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Abstract— Fetal distress is a medical term used to describe 

a situation where the health and well-being of a fetus are 

compromised during pregnancy or childbirth. Several possible 
causes of fetal distress include lack of oxygen, infections, fetal 
anomalies, and placental problems. Some of the signs and 

symptoms of fetal distress include Abnormal heart rate 
patterns: The fetal heart rate may be faster or slower than 
usual, or there may be irregular patterns in the heart rate. 

Decreased fetal movement: The fetus may be less active than 
usual, indicating a potential problem. Meconium-stained 
amniotic fluid: Meconium is a dark green substance that can 

be present in the amniotic fluid if the fetus is experiencing 
distress. Abnormal levels of amniotic fluid: Too little or too 

much amniotic fluid can be a sign of fetal distress. If fetal 
distress is suspected, prompt medical intervention is necessary 
to prevent serious complications, including brain damage or 

stillbirth. Depending on the cause of fetal distress, treatment 
may involve increasing the oxygen supply to the fetus, 
performing an emergency delivery, or administering 

medications to the mother. Cardiotocography monitors two 
vital parameters, i.e. Fetal heart rate (FHR) and uterine 

contractions (UC). These time series data can be used to detect 
fetal distress. 

 

Keywords—Fetal Heart Rate, Uterine Contractions, Fetal 
Distress, Oxygen Supply. 

 

 

I. INTRODUCTION 

The world's future relies on children, which is why it's 

crucial to ensure they are born without any complications or 

disabilities. Unfortunately, there are many new born infants 

who suffer from complex disorders like brain injury, 

cerebral palsy or even stillbirth caused by fetal distress, 

which occurs during delivery due to insufficient oxygen 

supply and other vital factors inside the mother's womb. To 

address this, medical professionals use cardiotocography, a 

widely used and effective method that analyses the fetal 

heart rate and the mother's uterine contractions. By 

analysing various fetal distress conditions and their 

possibilities, this method plays a significant role in 

identifying potential risks. Nowadays, though there are 

widespread uses of CTG, it suffers from inter-and intra- 

observer variation which results in false positives. 

II. LITERATURE REVIEW 

 

 

Sl. No. Paper Title Method Limitations 

1 Fetal Distress 
Classification 
using 
Cardiotocography 

Random 
forests 

Less amount of 
data and high 
number of 
features have been 
used 

2 Fetal Health 
Classification from 
Cardiotocograph 
for Both Stages of 
Labor— A Soft- 
Computing- Based 
Approach 

Random 
forests 

SVM 

MLP 

Bagging 

Inconsistent 
Parameters 

3 Multimodal 
Convolutional 
Neural Networks to 
Detect Fetal 
Compromise 
During Labor and 
Delivery 

CNN Labor is divided 
into 2 stages, the 

 

2nd stage does not 
 

take 1st stage 
data into 
consideration. 

4 Cardiotocography 
Analysis Using 
Conjunction of 
Machine Learning 
Algorithms 

Decision 
Trees 

Support 
Vector 

Inconsistent 
Parameters 

  Machines 
(SVM) 

 

  Random 
Forests 

 

  Neural 
Networks 

 

  Gradient 
Boosting 
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The method would help a better interpretation of the CTG 

data and can provide more confidence in providing an 

accurate diagnosis of a case. 

 

 

 

Figure 3.i: A CTG graphical data consisting of Fetal Heart Rate Data. 

 

 
Figure 3.ii: A real time CTG graphical data consisting Uterine Contractions 

data. 

 

 
• Extracting the accurate real-time CTG graphical 

data and converting into numerical values and use 

it in models and choosing a model with most 

optimum result which can provide the most clarity 

on the cases. 

 

 

 
III. PROPOSED METHOD 

 

Despite the worldwide acceptance of CTG, the medico-legal 

issues have risen due to reasons such as improper 

interpretation of CTG and subsequent lack of timely action. 

The lack of standard guidelines for interpretation and 

recognition of the FHR signals in the grey zone is another 

reason for misinterpretation. To address these issues, in 

recent times ML-based methods have been explored to find 

better interpretation of FHR results, which yielded results 

that are comparable to the clinical interpretation. These 

systems are capable of distinguishing between normal and 

abnormal fetuses. 

