
 International Journal of Scientific Research in Engineering and Management (IJSREM)

 Volume: 07 Issue: 05 | May - 2023 SJIF 2023: 8.176 ISSN: 2582-3930

© 2023, IJSREM | www.ijsrem.com DOI: 10.55041/IJSREM22045 | Page 1

Fetal Distress based on Cardiotocography Data

Imaad Inayath

Student of Information Science
Engineering

Presidency University Bengaluru
Bengaluru, India

201910100844@presidencyuniversity.i
n

Emani Hemanth Reddy
Student of Information Science

Engineering
Presidency University Bengaluru

Bengaluru, India
201910101248@presidencyuniversity.i

n

Aryan Shiv R

Student of Information Science
Engineering

Presidency University Bengaluru
Bengaluru, India

201910100446@presidencyuniversity.i
n

Ajay Reddy N

Student of Information Science
Engineering

Presidency University Bengaluru
Bengaluru, India

201910100664@presidencyuniversity.i
n

Abhishek Kumar Shandilya
Student of Information Science

Engineering
Presidency University Bengaluru

Bengaluru, India
201910100546@presidencyuniversity.i

n

Dr. Sulaiman Syed Mohamed

Faculty of Information Science

Engineering

Presidency University Bengaluru

Bengaluru, India

sulaiman.syedmohamed@presidencyun

iversity.in

Abstract— Fetal distress is a medical term used to describe

a situation where the health and well-being of a fetus are

compromised during pregnancy or childbirth. Several possible
causes of fetal distress include lack of oxygen, infections, fetal
anomalies, and placental problems. Some of the signs and

symptoms of fetal distress include Abnormal heart rate
patterns: The fetal heart rate may be faster or slower than
usual, or there may be irregular patterns in the heart rate.

Decreased fetal movement: The fetus may be less active than
usual, indicating a potential problem. Meconium-stained
amniotic fluid: Meconium is a dark green substance that can

be present in the amniotic fluid if the fetus is experiencing
distress. Abnormal levels of amniotic fluid: Too little or too

much amniotic fluid can be a sign of fetal distress. If fetal
distress is suspected, prompt medical intervention is necessary
to prevent serious complications, including brain damage or

stillbirth. Depending on the cause of fetal distress, treatment
may involve increasing the oxygen supply to the fetus,
performing an emergency delivery, or administering

medications to the mother. Cardiotocography monitors two
vital parameters, i.e. Fetal heart rate (FHR) and uterine

contractions (UC). These time series data can be used to detect
fetal distress.

Keywords—Fetal Heart Rate, Uterine Contractions, Fetal
Distress, Oxygen Supply.

I. INTRODUCTION

The world's future relies on children, which is why it's

crucial to ensure they are born without any complications or

disabilities. Unfortunately, there are many new born infants

who suffer from complex disorders like brain injury,

cerebral palsy or even stillbirth caused by fetal distress,

which occurs during delivery due to insufficient oxygen

supply and other vital factors inside the mother's womb. To

address this, medical professionals use cardiotocography, a

widely used and effective method that analyses the fetal

heart rate and the mother's uterine contractions. By

analysing various fetal distress conditions and their

possibilities, this method plays a significant role in

identifying potential risks. Nowadays, though there are

widespread uses of CTG, it suffers from inter-and intra-

observer variation which results in false positives.

II. LITERATURE REVIEW

Sl. No. Paper Title Method Limitations

1 Fetal Distress
Classification
using
Cardiotocography

Random
forests

Less amount of
data and high
number of
features have been
used

2 Fetal Health
Classification from
Cardiotocograph
for Both Stages of
Labor— A Soft-
Computing- Based
Approach

Random
forests

SVM

MLP

Bagging

Inconsistent
Parameters

3 Multimodal
Convolutional
Neural Networks to
Detect Fetal
Compromise
During Labor and
Delivery

CNN Labor is divided
into 2 stages, the

2nd stage does not

take 1st stage
data into
consideration.

