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Abstract 

Federated Learning (FL) is a decentralized approach to training machine learning models along with pre- serving 

data privacy. This paper introduces FedNet, a secure and efficient FL platform designed for model training across 

distributed clients. FedNet enhances the traditional FL framework by integrating Fernet encryption for secure 

communication, HTTP and Socket.IO-based real-time client-server interaction, and a JavaFX-powered user 

interface for ease of deployment. The platform supports multiple FL aggregation techniques, including FedAvg, 

FedProx, FedNova, and Zona, providing optimized global model updates. FedNet allows machine learning clients 

to upload, encrypt, and distribute their models securely while allowing clients to train them on local data without 

the risk of exposing sensitive information. The system provides authentication through model and client ID 

verification, encrypts model weights before transmission, and aggregates securely the received weights to improve 

performance. Experimental analysis demonstrates FedNet’s efficiency, scalability, and security in FL-based model 

training. The proposed platform bridges the gap between privacy-preserving machine learning and real-world 

deployment, making it suitable for applications in healthcare, finance, and other data-sensitive industries. 
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1. Introduction 

With the rapid growing of Artificial Intelligence (AI) and Machine Learning (ML), data has become one of the most valuable 

assets in today’s world. ML applications are across various domains, including healthcare, finance, cybersecurity, 

autonomous systems, and IoT, where large amounts of data are required for effective model training. However, the traditional 

centralized approach to ML model training raises concerns regarding data privacy and security. Along with compliance with 

regulations such as the General Data Protection Regulation (GDPR) and Health Insurance Portability and Accountability Act 

(HIPAA). To address these concerns, Federated Learning (FL) has emerged as a revolutionary method that allows 

decentralized model training without risking raw data. 

 

FL was first introduced by Google researchers[1], proposing a method where ML models are trained locally across multiple 

distributed clients, and only model updates (gradients or weights) are shared with a central server for aggregation. This 

approach enables the sensitive user data to remain localized and preserve its protection while still contributing to a 

collaborative trained model. Over the years, FL has evolved beyond mobile applications to multiple fields such as 

healthcare, finance, and IoT, where privacy-preserving AI solutions are essential [2-4]. However, despite its advantages, 

efficient client-server communication, secure data exchange, and flexible model aggregation techniques remain significant 

challenges in FL deployment. 

This paper introduces FedNet, a federated learning platform designed to provide a user-friendly environment which is 

secure and scalable for decentralized ML training. FedNet enhances the existing FL frameworks by integrating: 

1. End-to-end encryption using Fernet to secure data transmission 

2. HTTP and Socket.IO-based for communication of efficient real-time interaction between clients and 

servers. 

3. A JavaFX-powered user interface, making it simple for researchers and industry professionals. 

4. Support for multiple FL aggregation techniques, including FedAvg [5], FedProx [6], FedNova [7], and 

Zona [8], ensuring optimized model convergence. 
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The main objective of the FedNet is to bridge the difference by offering a simple platform between the FL research 

and the distribution of the real world, where the user can upload, train and distribute machine learning models and at 

the same time preserve the data privacy. By providing secure model encryption, skilled communication protocols 

and flexible aggregation strategies, FedNet aims to liberalize federated learning and promote its smooth 

adoption in privacy-sensitive industries. In addition, FedNet introduces a better workflow for data processing 

and model training, which ensures effective memorial control and seamless execution on client units. The platform 

increases both, by incorporating the model’s performance tracking and adaptive aggregation strategies, increases 

both weight updates, model performance and accuracy tracking. Through extensive use and analysis, this 

study emphasizes the opportunity for FedNet to promote the conservation machine Learning Privacy-

Conservation Machine while addressing the boundaries of traditional FL frameworks. 

 

1.1 Challenges in Federated Learning 

1.1.1 Security and privacy challenge 

The FL is designed to increase your data bin their confidentiality by placing raw data on local devices, but it is still unsafe 

for different safety hazards, including models reverse attacks, adverse attacks and toxicity attacks. Models try to organize private 

data from conflicting model updates, in reverse attacks, which cause a significant risk in privacy -sensitive applications such as 

health care and finance [1] [3]. Similarly, side effects can be manipulated in the training process by injecting malicious 

updates, leading to biased or wrong global models [2]. 

