical failure model, including 
those of Arrhenius, Coffin Manson and Eyring, 
makes it possible to establish an engine health 
equation [19]: 

Generally, the system will be observed from 
an initial non-zero degradation denoted d, which 
allows data generation to start at an arbitrary 
point in the evolution of the crack. This initial 
degradation is modeled as an additive term to the 
engine health equation from an initial state of 
degradation [19] we then obtain. 

 

The health index can be used to model various 
phenomena across the subsystem. Especially for 
aircraft engine modules like compressor section 
and turbine section, health index is described as 
both efficiency (e) and throughput (f). The 
trajectories for throughput and efficiency vary 
for different fault modes and are modeled as two 
separate health indices as shown below : 

Equation of health according to flow [20]: 
 

The terms e(t) and f(t) are then combined to 
form the general health index H(t), the response 
of the simulated engine to the input data. 

General engine health index equation [19]: 

 
Where g is the minimum of all operating 
margins considered for the fan, HPC, 
HPT, EGT… Expression of g 

 

Where the margins m are functions of yield e(t) 

and throughput f(t). 

 
The margins are calculated by estimating the 

distance between the states of the engine at a 

time t with respect to the defined operational 

limits. Each of these margins is in the interval 

[0,1] where 1 means a perfectly healthy system 

and 0 a system where the margin is below the 

acceptable limit. In the simulation, the limit was 

set at 15% for the HPC, LPC and fan stall margin. 

The margin is 2% for the margin of EGT. The 

procedure for generating data with CMAPSS is 

as follows: 

 
 Choose an initial state of deterioration (f 

0 ,e 0 ) domain of definition of e and f 

Impose an exponential variation on the 
loss of throughput and efficiency as 
explained in [14] . This leads to the 
general health index H(t) (Equation 5) 
which varies with time. The direction 
and Evaluation 

 Stop when H health = 0, 
Impose noise on sensor measurements. 

 
 

As output, we obtain time series in the form of 
vectors of the output parameters. They are 
produced by modifying the HPC throughput and 
efficiency input parameters from the initial state 
to the failure threshold. 

 
 

The training data have trajectories that top at 
the failure threshold while the test and validation 
data represent trajectories that stop before the 
failure threshold. 

 

 

2.2.2. Pretreatment 

 
 

To do this you need: 
 

 Download and unzip the Turbofan 

Engine Degradation Simulation dataset.

 Perform basic preprocessing: MATLAB 
includes many useful functions for basic 
preprocessing of data in arrays. Data is 
loaded using the localLoadData [20] 
function. The function extracts data from 
-
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filenamePredictors and returns a table 
that contains the training predictors and 
the corresponding response sequences 
(i.e. RUL). Each row represents a 
different engine.Remove features with 
less variability: Features that remain 
constant or do not provide relevant 
information for the RL calculation can 
have a negative impact on training. We 
use the prognostic function to measure the 
variability of characteristics in the event 
of a failure. 

 Normalize training predictors: The 

measurement data collected from each 

sensor is normalized

to fall within the range of [-1, 1] using 

the min-max normalization method, 
 

Data Normalization Formula Equation :Where 

denotes the original i-th data point of the j-th 

sensor, and is the normalized value of and 

designate respectively the maximum and 

minimum values of the original 

measurement data of the j-th sensor. 

 Operate time windows: More information 

can usually be obtained from time 

sequence data compared to the 

multivariate data point sampled at a 

single time step. Let Ntw be the size of 

the time window. At each time step, all 

sensor data passed in the time window is 

collected to form a high-dimensional 

feature vector and used as inputs for the 

network.

 
It should be noted that in the test set, the data 

cycles recorded for the test engine units have a 

different length, and the shortest is only 31 cycles 

specifically. We have a normalized data sample 

of the 14 selected sensors in a time window of 

size 30 relative to a single motor unit in the 

training dataset. 