4 Cardiotocography
Analysis Using
Conjunction of
Machine Learning
Algorithms

Decision
Trees

Support
Vector

Inconsistent
Parameters

 Machines
(SVM)

 Random
Forests

 Neural
Networks

 Gradient
Boosting

http://www.ijsrem.com/
mailto:201910100844@presidencyuniversity.i
mailto:201910101248@presidencyuniversity.i
mailto:201910100446@presidencyuniversity.i
mailto:201910100664@presidencyuniversity.i
mailto:201910100546@presidencyuniversity.i

 International Journal of Scientific Research in Engineering and Management (IJSREM)

 Volume: 07 Issue: 05 | May - 2023 SJIF 2023: 8.176 ISSN: 2582-3930

© 2023, IJSREM | www.ijsrem.com DOI: 10.55041/IJSREM22045 | Page 2

The method would help a better interpretation of the CTG

data and can provide more confidence in providing an

accurate diagnosis of a case.

Figure 3.i: A CTG graphical data consisting of Fetal Heart Rate Data.

Figure 3.ii: A real time CTG graphical data consisting Uterine Contractions

data.

• Extracting the accurate real-time CTG graphical

data and converting into numerical values and use

it in models and choosing a model with most

optimum result which can provide the most clarity

on the cases.

III. PROPOSED METHOD

Despite the worldwide acceptance of CTG, the medico-legal

issues have risen due to reasons such as improper

interpretation of CTG and subsequent lack of timely action.

The lack of standard guidelines for interpretation and

recognition of the FHR signals in the grey zone is another

reason for misinterpretation. To address these issues, in

recent times ML-based methods have been explored to find

better interpretation of FHR results, which yielded results

that are comparable to the clinical interpretation. These

systems are capable of distinguishing between normal and

abnormal fetuses.

The authors have decided to use an actual CTG Realtime

data consisting of Fetal Heart Rate and Uterine contraction

and extract minimal features from the recorded real time

data and performing classification on several algorithms in

the first stage of labor based on the two standard parameters

which are: Fetal Heart Rate and Uterine Contractions and

classify if it’s a positive case or a negative case and choose

the best optimal method.

• Try to solve the class imbalance and provide better

generalization to the model.

• Finding patterns in data to find and maximize these

results to find the best possible diagnosis of the

case.

• Using the waveform database (wfdb) package to

extract signals and convert them to numerical

forms.

• Building a very simple algorithm to implement the

cardiotocography (ctg) dataset.

IV. METHODOLOGY

a. Data Collection:

1. The `wfdb` module is imported, which is used for reading
and working with PhysioNet's WFDB files.

5 Fetal Health
Classification
Based on Machine
Learning

Gradient
Boosting

Cat Boost

Lacking Feature
Extraction
algorithm

 Light
Gradient
Boosting
Machine

 Cascade
Forest

 Classifier

6 Decision Tree to
Analyze the
Cardiotocogram
Data for Fetal
Distress
Determination

Decision
Trees

Class Imbalance
Problem

7 Fetal Heart
Baseline Extraction
and Classification

based on Deep
Learning

LTSM
Models

Missing an
automating
scoring system to
quantify mortality
risk of the baby
for better
complication
awareness and
small amount of
data is used

8 Prediction of Fetal
Distress Using
Linear and Non-
linear Features of
CTG Signals

Feature
Selection
Algorithms
with the
involveme
nt of
Decision
Trees and
KNN

Referring the
costliness of using
deep learning
problems
increasing the
usage of hardware
resources to run
algorithms.

http://www.ijsrem.com/

 International Journal of Scientific Research in Engineering and Management (IJSREM)

 Volume: 07 Issue: 05 | May - 2023 SJIF 2023: 8.176 ISSN: 2582-3930

© 2023, IJSREM | www.ijsrem.com DOI: 10.55041/IJSREM22045 | Page 3

2. The `Path` module from `pathlib` is imported to handle
file paths.
3. The `os` module is imported to interact with the operating
system.
4. The `numpy` module is imported to work with arrays and
numerical operations.
5. The `pyplot` module from `matplotlib` is imported to
create plots.
6. A message is printed indicating the total number of CTG
recordings.
7. The `pandas` module is imported to work with data in
tabular form.
8. The labels are read from a CSV file using the `read_csv`
function and stored in the `labels` variable.
9. The `rec_id` column from the `labels` DataFrame is
converted into a list and printed.
10. An informational message is printed regarding the
annotations in the annotation file.
11. The file paths of the CTG recordings are appended to the
`path_of_only_fnames` list.
12. The `ctg_collection` variable is assigned the value of
`path_of_only_fnames`.
13. The variable `test_record` is assigned the value of the
first record in `ctg_collection`.
14. Information about the sample record is printed.
15. The `rdsamp` function from `wfdb.io` is used to read the
`test_record` and store the result in `test_record` variable.
16. Information about the record being displayed is printed.
17. A sample record from the CTG data is displayed.