 

Another major problem is data poisoning, where malicious customers send the converted model updates to compromise the 

accuracy of the global model [4]. Traditional cryptographic techniques, such as homomorphic encryption and differential privacy, 

have been detected to reduce these dan- gers, but they often introduce computational overheads, reduce system efficiency [5]. The 

FedNet addresses these concerns by integrating furniture scrapping, ensuring secure client-server commu- nication and encrypted 

model updates to protect against unauthorized access and manipulation. 

 

 

1.1.2 Efficiency and Communication Overhead 

FL entails frequent communique between customers and the significant server to change model updates. However, this 

consequences in excessive bandwidth consumption and latency problems, specifically in side computing and IoT 

environments, where community connectivity is limited [6]. The efficiency of FL relies upon on the variety of participating 

clients, replace frequency, and the dimensions of model parameters being transmitted [7]. 

 

To enhance conversation efficiency, diverse strategies which includes gradient compression, ver- sion pruning, and adaptive 

update techniques have been proposed [8]. These tactics intention 

to lessen the number of statistics transmitted even as keeping model performance. FedNet opti- mizes communication by 

implementing Socket.IO-based event-driven updates over HTTP, ensuring reliable, real-time interaction between clients and the 

server with minimal latency. 

 

Another efficiency concern is device heterogeneity, wherein customers have unique computational capabilities. Some clients may 

additionally have limited processing strength, inflicting delays in local training and slowing down international model updates 

[9]. To tackle this, FedNet helps adap- tive education schedules and lets in clients to update fashions based totally on their 

computational ability. 

 

1.1.3 Model aggregation and convergence problems 

Collecting local model updates in a global model is an important step in FL. However, FL is facing challenges in securing 

convergence, managing data (distributed as non-freedom and identity) data and adapting to aggregation techniques. Traditional 

aggregation methods, such as Federated Averaging (FedAvg), assume that data is equally distributed to all customers, who rarely is 

the case in real world scenarios [5]. 

http://www.ijsrem.com/
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Non-IID data sharing can cause significant model operations, where individual customers models differ due to variation in local 

datasets. To address this, advanced aggregation techniques such as FedProx [6], FedNova [7] and Zona [8] developed to improve 

the strength and adapt to unique data. FedNet contains several aggregation strategies, so users can choose the most appropriate 

method based on dataset properties. 

 

In addition, ensuring global model convergence while maintaining accuracy, ensuring good connec- tion to the customers [10]. FL 

training stability and efficiency [9] techniques that weighted average and individual federated learning (PFL) are detected to 

increase 

 

While federated learning (FL) offers a promising method for privacy-preserving machine learning, it is essential to tackle challenges 

concerning security, efficiency, and model aggregation for effective implementation. FedNet introduces innovative solutions to these 

issues by utilizing secure encryp- tion, optimized communication methods, and adaptable aggregation strategies, enhancing 

the reliability and accessibility of FL for practical applications. Future research should aim to create more efficient encryption 

methods, adaptive aggregation techniques, and scalable FL architectures to boost the adoption of FL across various industries. 

 

2. Motivation 

The rapid growth of Machine Learning (ML) has led to its widespread use in various fields, such as healthcare, finance, and IoT 

systems. However, traditional ML training methods often depend on centralized data storage, which raises concerns about data 

privacy, security, and compliance with regulations [1]. With the increasing enforcement of privacy laws like GDPR and HIPAA, 

organizations are looking for alternatives that enable model training without exposing sensitive user information [2]. 

 

Federated Learning (FL) has emerged as a promising solution, allowing collaborative model training while keeping data 

decentralized [3]. However, applying FL in real-world scenarios comes with several challenges, including efficient 

communication between clients and servers, secure data management, and smooth model integration [4]. To tackle these 

issues, we developed FedNet,a robust federated learning platform aimed at providing a secure, efficient, and user-friendly 

environment for FL-based model training. 