 
Pay attention to RUL less than RULlim: in 
general , the engine block operates normally from 
an early age and degrades linearly thereafter, so 
that the network concentrates on the part of the 
data where the engines are more likely to break 
down (end of engine life), the responses are cut 
at the RULlim threshold of 

125 [21]. This forces the network to process 
instances with lower or equal RUL values [22]. 
In this work, we will use for the detection the 
generalized model of structure based on artificial 
intelligence, we will present the bases of neural 

network. 

 

 
2.3. Deep convolutional networks with 

attention 

 

We use two types of architectures: 

 
2.3.1. CNN network architecture 

 
We constructed a CNN consisting of four 
consecutive sets of CNN layers, with filterSize 
and numFilters as two input arguments to 
convolution2dLayer, followed by a fully 
connected layer of size numHiddenUnits and a 
dropout layer with a dropout probability of 0.5. A 
final convolution layer is used with 1 filter to 

combine the previous feature maps into one. 
Filter size is 3 × 1. num Responses is set to 1. 
All layers use ReLU (Rectified Linear Unit) as 
activation functions. 

 
Figure 3 presents the graph of the CNN neural 

network layers to visualize the architecture of the 
underlying network and Table 3: the values of 
the parameters of the defects [10]. 

 

 

 
Legend : 

In – input layer 

Conv – Convolution 
layer 

Mp – maximum 

pooling layer 
Tanh – hyperbolic 

Tangent activation 

layer 
Fc – fully connected 

layer 

Do – dropout layer 

Out – output layer 

 

 
 

Figure 3: Visualization of the proposed deep CNN 

architecture 

 

Where RULlim is the limit of RUL from which 

the degradation is taken into account. 
 

2.3.2. LSTM architecture 

 
We created an LSTM network consisting of an 
LSTM layer with 200 hidden units, followed by 
a fully connected layer of size 50 and a dropout 
layer with a dropout probability of 0.5. Figure 4 
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presents the layer graph of LSTM neural 
networks. To specify the training options, we set 
the maximum number of epochs to 300 with mini-
lots of size 512 using the 'Adam' solver. We 
specified a variable learning rate of 0.01 up 

the performance of the network on the test data. 

The wording of the RMSE is as follows: 

 

⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡ 

to the 200th epoch and 0.001 from the 201st. To 
keep sequences sorted by length, we set “Shuffle” 
to “never”. 

⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡ 
⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡ =⁡√ 

 

 
3. Results and discussion 

1 
 

  

∑ 
2 

(11) 
=1  

 

The performance in terms of prognosis of the 

proposed method for RUL estimation will be 

presented. The effects of different factors on the 

results will be studied, including the number of 

hidden layers and the length of the time window. 

Comparisons with other popular neural network 

architectures will be made to show the efficiency 

of the proposed structure. The result of the 

proposed approach will be compared to the latest 

state-of-the-art prognostic results on the same C-

MAPSS dataset including errors. 

 
 

Figure 4: Proposed LSTM architecture 

 

Where RULlim is the limit of RUL from which 

the degradation is taken into account. 
 

2.3.3. Performance indicators 

 
In [27] , 2 metrics were used to evaluate the 
performance of the proposed prognostic method: 
the scoring function and the mean square error. 
The notation function is defined below: 

 

 
 

⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡ 
⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡ 
⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡ = ∑ 
=1 

(9) 

 
Where the score and N is the total number of 

test data samples. di⁡ = ⁡RUL′⁡i⁡– ⁡RUL⁡i, 
i.e. the error between the estimated RUL value 
and the actual RUL value for the ith sample of 

test data. The scoring function penalizes late 

prediction more than early prediction because late 
prediction usually leads to more 

seriousconsequences in many fields such as 

aerospace industries.Another method to evaluate 

the effectiveness of the proposed method is the 
root mean square error (RMSE) calculation over 

all time cycles of the test sequences to compare Data 

preprocessing 

 
 

Before exploiting the training data, it is necessary 

to remove the "empty shells", this is data that 

does not provide relevant information. Figure 5 

presents the variability of some indicators. 

 
We observe certain data which vary with the 

operating cycles and become monotonous when 
the end of the cycle approaches, in particular the 
sensors 4; 7; 18 and 20 which are not 
monotonous. Other characteristics, on the other 
hand, remain constant throughout the operating 
cycle orhave almost zero variability. 