The authors have decided to use an actual CTG Realtime 

data consisting of Fetal Heart Rate and Uterine contraction 

and extract minimal features from the recorded real time 

data and performing classification on several algorithms in 

the first stage of labor based on the two standard parameters 

which are: Fetal Heart Rate and Uterine Contractions and 

classify if it’s a positive case or a negative case and choose 

the best optimal method. 

• Try to solve the class imbalance and provide better 

generalization to the model. 

 

 
• Finding patterns in data to find and maximize these 

results to find the best possible diagnosis of the 

case. 

 

 
• Using the waveform database (wfdb) package to 

extract signals and convert them to numerical 

forms. 

• Building a very simple algorithm to implement the 

cardiotocography (ctg) dataset. 

 

 

 

IV. METHODOLOGY 

 

a. Data Collection: 

1. The `wfdb` module is imported, which is used for reading 
and working with PhysioNet's WFDB files. 

5 Fetal Health 
Classification 
Based on Machine 
Learning 

Gradient 
Boosting 

Cat Boost 

Lacking Feature 
Extraction 
algorithm 

  Light 
Gradient 
Boosting 
Machine 

 

  Cascade 
Forest 

 

  Classifier  

6 Decision Tree to 
Analyze the 
Cardiotocogram 
Data for Fetal 
Distress 
Determination 

Decision 
Trees 

Class Imbalance 
Problem 

7 Fetal Heart 
Baseline Extraction 
and Classification 

based on Deep 
Learning 

LTSM 
Models 

Missing an 
automating 
scoring system to 
quantify mortality 
risk of the baby 
for better 
complication 
awareness and 
small amount of 
data is used 

8 Prediction of Fetal 
Distress Using 
Linear and Non- 
linear Features of 
CTG Signals 

Feature 
Selection 
Algorithms 
with the 
involveme 
nt of 
Decision 
Trees and 
KNN 

Referring the 
costliness of using 
deep learning 
problems 
increasing the 
usage of hardware 
resources to run 
algorithms. 
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2. The `Path` module from `pathlib` is imported to handle 
file paths. 
3. The `os` module is imported to interact with the operating 
system. 
4. The `numpy` module is imported to work with arrays and 
numerical operations. 
5. The `pyplot` module from `matplotlib` is imported to 
create plots. 
6. A message is printed indicating the total number of CTG 
recordings. 
7. The `pandas` module is imported to work with data in 
tabular form. 
8. The labels are read from a CSV file using the `read_csv` 
function and stored in the `labels` variable. 
9. The `rec_id` column from the `labels` DataFrame is 
converted into a list and printed. 
10. An informational message is printed regarding the 
annotations in the annotation file. 
11. The file paths of the CTG recordings are appended to the 
`path_of_only_fnames` list. 
12. The `ctg_collection` variable is assigned the value of 
`path_of_only_fnames`. 
13. The variable `test_record` is assigned the value of the 
first record in `ctg_collection`. 
14. Information about the sample record is printed. 
15. The `rdsamp` function from `wfdb.io` is used to read the 
`test_record` and store the result in `test_record` variable. 
16. Information about the record being displayed is printed. 
17. A sample record from the CTG data is displayed. 

 

b. Data Pre-Processing: 
 

0. ctg_dataframe is a DataFrame containing the CTG 
(Cardiotocography) data for a specific patient. Let's go 
through the code step by step: 
1. `x` is assigned the value of `ctg_dataframe.iloc[0,0]`. This 
code selects the first row (`0`) and the first column (`0`) of 
the `ctg_dataframe` DataFrame, extracting a specific portion 
of the data corresponding to patient 1001. 
2. The `rename` function is called on `x` to rename the 
column labels. The code `columns={0: "FHR", 1: "UC"}` 
assigns the names "FHR" and "UC" to the first and second 
columns of `x`, respectively. This step provides meaningful 
names to the columns for better interpretation. 
3. A message is printed indicating that the following 
DataFrame representation is about Patient 1001. 
4. Finally, `x` is printed, displaying the updated DataFrame 
representation of the CTG data for Patient 1001. The 
DataFrame now has column labels "FHR" (representing 
Fetal Heart Rate) and "UC" (representing Uterine 
Contractions). 

c. Data Visualization: 

In this code snippet, the Matplotlib library is used to create 
two subplots and plot the CTG data for Patient 1001 

The first line sets the figure size to (20, 18) inches using 
the figure() function from Matplotlib. This ensures that the 
resulting plot is large and easily readable. 