 

FedNet enables ML practitioners to deploy, train, and aggregate models securely across distributed client devices without the need 

for raw data transfers. The platform incorporates advanced crypto- graphic techniques using Fernet encryption, ensuring that 

model updates are protected during transmission [5]. Additionally, FedNet supports various model aggregation strategies 

such as FedAvg, FedProx, FedNova, and Zona, optimizing model convergence for different use cases [6]. 

 

By utilizing HTTP and Socket.IO-based communication, FedNet guarantees real-time model syn- chronization while 

maintaining an efficient and scalable infrastructure. The platform’s JavaFX- based user interface simplifies the FL 

workflow, making it more accessible to a broader audience, including researchers and industry professionals. Our aim with 

FedNet is to democratize federated learning, making it a practical and accessible tool for industries that need secure, 

decentralized AI model training [7]. 

 

3. Overview of FedNet 

FedNet is a federated learning (FL) platform that facilitates secure, decentralized, and efficient training of machine 

learning models across various client devices. It tackles significant privacy, security, and efficiency issues found in 

traditional machine learning by enabling models to be trained directly on local devices, eliminating the need to transfer raw 

data to a central server [1][2]. This method is particularly important in privacy-sensitive sectors like healthcare, finance, and 

IoT, where data-sharing is heavily regulated by laws such as GDPR and HIPAA [3][4]. 

 

Fundamentally, FedNet functions through a client-server architecture. A central server oversees the FL process, while 

multiple clients use their local datasets to contribute to model training. The server starts by initializing the model, then 

http://www.ijsrem.com/
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distributes it to the clients, who perform local training and send back model updates. This iterative cycle continues until the 

global model reaches optimal performance [5][6]. 

 

4. Process of Federated Learning in FedNet 

The FedNet framework implements a well-defined federated learning (FL) workflow that guarantees secure, decentralized, and 

efficient training of machine learning models. Each step in this process is vital for developing an optimized global model 

while ensuring data privacy. Figure X provides a visual representation of the FedNet FL process 

1. Model Initialization and Upload 

The server kicks off the training process by creating a global model and encrypting it with Fernet encryption 

[1]. This step is crucial for keeping the model secure during its transmission. Users can also upload their custom 

models along with the necessary data processing and training scripts to share with clients [2]. 

 

2. Model Distribution to Clients 

After the upload, the global model is sent to selected client devices through a secure HTTP and Socket.IO-

based connection, which allows for low-latency and real-time communication [3]. Each client receives an 

encrypted version of the model, which helps prevent unauthorized changes [4]. 

3. Local Model Training on Client Devices 

Clients then decrypt the model, access their local datasets, and carry out training using opti- mization algorithms 

like Stochastic Gradient Descent (SGD) [5]. This training occurs locally, ensuring that raw data remains private 

and complies with regulations such as GDPR and HIPAA [6]. 

 

4. Secure Weight Updates from Clients to Server 

Once training is complete, clients encrypt and transmit the updated model weights (gradients) back to the central 

server without disclosing their raw datasets [7]. This encryption safeguards the model updates from potential 

adversarial attacks during the transmission process [8]. 

 

5. Aggregation of Model Updates 

The server gathers and combines the received model updates using various federated optimization techniques, 

including : 

• FedAvg (Federated Averaging) [5] 

• FedProx (Addressing system and statistical heterogeneity) [6] 

• ZonaFL (Adaptive aggregation for real-time applications) [8] 

• Heterogeneous FL optimization techniques [7] 

These approaches ensure that the global model is optimized while preserving accuracy across a range of datasets.  

 

5. Significance 

Federated learning (FL) has become a groundbreaking method for decentralized machine learn- ing, effectively tackling 

privacy issues and minimizing communication overhead [1][2]. Unlike traditional centralized machine learning approaches 

that require raw data to be sent to a central server—raising security concerns and regulatory hurdles—FL allows for collaborative 

model training across various devices while keeping data on-site. This makes it particularly suitable for sectors like healthcare, 

finance, and the Internet of Things (IoT) [3][4]. 