b. Data Pre-Processing:

0. ctg_dataframe is a DataFrame containing the CTG
(Cardiotocography) data for a specific patient. Let's go
through the code step by step:
1. `x` is assigned the value of `ctg_dataframe.iloc[0,0]`. This
code selects the first row (`0`) and the first column (`0`) of
the `ctg_dataframe` DataFrame, extracting a specific portion
of the data corresponding to patient 1001.
2. The `rename` function is called on `x` to rename the
column labels. The code `columns={0: "FHR", 1: "UC"}`
assigns the names "FHR" and "UC" to the first and second
columns of `x`, respectively. This step provides meaningful
names to the columns for better interpretation.
3. A message is printed indicating that the following
DataFrame representation is about Patient 1001.
4. Finally, `x` is printed, displaying the updated DataFrame
representation of the CTG data for Patient 1001. The
DataFrame now has column labels "FHR" (representing
Fetal Heart Rate) and "UC" (representing Uterine
Contractions).

c. Data Visualization:

In this code snippet, the Matplotlib library is used to create
two subplots and plot the CTG data for Patient 1001

The first line sets the figure size to (20, 18) inches using
the figure() function from Matplotlib. This ensures that the
resulting plot is large and easily readable.

The subplot() function is called with parameters (2, 1, 1).
This creates a grid of subplots with 2 rows, 1 column, and
selects the first subplot.

The plot() function is used to plot the "FHR" (Fetal Heart
Rate) column from the DataFrame x. The option "--"
specifies that a dashed line should be used for the plot, and
the color is set to red ("r").

The ylabel() function is called to set the label for the y-
axis as "Fetal Heart Rate".

The title() function is used to set the title of the entire plot
as "CTG plot".

Another figure() function is called to create a new figure
with the same size as the previous one.

The subplot() function is called again, this time with
parameters (2, 1, 2). This selects the second subplot in the
grid.

The plot() function is used to plot the "UC" (Uterine
Contractions) column from the DataFrame x. The ls
parameter is set to "--", specifying a dashed line style.

The ylabel() function sets the label for the y-axis as
"Uterine Contraction Spikes".

The xlabel() function sets the label for the x-axis as "Time
Stamps".

Finally, the show() function is called to display the plot
with both subplots.

Overall, this code generates a plot with two subplots, one
showing the Fetal Heart Rate over time and the other
showing the Uterine Contraction Spikes over time for
Patient 1001.

Fig IV.c.i: Plots of Fetal Heart Rate (FHR) and Uterine Contractions (UC).

d. Statistical Analysis of Data:

The code `x.describe()` calculates and displays descriptive
statistics of the DataFrame `x`. The `describe()` function
provides a summary of the central tendency, dispersion, and
shape of the distribution of each column in the DataFrame.
Let's go through the output that would typically be
displayed:

1. Count: The count represents the number of non-null
values in each column.
2. Mean: The mean is the average value of each column.
3. Standard Deviation: The standard deviation measures the
dispersion or variability around the mean. It indicates how
much the values in each column deviate from the mean.
4. Minimum: The minimum value in each column.
5. 25th Percentile (First Quartile): This value represents the
point below which 25% of the data falls.
6. 50th Percentile (Median or Second Quartile): The median
is the value separating the higher half from the lower half of
the data.

http://www.ijsrem.com/

 International Journal of Scientific Research in Engineering and Management (IJSREM)

 Volume: 07 Issue: 05 | May - 2023 SJIF 2023: 8.176 ISSN: 2582-3930

© 2023, IJSREM | www.ijsrem.com DOI: 10.55041/IJSREM22045 | Page 4

7. 75th Percentile (Third Quartile): This value represents the
point below which 75% of the data falls.
8. Maximum: The maximum value in each column.