The subplot() function is called with parameters (2, 1, 1). 
This creates a grid of subplots with 2 rows, 1 column, and 
selects the first subplot. 

The plot() function is used to plot the "FHR" (Fetal Heart 
Rate) column from the DataFrame x. The option "--" 
specifies that a dashed line should be used for the plot, and 
the color is set to red ("r"). 

The ylabel() function is called to set the label for the y- 
axis as "Fetal Heart Rate". 

The title() function is used to set the title of the entire plot 
as "CTG plot". 

Another figure() function is called to create a new figure 
with the same size as the previous one. 

The subplot() function is called again, this time with 
parameters (2, 1, 2). This selects the second subplot in the 
grid. 

The plot() function is used to plot the "UC" (Uterine 
Contractions) column from the DataFrame x. The ls 
parameter is set to "--", specifying a dashed line style. 

The ylabel() function sets the label for the y-axis as 
"Uterine Contraction Spikes". 

The xlabel() function sets the label for the x-axis as "Time 
Stamps". 

Finally, the show() function is called to display the plot 
with both subplots. 

 

Overall, this code generates a plot with two subplots, one 
showing the Fetal Heart Rate over time and the other 
showing the Uterine Contraction Spikes over time for 
Patient 1001. 

 

Fig IV.c.i: Plots of Fetal Heart Rate (FHR) and Uterine Contractions (UC). 

 

 

d. Statistical Analysis of Data: 
 

The code `x.describe()` calculates and displays descriptive 
statistics of the DataFrame `x`. The `describe()` function 
provides a summary of the central tendency, dispersion, and 
shape of the distribution of each column in the DataFrame. 
Let's go through the output that would typically be 
displayed: 

 

1. Count: The count represents the number of non-null 
values in each column. 
2. Mean: The mean is the average value of each column. 
3. Standard Deviation: The standard deviation measures the 
dispersion or variability around the mean. It indicates how 
much the values in each column deviate from the mean. 
4. Minimum: The minimum value in each column. 
5. 25th Percentile (First Quartile): This value represents the 
point below which 25% of the data falls. 
6. 50th Percentile (Median or Second Quartile): The median 
is the value separating the higher half from the lower half of 
the data. 

http://www.ijsrem.com/
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7. 75th Percentile (Third Quartile): This value represents the 
point below which 75% of the data falls. 
8. Maximum: The maximum value in each column. 

 

The `describe()` function provides a quick overview of the 
statistical properties of the numerical columns in the 
DataFrame `x`, such as the range, distribution, and spread of 
the data. By calling `x.describe()`, you can obtain these 
statistics for the "FHR" (Fetal Heart Rate) and 
"UC" (Uterine Contraction) columns. 

 

The provided code snippet involves the processing and 
extraction of additional information from the CTG records. 
Let's break down the code step by step: 

 

1. `lst_parameter` is a list comprehension that iterates over 
`ctg_collection`, and for each CTG record, it calls 
`wfdb.io.rdsamp(i)[1]` to extract the parameter information. 
This information is then stored in the `lst_parameter` list. 
2. `lst_parameter_dataframe` is created as a DataFrame 
using `pd.DataFrame(lst_parameter)`, where each row 
represents the parameter information for a specific CTG 
record. 
3. `ctg_dataframe["sig_len"]` is assigned the values from the 
"sig_len" column of `lst_parameter_dataframe`. This adds a 
new column named "sig_len" to `ctg_dataframe` containing 
the signal length information. 
4. `lst_parameter_dataframe["comments"][0]` retrieves the 
comments from the first CTG record in the 
`lst_parameter_dataframe`. 
5. The variable `outcomes` is initialized as an empty list. 
6. A loop iterates over the "comments" column of 
`lst_parameter_dataframe`, extracting specific elements 
from each comment and appending them as a list to the 
`outcomes` list. 
7. `outcome_post_attributes` is initialized as an empty list. 
8. Another loop iterates over `outcomes`, splitting each 
element and extracting the numerical values from the last 
part of each split, and appending them to the 
`outcome_post_attributes` list. 
9. `outcome_post_attributes` is converted into a DataFrame 
named `outcome_df`. 