 
Data varies with duty cycles as life decreases. 

Figure 5 offers relevant information as to the 

prediction of the remaining useful life, especially 
since when they become monotonous and the 
remaining useful life tends towards the end. They 
are in fact linked to the degradation of the high 
pressure compressor, for example sensor 4 is the 
total temperature at the LPT outlet, sensor 20 the 
HPT cooling purge (lbm/s). Data with consistent 
variability and/or monotonicity is suppressed. 

Legend : 

Input layer 

LSTM layer 

Fully connected layer 

Drop-out lay 

Regression layer 
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(a) (b) 

 

This allowed us to keep 14 data whose 
indices are 2, 3, 4, 7, 8, 9, 11, 12, 13, 14, 15, 17, 
20 and 21. Recent work by [23-24] related to 
prediction of remaining useful life using 
CMAPSS dataset FD001 also retained the same 
data for training. 

 
 

3.1. Performance and prognosis of CNN-like 

deep neural networks 

 
The RUL prediction results are shown in the 

figures below. The test engine units are sorted 

into best performance, average performance and 

worst performance for better observation and 

analysis. 

 
The predicted curve and the test curve have 

a decreasing trend, the first has a lifetime of 
around 142 cycles (red) while the second has a 
lifetime of around 144 cycles (blue). As shown in 
Figure 6, the decrease of the two curves reassures 
that the remaining useful life time decreases with 
the number of cycles or the operating time in 
other words. The prediction indicates that the end 
of life will occur two days before the actual date, 
which is significant in the sense that it is better to 
predict the defect sooner rather than too late. 

 

 

(a) 
 

Figure 5: RUL prediction results; average 

performance for engine 76 (a); worst performance 

for engine 16(b) 

 

Figure 5 (a) shows the average prediction 
performance, for engine 76. We see fluctuations 
in the predicted curve and stabilizes around 70 
cycles (red) while the actual curve is smooth and 
stabilizes around 90 cycles (blue). 

 
Figure 5 (b) shows the worst prediction, this 

is reached for engine 16. The predicted curve has 
fluctuations and stabilizes around 130 (red) while 
the actual curve is smooth and stabilizes around 
60 (blue). The fluctuations reflect the sensitivity 
of the prediction algorithm which calculates the 
useful life at each iteration without taking into 
account the previous one. 

The prediction of figure 5 (a) is 20 cycles 
off while that of Figure 5(b) is 70 cycles off. 
This demonstrates that the algorithm has 
difficulty in generalizing its learning to the 
prediction of RUL for these engines. 

 

 

 

 

 

 

 

 

 

 

 
(c) (d) 

 
Figure 6: Random RUL prediction for engines 

81, 10, 97, 95 
 

Figure 6 (a) shows the prediction for engine 
81. The predicted curve has slight fluctuation and 
is closer to reality at the beginning of the cycle 
and at the end of life. 

 
Figure 6 (b) shows the prediction of the 

randomly chosen engine 95. The predicted curve 
fluctuates a lot but remains around an average 
value close to the real value. It is closer to reality 
at the beginning of the cycle and at the end of life 
with a difference of 20 days. 

 

Figure 6 (c) shows the prediction for engine 
10. The predicted curve is sometimes far away 
sometimes close to the actual curve but is very 
close at the end of life. 

 

Figure 6 (d) shows the prediction for engine 
97. The predicted curve is very close to the actual 
curve at the beginning and even merges at the 
end of life. 

 
Figure 6(a), ), figure 8 (b), figure 6 (c) and 

figure 6 (d) show that the prediction is more 
accurate when approaching the end of engine life 
and generally at the start of operation as well. This 
was predictable, because as observed in figure 3, 
the readings of certain sensors are strictly 
monotonous when approaching the end of the 
engine's life, this trend is therefore detected by 
the prediction models, which facilitates its 
prognosis. It can be observed that the RUL values 
predicted by the proposed methods are generally 
close to the real values. In particular, the 
prognostic accuracy tends to be 
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higher in the region where the RUL value is low. 
Indeed, when the motor unit operates in fault 
mode, the fault function is enhanced and can be 
captured by the proposed network for better 
prognosis. 