The `describe()` function provides a quick overview of the
statistical properties of the numerical columns in the
DataFrame `x`, such as the range, distribution, and spread of
the data. By calling `x.describe()`, you can obtain these
statistics for the "FHR" (Fetal Heart Rate) and
"UC" (Uterine Contraction) columns.

The provided code snippet involves the processing and
extraction of additional information from the CTG records.
Let's break down the code step by step:

1. `lst_parameter` is a list comprehension that iterates over
`ctg_collection`, and for each CTG record, it calls
`wfdb.io.rdsamp(i)[1]` to extract the parameter information.
This information is then stored in the `lst_parameter` list.
2. `lst_parameter_dataframe` is created as a DataFrame
using `pd.DataFrame(lst_parameter)`, where each row
represents the parameter information for a specific CTG
record.
3. `ctg_dataframe["sig_len"]` is assigned the values from the
"sig_len" column of `lst_parameter_dataframe`. This adds a
new column named "sig_len" to `ctg_dataframe` containing
the signal length information.
4. `lst_parameter_dataframe["comments"][0]` retrieves the
comments from the first CTG record in the
`lst_parameter_dataframe`.
5. The variable `outcomes` is initialized as an empty list.
6. A loop iterates over the "comments" column of
`lst_parameter_dataframe`, extracting specific elements
from each comment and appending them as a list to the
`outcomes` list.
7. `outcome_post_attributes` is initialized as an empty list.
8. Another loop iterates over `outcomes`, splitting each
element and extracting the numerical values from the last
part of each split, and appending them to the
`outcome_post_attributes` list.
9. `outcome_post_attributes` is converted into a DataFrame
named `outcome_df`.

At this point, the `outcome_df` DataFrame should contain
the extracted numerical values from the comments of each
CTG record, representing certain outcome attributes.

Fig.IV.d.i: Statistical Analysis for the Patient ‘1001’.

Fig IV.d.ii. Outcome Attributes for different patients.

e. Combining of Dataframes:

The DataFrame `final_extracted_data` is created by
concatenating three DataFrames: `ctg_copy1`,
`outcome_df`, and `label_df`. Let's break down the code:

1. `final_extracted_data` is assigned the result of
concatenating the three DataFrames using the `concat()`
function. The DataFrames are concatenated along the
columns (axis=1) by specifying `axis=1` as the parameter.
2. The `rename()` function is called on
`final_extracted_data` to rename the columns. The code
`columns={0: 'PH', 1: 'BDecf', 2: 'pCO2', 3: 'BE', 4:
'Apgar1', 5: 'Apgar5', 6: 'rec_id', 7: 'eval_step4'}` assigns the
specified column names to the respective columns in
`final_extracted_data`.
3. The `inplace=True` parameter is used to modify
`final_extracted_data` in place, updating the column names.
`final_extracted_data` should contain the concatenated data
from `ctg_copy1`, `outcome_df`, and `label_df`, with the
columns renamed as specified.
In the provided code snippet, several lists (`mean_FHR1`,
`mean_UC1`, `mean_FHR2`, `mean_UC2`, `mean_FHR3`,
`mean_UC3`, `mean_FHR4`, `mean_UC4`) are initialized.
These lists will be populated with mean values calculated
from the "Patient Attributes" column of the
`final_extracted_data` DataFrame. Let's break down the
code:
1. The `for` loop iterates over the elements of the "Patient
Attributes" column in `final_extracted_data`.
2. For each iteration, the element `i` is split into four equal-
sized parts using `np.array_split(i, 4)`. This splits the
element `i` into four subarrays.
3. For each subarray, the `np.mean()` function is used to
calculate the mean along the first axis (`axis=0`). This
results in the mean values for the "FHR" (Fetal Heart Rate)
and "UC" (Uterine Contraction) in each subarray.
4. The mean values for each subarray are appended to the
respective lists (`mean_FHR1`, `mean_UC1`,
`mean_FHR2`, `mean_UC2`, `mean_FHR3`, `mean_UC3`,
`mean_FHR4`, `mean_UC4`).

http://www.ijsrem.com/

 International Journal of Scientific Research in Engineering and Management (IJSREM)