 

The importance of FedNet lies in its capacity to improve privacy, security, and efficiency within FL systems. By utilizing secure 

aggregation methods, differential privacy, and homomorphic encryp- tion, FedNet safeguards model updates against potential 

adversarial threats [5], [6]. Moreover, its architecture is adept at managing data diversity and communication limitations, 

enhancing the practicality of FL for real-world scenarios [7][8]. 
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The importance of FedNet lies in its capacity to improve privacy, security, and efficiency within FL systems. By utilizing secure 

aggregation methods, differential privacy, and homomorphic encryp- tion, FedNet safeguards model updates against potential 

adversarial threats [5], [6]. Moreover, its architecture is adept at managing data diversity and communication limitations, 

enhancing the practicality of FL for real-world scenarios [7][8]. 

 

6. Proposed Platform and Objectives 

FedNet is a federated learning platform that tackles significant challenges found in current FL frameworks. It offers a secure 

and efficient way to train models in a decentralized manner, while also reducing security risks and improving model 

aggregation . The main goals of FedNet are: 

1. Enhanced Security: Utilizing privacy-preserving methods like secure multiparty computation, differential 

privacy, and homomorphic encryption to safeguard client updates from potential 

threats [6][11]. 

 

2. Efficient Model Aggregation: Employing advanced aggregation techniques such as weighted federated 

averaging and adaptive optimization to boost model accuracy and speed up convergence [5][9]. 

 

3. Scalability and Robustness: Making sure the platform can efficiently scale to accommodate a large 

number of clients while ensuring consistent performance across diverse datasets [7][12]. 

 

4. Reduced Communication Overhead: Decreasing the volume of data exchanged between clients and the 

central server by applying methods like quantization, compression, and asynchronous updates [2][8].  

 

5. Real-World Applicability: Crafting the platform to be versatile across various fields, including healthcare, 

finance, and IoT, where data privacy laws are strict [3], [4]. 

 

FedNet seeks to connect theoretical progress in FL with real-world applications, offering a thorough solution 

for privacy-preserving, decentralized machine learning. 

 

7. Materials and Methods 

7.1 System Overview 

FedNet is a fully functional federated learning platform designed to facilitate privacy-preserving model training across 

decentralized clients. The system adopts a client-server architecture, im- plemented through a combination of modern web 

technologies. The backend is developed using Python and AWS services, while the frontend leverages a modular React 

framework for user inter- action. The core functionalities include secure model distribution, client-side training, encrypted 

communication, and aggregation of model updates via Federated Averaging (FedAvg). 

 

7.2 Backend Architecture 

The backend of FedNet is built with Python and integrates cloud-native features to support scala- bility and persistence. The 

server is responsible for managing user sessions, distributing models, collecting updates, and aggregating client 

contributions. Key components of the backend include: 

• User Session Management: A custom models.py module authenticates user sessions via session- Token and 

validates them using records in a DynamoDB Users table. 

 

• Model Upload Pipeline: Users upload three critical files—model_definition.py, data_processing.py, and a 

dynamically generated requirements.txt. These files are validated and stored securely in AWS S3.  

 

http://www.ijsrem.com/
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• Dependency Extraction: Using Python’s Abstract Syntax Tree (AST), the system parses up- loaded model 

files to extract all required import statements, which are compiled into the require- ments.txt. 

 

• Metadata Storage: Every uploaded model is tagged with metadata including model ID, associ- ated user, 

file URLs, and timestamps. This metadata is stored in a ModelMetadata table hosted on DynamoDB. 

• Client Communication Endpoint: A /getUserModels route allows clients to fetch their associ- ated model 

files for training or analysis. This route ensures access is only granted to validated users. 