 

Note that the RUL estimates for the latter parts 
of the engine life are not shown. This is because 
in the test data set, the last parts of the sensor 
measurements are not provided in order to 
examine prognostic performance. It can be 
observed that in the early periods in the 4 cases, 
the proposed method estimates the RUL values 
close to the constant RULlim. Then the estimates 
decrease almost linearly with time until the end 
of the available test samples. Specifically, despite 
some noticeable error existing between 
predictions and actual RUL values in general, 
prognosis accuracy is high, especially when 
motor units are close to failure. 

 
Figure presents a capture of the evolution of 

the RMSE objective function and loss function 
during training.Both curves haves a similar 
decreasing overall trend and stabilize around a 
certain value (RMSE = 12). However, slight local 
fluctuations can be observed. These results are in 
line with expectations, because the objective is to 
have a convergence of the cost function towards 
a global minimum. 

 

The overall decrease of the two cost functions 

reassures that the neural networks actually learns 
from the samples provided to it in the data set. 

The results obtained are compared with the 

results of the literature in table 5. It is observed 
that the training curve tends to descend at the 250 
th epoch, which means that the prognostic 

performances could be improved if the number of 

epoch to 1000 for example. 
 

It can be considered that the performance 
discrepancies between the literature and the 
present study are related to this. However, 
hardware constraints prevent us from increasing 
the number of epochs above. 

 

The RMSE drops rapidly at the beginning to 
stabilize and decreases slowly thereafter, this is 

due to the characteristics extracted at the start 

being coarse and very basic. As one makes 
iterations, one seeks to optimize the function loss, 

from where a slowing down of the average 

quadratic error. 
 

The following histogram in figure 10 shows 
the distribution of the RMSE values over all the 

test engines. 

 

 
 
Figure 7: Distribution of RMSE values across all 

test engine 

 

Note that the quadratic error is maximum 

around engine 15, which corresponds to poor 

generalization performance for engines whose 
indices are 11, 12, 13, 14, 15, 16, and 17. 

Furthermore, the RMSE value without adequate 

pre-processing of 19,76 [20] shows that data from 
useless sensors is very detrimental to learning, 

from which we can recommend that maintenance 

teams do not take these sensors into account to 
preventive maintenance work to determine the 

remaining useful life or the importance of 

knowing how each sensor behaves at the start of 

the process. 
 

3.2. Effects of number of convolution layers 

 

It can be observed that generally, more hidden 

convolution layers lead to lower RMSE values. 

This indicates that the deep architecture is able 
to capture more useful information than the 

shallow ones. However higher prognostic 

accuracy can be obtained by a deeper structure, 
the computation time for the learning process 

increases almost linearly with the number of 

hidden layers. It should be noted that neural 

networks with 5 convolution layers achieve good 
performance with medium computational load, 

and that is used as the default hidden layer 

number of the architecture proposed in this study. 
A comparison between RMSE and the scoring 

function is provided in figure 11. It is observed 

that both functions have curves that vary, 

although there is a gap between the magnitude 
scales. They are therefore both relevant for the 

evaluation of prognostic performance in this case 

study. The peaks in the score curve are due to the 
good performance of the system to operate. 
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Figure 8: comparison between the RMSE and the 

score function 

 
3.3. Performance and prognosis of LSTM type 

deep neural networks 

 
 

The training data was ordered according to run 
length to reduce padding effect during mini- 
batch separation as shown in fig 

Figure 10: RUL prediction results, best 

performance for engine 38 
 

The predicted and test curves have a similar 
trend. The similar tendencies of the two curves 
and the proximity between them reassure that the 
prognosis is very close to reality. 

 
 

(a) 
 

Figure 11 : RUL prediction results; average 

performance for engine 26 (left); worst 

performance for engine 83 (right) 
 

Figure11 (a) shows the mean prediction 
performance, this is achieved for the motor 26. The 
closer the predicted curve is to the actual curve, the 
closer the end of life is approached after a 
sufficiently long time. 