 

At this point, the `outcome_df` DataFrame should contain 
the extracted numerical values from the comments of each 
CTG record, representing certain outcome attributes. 

 

 
Fig.IV.d.i: Statistical Analysis for the Patient ‘1001’. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
 

Fig IV.d.ii. Outcome Attributes for different patients. 

 

e. Combining of Dataframes: 
 

The DataFrame `final_extracted_data` is created by 
concatenating three DataFrames: `ctg_copy1`, 
`outcome_df`, and `label_df`. Let's break down the code: 

 

1. `final_extracted_data` is assigned the result of 
concatenating the three DataFrames using the `concat()` 
function. The DataFrames are concatenated along the 
columns (axis=1) by specifying `axis=1` as the parameter. 
2. The `rename()` function is called on 
`final_extracted_data` to rename the columns. The code 
`columns={0: 'PH', 1: 'BDecf', 2: 'pCO2', 3: 'BE', 4: 
'Apgar1', 5: 'Apgar5', 6: 'rec_id', 7: 'eval_step4'}` assigns the 
specified column names to the respective columns in 
`final_extracted_data`. 
3. The `inplace=True` parameter is used to modify 
`final_extracted_data` in place, updating the column names. 
`final_extracted_data` should contain the concatenated data 
from `ctg_copy1`, `outcome_df`, and `label_df`, with the 
columns renamed as specified. 
In the provided code snippet, several lists (`mean_FHR1`, 
`mean_UC1`, `mean_FHR2`, `mean_UC2`, `mean_FHR3`, 
`mean_UC3`, `mean_FHR4`, `mean_UC4`) are initialized. 
These lists will be populated with mean values calculated 
from the "Patient Attributes" column of the 
`final_extracted_data` DataFrame. Let's break down the 
code: 
1. The `for` loop iterates over the elements of the "Patient 
Attributes" column in `final_extracted_data`. 
2. For each iteration, the element `i` is split into four equal- 
sized parts using `np.array_split(i, 4)`. This splits the 
element `i` into four subarrays. 
3. For each subarray, the `np.mean()` function is used to 
calculate the mean along the first axis (`axis=0`). This 
results in the mean values for the "FHR" (Fetal Heart Rate) 
and "UC" (Uterine Contraction) in each subarray. 
4. The mean values for each subarray are appended to the 
respective lists (`mean_FHR1`, `mean_UC1`, 
`mean_FHR2`, `mean_UC2`, `mean_FHR3`, `mean_UC3`, 
`mean_FHR4`, `mean_UC4`). 

http://www.ijsrem.com/
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After executing this code, the lists `mean_FHR1`, 
`mean_UC1`, `mean_FHR2`, `mean_UC2`, `mean_FHR3`, 
`mean_UC3`, `mean_FHR4`, `mean_UC4` should contain 
the mean values of the "FHR" and "UC" for each quarter of 
the "Patient Attributes" column in `final_extracted_data`. 
These lists are calculated separately for each quarter of the 
column. 
a DataFrame named `stage_data` is created using the lists 
`mean_FHR1`, `mean_UC1`, `mean_FHR2`, `mean_UC2`, 
`mean_FHR3`, `mean_UC3`, `mean_FHR4`, and 
`mean_UC4`. The `rename()` function is then called to 
rename the columns of `stage_data`. Let's break down the 
code: 

 

1. The `pd.DataFrame()` function is used to create a 
DataFrame named `stage_data`. The data for the DataFrame 
is provided as a list containing the lists `mean_FHR1`, 
`mean_UC1`, `mean_FHR2`, `mean_UC2`, `mean_FHR3`, 
`mean_UC3`, `mean_FHR4`, and `mean_UC4`. The 
`transpose()` function is called to transpose the DataFrame 
so that the lists become columns. 
2. The `rename()` function is called on `stage_data` to 
rename the columns. The `columns_stage` variable (not 
provided in the code snippet) should contain a dictionary 
mapping the current column names to the desired new 
column names. The code `columns_stage` is replaced with 
the actual dictionary you have in your code. 
3. The `inplace=True` parameter is used to modify 
`stage_data` in place, updating the column names. 

 

After executing this code, `stage_data` should be a 
DataFrame containing the mean values of "FHR" and "UC" 
for each quarter of the "Patient Attributes" column in 
`final_extracted_data`. The columns of `stage_data` will be 
renamed according to the mappings specified in the 
`columns_stage` dictionary. 
and `stage_data` is a DataFrame containing the mean values 
of "FHR" and "UC" for different stages. 