 

Figure 1. Model Creation 

 

 

 

7.3 Frontend Design 

The FedNet frontend is a React-based single-page application with multiple routes for different stages of the federated 

workflow. Key components include: 

• Routing and Navigation: Using React Router, the frontend includes defined routes for /, /auth, 

/get_started, /dashboard, /discuss, and /model-details/:modelId. 

• Component Structure: Modular components such as Navbar, Footer, and route-specific views (e.g., 

Wizard, Dashboard, ModelDetails) make the system easily extensible. 

• Model Visualization: The Dashboard and ModelDetails components retrieve model metadata and S3 file 

links via backend APIs, providing users with insights into their training progress and uploaded assets. 

 

Figure 2. Client Side Software 

http://www.ijsrem.com/
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7.4 Federated Learning Workflow 

The workflow of the FedNet platform mirrors real-world federated learning pipelines and involves the following stages: 

1. Global Model Initialization: The server constructs a global model from uploaded files and prepares it for 

distribution. 

 

2. Client Assignment and Distribution: Through Socket.IO connections over HTTP, encrypted versions of 

the model and preprocessing scripts are sent to participating clients. A symmetric encryption key is generated 

at initialization and used for secure transmission. 

 

3. Client-Side Training: Clients decrypt the files, preprocess their local datasets, and train the model in 

isolation. Updated weights are encrypted and transmitted back to the server. 

 

4. Secure Aggregation: Upon receiving model updates from multiple clients, the server decrypts and stores 

each contribution before applying Federated Averaging (FedAvg) to update the global model. 

 

5. Iteration and Convergence: The above cycle is repeated across multiple communication rounds until the 

global model achieves convergence or meets predefined performance thresholds. 

 

6. Performance Tracking: While still under enhancement, the architecture is designed to include real-time 

monitoring of training accuracy, client-side resource utilization, and inference latency, laying the foundation 

for robust evaluation metrics. 

 

7.5 Security and Privacy Measures 

To ensure data confidentiality and client authenticity, FedNet employs the following security mechanisms: 

• Symmetric Encryption: All model and data files are encrypted using Fernet-based symmetric encryption 

before being transmitted to clients. 

 

• Authentication via Keys: Clients must provide a valid key—generated by the server during model 

initialization—to participate in training rounds. This key is also used for decrypting server files locally. 

 

• S3 and DynamoDB Integration: All sensitive files and metadata are stored in secure AWS services with 

strict access policies. 

 

7.6 System Workflow and Module Implementation 

The FedNet system is designed to implement federated learning in a practical, modular, and privacy- preserving manner. This 

section describes the underlying architecture and workflow, segmented into five core modules that align with the federated 

learning pipeline. 

1. Client-Server Communication Establishment 

To enable real-time collaboration between clients and the server, FedNet employs a HTTP and Socket.IO-based 

communication protocol. This choice ensures persistent, bidirectional channels for data transmission, reducing 

latency compared to traditional HTTP methods. Upon user authentication (managed via session tokens stored 

in a DynamoDB-backed Users table), the server validates each client and allows secure participation in the 

training process. Encryption 

http://www.ijsrem.com/
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keys generated using the Fernet symmetric algorithm are employed to encrypt sensitive payloads before transmission, 

ensuring confidentiality and integrity of the model files and training scripts. 

 

 

Figure 3. Model ID and key generation 

 

2. Sending the Model to the Client for Training 

When a user uploads a model to the system through the frontend interface (using the wizard component),  three 

files are provided: the model definition (model_definition.py), the data prepro- cessing logic (data_processing.py), 

and an auto-generated requirements.txt. These files are parsed server-side to extract dependencies using an abstract 

syntax tree (AST) parser, then bundled and uploaded to an S3 bucket. The backend stores relevant metadata in 

the ModelMetadata table, associating the model with the uploading user. The model and scripts are then encrypted 

and distributed to clients via the Socket.IO protocol, ensuring both availability and confidentiality of resources 

required for training. 