 

 

 
 

 

 
 

Figure 9: Training data classified according to 

sequence length 

 

The data sequences are arranged from 
largest to smallest. This order allows 
LSTM networks to better extract the 

temporal characteristics between 
sequences, especially during training, 
hence it is recommended to set the 
“breath” parameter to “never”. The RUL 
prediction results are shown in figures 13 

through 17. The test engine units are sorted by 
labels from small to large for better observation 
and analysis. Figure11 (b) presents the worst 
prediction, this one is reached for the engine 83 
(red). The predicted curve has fluctuations. It is 

closer to oves away; it stabilizes around 60 while 
the real curve is stable at 125 (blue). 

The fluctuations reflect the sensitivity of the 
prediction algorithm which calculates the useful 
life at each iteration without taking into account 
the previous one. 

 
The prediction of figure11 (a) is 5 cycles off 

while that of Figure11 (b) is 60 cycles off. This 
demonstrates that the algorithm has difficulty in 
generalizing its learning to the prediction of RUL 
for these engines. 

(b) 
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It can be observed that the RUL values 
predicted by the proposed method are closer to 
the real values than the values predicted by CNN. 
As with CNN; the prognostic accuracy tends to 
be higher in the region where the RUL value is 
low. The failure is already almost felt, causing the 
responsible components to show a degraded 
performance response. In addition, the RUL 
estimates for the life of the test engine units 
before the last recorded cycle are shown in Figure 
15. Here we have 4 examples out of one hundred 
test engine units, with the number unit is 
respectively 14, 49, 79, and 96, presented for 
demonstrations. 

 

 
 

 

Figure12 : Random RUL prediction for engines 14, 

49, 79, 96 

 

Note that that the RUL estimates for the latter 
parts of the engine life are not shown. This is 
because in the test data set, the last parts of the 
sensor measurements are not provided in order to 
examine prognostic performance. The current 
RUL value for the last recorded cycles is in the 
data set, and the corresponding RUL labels for 
the previous lifetime can be obtained 
accordingly. 

 
It can be observed that in the early periods 

in the 4 cases, the proposed method estimates 
the RUL values close to the constant RULlim = 
125 which is the value set by the manufacturer for 
normal use of the engine. Then the estimates 
decrease over time until the end of the available 
test samples. 

 
Despite some noticeable error existing 

between predictions and actual RUL values in 
general, prognostic accuracy is high, especially 
when motor units are close to failure. 

 

 
 
Figure13 : curve of objective function (blue) and 

loss function (red) according to mini lots 

 

In figure , a capture of the training process 
makes it possible to collect several parameters. 
The two curves are similar (have the same 
profile) despite a distortion, have a decreasing 
overall trend and stabilize around a certain value 
(RMSE = 12). However, slight local fluctuations 
can be observed. These results are in line with 
expectations, because the objective is to have a 
convergence of the cost function towards a global 
minimum. 

 
The overall decay of the two cost functions 

reassures that the neural networks are indeed 

learning from the samples provided to it in the 
dataset. The results obtained are compared with 

the results of the literature in table 5. The RMSE 

falls slowly at the beginning for a notable descent 
from the epoch 100, this can be explained by the 

character of the LSTM networks to capture the 

temporal dependencies at long term. The 

following histogram shows the distribution of the 
RMSE values on all the test engines. 

 

 

Figure14 : distribution of RMSE values on all test 

engines 

(a) (b) 

(c) (d) 
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It is noticed that the RMSE value of LSTM 

neural networks is significantly smaller than that 
of CNN, which demonstrates a better 

performance of LSTM compared to CNN. In 

addition, the RMSE value without adequate pre- 

processing of engines 22 and 34 [24] shows that 
data from useless sensors is very detrimental to 

learning, hence maintenance teams can be 

recommended not to take these sensors into 
account. For preventive maintenance work 

aimed at determining the remaining useful life, 

provided that the location of the sensors and their 
classification are entered at the start of the 

process. 