 Volume: 07 Issue: 05 | May - 2023 SJIF 2023: 8.176 ISSN: 2582-3930

© 2023, IJSREM | www.ijsrem.com DOI: 10.55041/IJSREM22045 | Page 5

After executing this code, the lists `mean_FHR1`,
`mean_UC1`, `mean_FHR2`, `mean_UC2`, `mean_FHR3`,
`mean_UC3`, `mean_FHR4`, `mean_UC4` should contain
the mean values of the "FHR" and "UC" for each quarter of
the "Patient Attributes" column in `final_extracted_data`.
These lists are calculated separately for each quarter of the
column.
a DataFrame named `stage_data` is created using the lists
`mean_FHR1`, `mean_UC1`, `mean_FHR2`, `mean_UC2`,
`mean_FHR3`, `mean_UC3`, `mean_FHR4`, and
`mean_UC4`. The `rename()` function is then called to
rename the columns of `stage_data`. Let's break down the
code:

1. The `pd.DataFrame()` function is used to create a
DataFrame named `stage_data`. The data for the DataFrame
is provided as a list containing the lists `mean_FHR1`,
`mean_UC1`, `mean_FHR2`, `mean_UC2`, `mean_FHR3`,
`mean_UC3`, `mean_FHR4`, and `mean_UC4`. The
`transpose()` function is called to transpose the DataFrame
so that the lists become columns.
2. The `rename()` function is called on `stage_data` to
rename the columns. The `columns_stage` variable (not
provided in the code snippet) should contain a dictionary
mapping the current column names to the desired new
column names. The code `columns_stage` is replaced with
the actual dictionary you have in your code.
3. The `inplace=True` parameter is used to modify
`stage_data` in place, updating the column names.

After executing this code, `stage_data` should be a
DataFrame containing the mean values of "FHR" and "UC"
for each quarter of the "Patient Attributes" column in
`final_extracted_data`. The columns of `stage_data` will be
renamed according to the mappings specified in the
`columns_stage` dictionary.
and `stage_data` is a DataFrame containing the mean values
of "FHR" and "UC" for different stages.

Fig.IV.e.i: Mean Data has been divided to 4 stages.

f. Construction of Co-relation Matrix:

A correlation matrix is calculated for the DataFrame
`model_df`. Let's break down the code:

1. The `corr()` function is called on `model_df` to calculate
the correlation between columns. The `corr()` function
computes the pairwise correlation of columns using the
default method, which is Pearson correlation by default.
2. The resulting correlation matrix is assigned to the variable
`df_corr`.

After executing this code, `df_corr` should be a DataFrame
representing the correlation matrix of `model_df`. Each
value in the matrix represents the correlation between two
columns in `model_df`, ranging from -1 to 1. A value close
to 1 indicates a strong positive correlation, a value close to
-1 indicates a strong negative correlation, and a value close
to 0 indicates no or weak correlation.
You can further analyze the correlation matrix to gain
insights into the relationships between variables in
`model_df`.

g. Model Building using KNN:

The `StandardScaler` class from the `sklearn.preprocessing`
module is imported. Additionally, the `train_test_split`
function from the `sklearn.model_selection` module is
imported. The code then performs feature scaling and
prepares the input features (`X`) and target variable (`y`) for
a machine learning model. Let's break down the code:

1. The `StandardScaler` class is imported from

`sklearn.preprocessing`. This class is used for feature
scaling, which transforms the data to have zero mean and
unit variance.
2. The `train_test_split` function is imported from
`sklearn.model_selection`. This function is commonly used
to split the dataset into training and testing subsets.
3. The `scaling` object is created as an instance of the
`StandardScaler` class.
4. The `fit_transform()` method of the `scaling` object is
called on a subset of `model_df`. The `iloc[:,0:8]` indexing
selects the first 8 columns of `model_df` as the input
features. The data in these columns is then transformed
using the `StandardScaler`, and the result is assigned to the
variable `X`.
5. The `y` variable is assigned the values from the
"eval_step4" column of `model_df`. This column represents
the target variable.

After executing this code, the input features `X` will contain
the scaled values of the selected columns from `model_df`,
and the target variable `y` will contain the values from the
"eval_step4" column.
You can use `X` and `y` to train and evaluate in KNN.