 

 

Figure 4. Data processing setup 

3. Model Training at Client Side 

Once the client receives the encrypted model package, it decrypts the content using the shared symmetric 

key. The training script is executed in an isolated runtime—typically within a managed environment such 

as Google Colab or a Docker container—allowing the client to preprocess its local dataset and perform 

local training. The model parameters are initialized from the server-provided global model, and updated locally 

based on client-specific data. Post- training, the updated weights are serialized, encrypted, and queued for return 

to the central server. 

http://www.ijsrem.com/
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Figure 5. Client participation in training 

 

 

4. Receiving Weights and Aggregation 

The server receives encrypted model updates from each participating client and temporarily stores them 

for aggregation. After decryption, FedNet applies a federated averaging (FedAvg) algorithm to merge the 

updates. The averaging process considers the relative size of each client’s dataset to ensure a weighted 

contribution. The resulting aggregated model parameters are then used to update the global model, which is 

broadcast back to the clients for the next training round. This loop continues for a pre-defined number of 

communication rounds or until convergence criteria—such as model accuracy—are satisfied. 

 

5. Model Performance Tracking To ensure transparency and effectiveness of the federated training process, 

FedNet includes mechanisms for tracking model performance across rounds. Each client optionally evaluates 

the model on local validation data and returns metrics such as loss, accuracy, and resource utilization (e.g., 

memory and CPU usage). These metrics are stored alongside model metadata and visualized in the Dashboard 

component of the frontend. Users can review training history and inspect model details on the /model -

details/:modelId route, allowing for interpretability and performance analysis before deployment. 

 

8. Results 

8.1 Experimental setup: 

The main experiment of our setup revolves around a central server and multiple clients. This system trains a ML model 

collaboratively. The key components and workflow of our system are described below. 

1. System Architecture 

In this architecture, a client-server platform is setup, where the server maintains a global model and initiates the 

learning process, while each client performs local training using its own dataset and shares the model updates 

back to the server. Communication is established using HTTP and Socket.IO, enabling event-driven, real-time 

exchange of data between the server and clients for the secure transfer of models, updates, and system messages.  

Figure 6 shows the system architecture. 

 

http://www.ijsrem.com/
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Figure 6. System architecture 

 

2. Security and Encryption 

To secure the data transfers, we use Fernet encryption for the model, and weights exchanges. Every time a client 

starts running their local model, he/she inputs a predefined key to start decryp- tion; only clients which know this 

key can decrypt and make use of the data being passed. This encryption method increases confidentiality while 

protecting data from adversaries intercepting the data being sent. 

 

3. Workflow 

This is how the experimental setup works: 

(a) Server-Side Operations 

i. The server starts a global deep learning model, Input_Model, and generates an encryption key by 

using the cryptographic library. 

ii. It transmits the encrypted model architecture along with a training script, dataprocess- 

ing_and_training.py, to connected clients. 

iii. The server waits and listens for incoming client updates while receiving the encrypted model 

weights as soon as the local training has been completed. 

iv. After the server gets the updates from each of the participating clients, it decrypts and aggregates 

the model weights with an averaging function. 

v. The final aggregated model is kept for evaluation and further experimentation. 

 

(b) Client-Side Operations 

i. Each client connects to the server via Socket.IO over HTTP and provides a pre-shared encryption 

key to establish a secure communication channel. 

ii. The client receives and decrypts the global model and training script. 

iii. It is executed and dynamically loaded into the memory through exec() of the script decryption so 

that it can locally process some data of its choice, and further train on the model that had been sent over to the 

client. 

iv. The client ends training, picks updated weights, encrypts them and then transfers the updated 

encrypted model back to the server. 

v. Continue sending until enough number of clients to attain the required end. 

http://www.ijsrem.com/
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4. Data Distribution 

The clients in this experiment are operating on heterogeneous datasets. This means that every client can have 

its unique dataset, and some might have a comparison of previously shared data by the clients. This is a non-

IID setting, in which observations can show statistically different distributions across devices nonuniformly, 

reminiscent of the challenges of federated learning in real-world scenarios. 