 

 
3.4. Effects of number of LSTM layers 

 
 

We observed that the more LSTM layers there 
are, the longer the training time. Moreover, it was 
shown in 3.3 that more hidden convolution layers 
lead to lower RMSE values. This indicates that 
the deep architecture is able to capture more 
useful information than the shallow ones. 

 
On the other hand, while higher prognosis 

accuracy can be achieved by deeper structure, the 

computation time for the learning process 

increases almost linearly with the number of 
hidden layers. It should be noted that neural 

networks with 5 convolution layers achieve good 

performance with medium computational load, 

and that is used as the default hidden layer 
number of the architecture proposed in this study. 

 
A comparison between RMSE and the scoring 

function is provided in figure 

 

 
Figure15 : comparison between the RMSE and the 

score function 

It is observed that the two functions have 

similar trends, although there is a gap and peaks 
between the magnitude scales.They are therefore 

both relevant for the evaluation of prognostic 

performance in the case study. 
 

3.5. Comparison with other architectures 

 
A comparison of the different prognostic 
performance results using different methods. 

We can observe that the proposed deep 

learning method is competitive, compared to 

several. The results show that the proposed 

deep learning architecture is well suited to the 
prognosis problem.The stacked convolution 

layers contribute to the learnability of the 

network. The RNN structure and the second 
best with its information flow. 

 

AN and DNN basic neural networks are 

also competitive. This indicates that sample 
preparations with raw feature selection, data 

preprocessing, and time window application 

are effective for subsequent feature extraction. 
 

The proposed deep learning method has 
achieved promising performance compared to 

state-of-the-art results. It should be noted that in 

this work, we have artificially set a threshold 
RULlim for the healthy condition, which has a 

noticeable effect on the experimental 

performance. Non-threshold prognostic results 
are also provided. Despite the increase in the 

RMSE value of the RUL estimate, the results of 

the proposed method are still competitive. 

 
In summary, the comparison resultspresented 

above suggest that the proposed method is 

promising for prognostic problems and able to 
provide reliable RUL estimates in different cases. 

 
4. CONCLUSION 

 
Prognosis is currently at the heart of industrial 

system health management. Reliably estimating 
the state of health of a system holds the promise 

of enormous cost savings by, for example, 

avoiding unscheduled maintenance, similarly 
the prognosis improves safety in the operation of 

equipment, and allows decision makers to change 

the operating parameters to extend the life of the 
components, finally it also allows them to better 

organize maintenance. 
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Various fault detection and diagnostic 
techniques have been developed for solving 

diagnostic problems. These techniques include 

model-based approaches, knowledge-based 
approaches, qualitative simulation-based 

approaches, classical multivariate statistical 

techniques, and neural network-based 
approaches. In this work, a new deep learning 

method for prognosis is proposed, based on deep 

convolutional neural networks and long-term 

memory neural networks. Experiments were 
conducted on the popular C-MAPSS dataset to 

show the effectiveness of the proposed methods. 

With raw feature selection, data preprocessing 
and sample preparation using a time window, 

good prognostic performance is obtained with the 

CNN method, including an RMSE value of 

17.08 and an 8.5 type for test data. Even better 
performance is obtained with the LSTM network, 

namely an RMSE value of 13.76 and a standard 

deviation of 7.8. LSTM neural networks offer 

better performance probably because of its ability 
to learn temporal relationships between time 

series data, unlike CNN neural networks. 

 
We observed that the RUL in engine life can 

be predicted well, especially for the late period 

close to failure. In comparison with most of the 
existing deep methods which take more into 

account the degradation of the high pressure 

compressor, the proposed method is more 

realistic because it also takes into account the 
degradation of the fan. Moreover, No homemade 

signal processing functions are needed, such as 

asymmetry, flattening, etc. Therefore, no prior 
expertise on prognosis and signal processing is 

required in the proposed method. We recommend 

for future research to use data sets that take into 
account the combined degradation of all engine 

components rather than just the high pressure 

compressor and fan. This will constitute a closer 

approach to reality. 
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