Fig.IV.e.ii: Co-relation matrix of the stage data.

h. Training and Testing the Model:

The dataset is split into training and testing subsets using the
`train_test_split` function from `sklearn.model_selection`.
The K-nearest neighbors (KNN) classification model is then
trained using the training data, and its accuracy is evaluated
on the testing data. Additionally, cross-validation is
performed using the `cross_val_score` function to assess the
model's performance. Let's break down the code:

http://www.ijsrem.com/

 International Journal of Scientific Research in Engineering and Management (IJSREM)

 Volume: 07 Issue: 05 | May - 2023 SJIF 2023: 8.176 ISSN: 2582-3930

© 2023, IJSREM | www.ijsrem.com DOI: 10.55041/IJSREM22045 | Page 6

1. The `train_test_split` function is used to split the data into
training and testing subsets. The input features `X` and
target variable `y` are passed as parameters, along with the
`test_size` parameter set to 0.20, indicating that 20% of the
data should be used for testing. The `random_state`
parameter is set to 42 to ensure reproducibility.
2. The resulting training and testing subsets are assigned to
`X_train`, `X_test`, `y_train`, and `y_test`, respectively.
3. The `neighbors` module from `sklearn` is imported to use
the K-nearest neighbors classification algorithm.
4. An instance of the `KNeighborsClassifier` class is created
with `n_neighbors=4`, indicating that the model will
consider the labels of the four nearest neighbors when
making predictions.
5. The `fit()` method is called on the `beta_model` object,
using `X_train` as the input features and `y_train` as the
target variable, to train the KNN model.
6. The `score()` method is called on the `beta_model` object,
using `X_test` and `y_test`, to evaluate the accuracy of the
trained model on the testing data. The result is assigned to
`beta_scores`.
7. The accuracy of the beta model is printed, displaying the
value of `beta_scores` as a percentage.
8. The `cross_val_score()` function is used to perform cross-
validation. The KNN model with `n_neighbors=4` is passed
as the estimator, along with the training data (`X_train` and
`y_train`), `cv=10` indicating 10-fold cross-validation, and
`scoring='accuracy'` specifying that accuracy should be used
as the evaluation metric.
9. The resulting cross-validation scores are assigned to
`scores`.

After executing this code, you should have the following
results:
- The accuracy of the beta model on the testing data is
printed as a percentage.
- The `scores` variable will contain an array of accuracy
scores obtained from the cross-validation.
These results provide an assessment of the model's
performance on both the testing data and through cross-
validation.
The cross-validation scores obtained from the

`cross_val_score` function are printed along with the mean
validation score. Let's break down the code:
1. The code initiates a loop that iterates over the range of the
length of the `scores` array.
2. Within each iteration, the current validation score is
printed using the `print()` function. The format specifier `{}`
is used to indicate the placeholder for the validation index
and score values.
3. The validation index is incremented by 1 in the output
using `i+1`.
4. The mean validation score is calculated using the
`np.mean()` function, passing `scores` as the input array.
5. The mean validation score is printed using the `print()`
function, along with an appropriate message.

After executing this code, you should see the following
output:
- The individual validation scores for each fold of the cross-
validation are printed.
- The mean validation score is printed.

i. Demonstration of the Model:

Finally the trained K-nearest neighbors (KNN) classification
model `beta_model` is used to make predictions on a new
input `x_input`. Based on the predicted value, different
messages are printed to describe the condition of the fetus.
Let's break down the code:

1. The `predict()` method is called on the `beta_model`
object, passing `x_input.reshape(1,8)` as the input. The
`reshape(1,8)` is used to reshape the `x_input` array into a
2D array with a single sample and 8 features.
2. The predicted value is extracted from the resulting array
using `[0]` indexing and assigned to the variable `value`.
3. Conditional statements (`if` statements) are used to check
the value of `value` and print corresponding messages based
on the condition.

- If `value` is equal to 1, it means the fetus is predicted to
be suffering from no fetal distress, and the corresponding
message is printed.

- If `value` is equal to 2, it means the fetus is predicted to
be suffering from mild fetal distress, and the corresponding
message is printed.