 

5. Experimental Environment 

(a) Programming Language: Python 

(b) Deep Learning Framework: TensorFlow/Keras 

(c) Networking: HTTP and Socket.IO via the python-socketio library 

(d) Encryption: Fernet symmetric encryption from the cryptography library 

(e) Frontend Framework: React 18 with React Router 

(f) Cloud Services: AWS S3 for model and script storage, DynamoDB for metadata management 

(g) Hardware: The experiments were conducted on a local machine with an Intel i5 12th Gen processor 

and an RTX 3050 GPU. 

 

9. Experimental Results 

This section represents the experimental results we obtained by applying federated learning (FL) to the MNIST dataset [14] with 

our proposed platform. As we always mention above, the evaluation mainly goes with the accuracy trends of the participants 

and the relative performance of aggregation algorithms: FedAvg, FedNova, FedProx, and Zona. 

1. Client Performance Trends 

Figure 7 shows the accuracy of each client at each epoch of training. The accuracy curve for each client 

was inspected after several training iterations. In all clients, accuracy increases monotonically, which shows 

that local model training and aggregation are effective. 

Though minor deviations were noticed between the clients, they were small and did not have a noticeable effect 

on the overall learning. The stability of the clients shows that the distribution of data between the clients is fairly 

uniform, and no individual biases were large enough to cause noticeable effects on the training process.  

 

 

Figure 7. Individual client accuracy after each epoch 

 

 

Figure 8 represents the accuracy of the locally trained model for each client after the whole training process. 

http://www.ijsrem.com/
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Figure 8. Accuracy of each client 

 

2. Comparison of Aggregation Techniques 

The impact of different aggregation methods is assessed in terms of final accuracy, and fairness. Figure 9 shows the 

accuracy after implementing different aggregation techniques. 

The graph compares accuracy and fairness. 

1. Accuracy: Accuracy reflects the effectiveness of the aggregated global model in predicting outcomes for 

unseen test data. Higher accuracy indicates that the chosen aggregation method successfully incorporates useful 

updates from client models. 

 

Figure 9. Accuracy and fairness comparison 

 

 

 

2. Fairness: Fairness evaluates the equitable contribution of all clients to the global model, ensuring that no 

single client disproportionately influences the model. Fairness should be small in feder- ated learning because 

there should be an equitable contribution from all clients to the global model. 

 

Among the above algorithms, the FedProx algorithm showed the maximum accuracy and turned out to be the best 

amongst the methods adopted in our experiments. Performance-wise, it varies with dataset and model architecture. 

Results would vary in applications. 

3. Comparison Between Traditional Machine Learning and Federated Learning Approach This paper 

http://www.ijsrem.com/
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compares the traditional machine learning approach to the FL approach. Figure 10 shows the accuracy of the 

model trained using the traditional approach compared to the FL approach. 

 

Figure 10. Comparison of the accuracies of traditional approach and FL approach 

10. Conclusion 

This study presented FedNet, a practical and scalable federated learning platform designed to address the operational 

challenges of decentralized model training. By integrating secure com- munication protocols, real-time client-server 

synchronization through HTTP and Socket.IO, and dynamic model distribution using cloud services, FedNet successfully 

bridges the gap between theoretical FL frameworks and deployable, privacy-preserving AI systems. 

 

The implementation confirms that encrypted model distribution, localized training, and secure aggregation can be executed 

reliably in non-IID data scenarios. Through the incorporation of multiple aggregation strategies and real-time performance 

tracking, the platform ensures both adaptability and transparency during the training process. Experimental results on the 

MNIST dataset demonstrated consistent improvements in model accuracy and fairness across clients, affirming the 

system’s effectiveness in distributed environments. 

 

FedNet not only reinforces the privacy guarantees of federated learning but also introduces a flexible, modular architecture 

suited for diverse applications. Future enhancements will focus on expanding aggregation algorithms, improving resource 

optimization on client devices, and extending support for larger, more complex datasets. With its emphasis on security, scalability, 

and user-centric design, FedNet contributes a practical step forward in making federated learning more accessible and applicable 

to real-world machine learning challenges. 
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