 
 

 

Fig.IV.e.i: Mean Data has been divided to 4 stages. 
 

f. Construction of Co-relation Matrix: 
 

A correlation matrix is calculated for the DataFrame 
`model_df`. Let's break down the code: 

 

1. The `corr()` function is called on `model_df` to calculate 
the correlation between columns. The `corr()` function 
computes the pairwise correlation of columns using the 
default method, which is Pearson correlation by default. 
2. The resulting correlation matrix is assigned to the variable 
`df_corr`. 

After executing this code, `df_corr` should be a DataFrame 
representing the correlation matrix of `model_df`. Each 
value in the matrix represents the correlation between two 
columns in `model_df`, ranging from -1 to 1. A value close 
to 1 indicates a strong positive correlation, a value close to 
-1 indicates a strong negative correlation, and a value close 
to 0 indicates no or weak correlation. 
You can further analyze the correlation matrix to gain 
insights into the relationships between variables in 
`model_df`. 

 

g. Model Building using KNN: 
 

The `StandardScaler` class from the `sklearn.preprocessing` 
module is imported. Additionally, the `train_test_split` 
function from the `sklearn.model_selection` module is 
imported. The code then performs feature scaling and 
prepares the input features (`X`) and target variable (`y`) for 
a machine learning model. Let's break down the code: 

 

1. The `StandardScaler` class is imported from 

`sklearn.preprocessing`. This class is used for feature 
scaling, which transforms the data to have zero mean and 
unit variance. 
2. The `train_test_split` function is imported from 
`sklearn.model_selection`. This function is commonly used 
to split the dataset into training and testing subsets. 
3. The `scaling` object is created as an instance of the 
`StandardScaler` class. 
4. The `fit_transform()` method of the `scaling` object is 
called on a subset of `model_df`. The `iloc[:,0:8]` indexing 
selects the first 8 columns of `model_df` as the input 
features. The data in these columns is then transformed 
using the `StandardScaler`, and the result is assigned to the 
variable `X`. 
5. The `y` variable is assigned the values from the 
"eval_step4" column of `model_df`. This column represents 
the target variable. 

 

After executing this code, the input features `X` will contain 
the scaled values of the selected columns from `model_df`, 
and the target variable `y` will contain the values from the 
"eval_step4" column. 
You can use `X` and `y` to train and evaluate in KNN. 

 

Fig.IV.e.ii: Co-relation matrix of the stage data. 

 

h. Training and Testing the Model: 
 

The dataset is split into training and testing subsets using the 
`train_test_split` function from `sklearn.model_selection`. 
The K-nearest neighbors (KNN) classification model is then 
trained using the training data, and its accuracy is evaluated 
on the testing data. Additionally, cross-validation is 
performed using the `cross_val_score` function to assess the 
model's performance. Let's break down the code: 

http://www.ijsrem.com/
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1. The `train_test_split` function is used to split the data into 
training and testing subsets. The input features `X` and 
target variable `y` are passed as parameters, along with the 
`test_size` parameter set to 0.20, indicating that 20% of the 
data should be used for testing. The `random_state` 
parameter is set to 42 to ensure reproducibility. 
2. The resulting training and testing subsets are assigned to 
`X_train`, `X_test`, `y_train`, and `y_test`, respectively. 
3. The `neighbors` module from `sklearn` is imported to use 
the K-nearest neighbors classification algorithm. 
4. An instance of the `KNeighborsClassifier` class is created 
with `n_neighbors=4`, indicating that the model will 
consider the labels of the four nearest neighbors when 
making predictions. 
5. The `fit()` method is called on the `beta_model` object, 
using `X_train` as the input features and `y_train` as the 
target variable, to train the KNN model. 
6. The `score()` method is called on the `beta_model` object, 
using `X_test` and `y_test`, to evaluate the accuracy of the 
trained model on the testing data. The result is assigned to 
`beta_scores`. 
7. The accuracy of the beta model is printed, displaying the 
value of `beta_scores` as a percentage. 
8. The `cross_val_score()` function is used to perform cross- 
validation. The KNN model with `n_neighbors=4` is passed 
as the estimator, along with the training data (`X_train` and 
`y_train`), `cv=10` indicating 10-fold cross-validation, and 
`scoring='accuracy'` specifying that accuracy should be used 
as the evaluation metric. 
9. The resulting cross-validation scores are assigned to 
`scores`. 