- If `value` is equal to 3, it means the fetus is predicted to
be suffering from severe fetal distress and further
investigation is needed. Two messages are printed in this
case:

- f value is equal to -1, it indicates that the record in
uninterpretable"

After executing this code, based on the predicted value from
the KNN model, the appropriate message will be printed to
describe the condition of the fetus.

EXPERIMENTAL DETAILS

Languages used are Python:

• Python Libraries for data- pre-processing, machine learning

algorithm, visualization and statistical analysis.

• Python IDE used is Google Colab mainly for cloud and

hardware resources.

• Realtime Stage-1 Labor CTG Data.

OUTCOMES

• To make a good, generalized model, so there's an

optimal bias-variance trade-off and solve the class-

imbalance problem.

• Feed new real time data and simultaneously use feature

extraction algorithms to make the process automated data.

• Providing doctor, a summary of medical analysis which

are automated by the algorithm.

http://www.ijsrem.com/

 International Journal of Scientific Research in Engineering and Management (IJSREM)

 Volume: 07 Issue: 05 | May - 2023 SJIF 2023: 8.176 ISSN: 2582-3930

© 2023, IJSREM | www.ijsrem.com DOI: 10.55041/IJSREM22045 | Page 7

978-1-5090-4993-6/17

ACCESS.2019.2933368

10.1109/ITCA49981.2019.00053

• Simpler data extraction has been achieved using the wfdb

package rather than building a complicated data extraction

tool.

RESULTS

The accuracy of the beta model is : 89.54954954954954%,
The following cross validation scores are:
Validation 1 is 0.80555556%
Validation 2 is 0.86363636%
Validation 3 is 0.81818182%
Validation 4 is 0.90909091%
Validation 5 is 0.7272727299999999%
Validation 6 is 0.88636364%
Validation 7 is 0.75%
Validation 8 is 0.81818182%
Validation 9 is 0.84090909%
Validation 10 is 0.79545455%
As we converted our signals into 4 sub stages in Stage-1
and Stage-2,. For our paper we are focusing on Stage-1 data
to predict the probability of Fetal Distress before going to
Stage 2

CONCLUSION

As we have less data, 552 records. In the future, we hope
this work could be extended and the model be run on high
volume of data. To avoid overfitting and get good
generalization throughout the data.

ACKNOWLEDGMENT

I would like to thank Presidency University for their
timely help via discussions, presentations and
communications and especially to my Supervisor Prof. Dr.
Sulaiman Syed Mohammed for his input.

REFERENCES

1. Artificial neural networks applied to fetal monitoring in labour

6. Cardiotocographic Signal Feature Extraction Through

CEEMDAN and Time-Varying Autoregressive Spectral-Based

7. Prediction of Fetal Distress Using Linear and Non-linear

Features of CTG Signals DOI: 10.1007/978-3-030-37218-7_5

8. FETA L D I S T R E S S C L A S S I F I C A T I O N U S IN G

9. Fetal Health Classification Based on Machine Learning

10. Fetal Health Classification from Cardiotocograph for Both

Stages of Labor—A Soft-Computing-Based Approach https://

doi.org/10.3390/diagnostics13050858

11. Cardiotocography (ctg) dataset: http://people.ciirc.cvut.cz/

~spilkjir/data.html

2. Cardiotocography Analysis Using Conjunction of Machine

Learning Algorithms DOI 10. 1109/ CMVIT. 2017. 27

3. Decision Tree to Analyze the Cardiotocogram Data for Fetal

Distress Determination 978-1-5386-2182-0/17/$31.00 ©2017

IEEE

4. Multimodal Convolutional Neural Networks to Detect Fetal

Compromise During Labor and Delivery DOI:10.1109/

5. Fetal Heart Baseline Extraction and Classification based on

Deep Learning 978-1-7281-6494-6/19/$31.00 ©2019 IEEE DOI

22:85–93 DOI 10.1007/s00521-011-0743-y (2013)

978-1-6654-1540-8/21/$31.00 ©2021 IEEE

CARDIOTOCOGRAPHY www.jetir.org (ISSN-2349-5162)

DOI 10.1109/ACCESS.2019.2950798

Analysis for Fetal Welfare Assessment

http://www.ijsrem.com/
http://people.ciirc.cvut.cz/
http://www.jetir.org/