 

After executing this code, you should have the following 
results: 
- The accuracy of the beta model on the testing data is 
printed as a percentage. 
- The `scores` variable will contain an array of accuracy 
scores obtained from the cross-validation. 
These results provide an assessment of the model's 
performance on both the testing data and through cross- 
validation. 
The cross-validation scores obtained from the 

`cross_val_score` function are printed along with the mean 
validation score. Let's break down the code: 
1. The code initiates a loop that iterates over the range of the 
length of the `scores` array. 
2. Within each iteration, the current validation score is 
printed using the `print()` function. The format specifier `{}` 
is used to indicate the placeholder for the validation index 
and score values. 
3. The validation index is incremented by 1 in the output 
using `i+1`. 
4. The mean validation score is calculated using the 
`np.mean()` function, passing `scores` as the input array. 
5. The mean validation score is printed using the `print()` 
function, along with an appropriate message. 

 

After executing this code, you should see the following 
output: 
- The individual validation scores for each fold of the cross- 
validation are printed. 
- The mean validation score is printed. 

i. Demonstration of the Model: 

Finally the trained K-nearest neighbors (KNN) classification 
model `beta_model` is used to make predictions on a new 
input `x_input`. Based on the predicted value, different 
messages are printed to describe the condition of the fetus. 
Let's break down the code: 

 

1. The `predict()` method is called on the `beta_model` 
object, passing `x_input.reshape(1,8)` as the input. The 
`reshape(1,8)` is used to reshape the `x_input` array into a 
2D array with a single sample and 8 features. 
2. The predicted value is extracted from the resulting array 
using `[0]` indexing and assigned to the variable `value`. 
3. Conditional statements (`if` statements) are used to check 
the value of `value` and print corresponding messages based 
on the condition. 

- If `value` is equal to 1, it means the fetus is predicted to 
be suffering from no fetal distress, and the corresponding 
message is printed. 

- If `value` is equal to 2, it means the fetus is predicted to 
be suffering from mild fetal distress, and the corresponding 
message is printed. 

- If `value` is equal to 3, it means the fetus is predicted to 
be suffering from severe fetal distress and further 
investigation is needed. Two messages are printed in this 
case: 

- f value is equal to -1, it indicates that the record in 
uninterpretable" 

 

After executing this code, based on the predicted value from 
the KNN model, the appropriate message will be printed to 
describe the condition of the fetus. 

 

 
EXPERIMENTAL DETAILS 

 

Languages used are Python: 

• Python Libraries for data- pre-processing, machine learning 

algorithm, visualization and statistical analysis. 

• Python IDE used is Google Colab mainly for cloud and 

hardware resources. 

• Realtime Stage-1 Labor CTG Data. 

 

 
OUTCOMES 

 

• To make a good, generalized model, so there's an 

optimal bias-variance trade-off and solve the class- 

imbalance problem. 

• Feed new real time data and simultaneously use feature 

extraction algorithms to make the process automated data. 

• Providing doctor, a summary of medical analysis which 

are automated by the algorithm. 

http://www.ijsrem.com/
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• Simpler data extraction has been achieved using the wfdb 

package rather than building a complicated data extraction 

tool. 

 

 
RESULTS 

 
 

The accuracy of the beta model is : 89.54954954954954%, 
The following cross validation scores are: 
Validation 1 is 0.80555556% 
Validation 2 is 0.86363636% 
Validation 3 is 0.81818182% 
Validation 4 is 0.90909091% 
Validation 5 is 0.7272727299999999% 
Validation 6 is 0.88636364% 
Validation 7 is 0.75% 
Validation 8 is 0.81818182% 
Validation 9 is 0.84090909% 
Validation 10 is 0.79545455% 
As we converted our signals into 4 sub stages in Stage-1 
and Stage-2,. For our paper we are focusing on Stage-1 data 
to predict the probability of Fetal Distress before going to 
Stage 2 

 
CONCLUSION 

 

As we have less data, 552 records. In the future, we hope 
this work could be extended and the model be run on high 
volume of data. To avoid overfitting and get good 
generalization throughout the data. 
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