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Abstract—Detection of financial fraud is now a cause of major 
concern in the financial and banking industry because fraud 
techniques are becoming highly sophisticated. Classical rule- based 
systems are generally ineffective in detecting complex patterns of 
fraud, which call for more complex machine learning and artificial 
intelligence processes. The following paper discusses the different 
methodologies in detecting financial fraud, ranging from supervised 
and unsupervised learning to anomaly detection and deep neural 
network models. Also, it discusses how big data analytics and real- 
time monitoring of transactions contribute to making fraud detection 
more accurate. Key issues like biased datasets, new patterns of fraud, 
and AI model interpretability are also underscored in the research. 
Using data-driven method- ologies, financial institutions can enhance 
rates of fraud detection, minimize false positives, and make financial 
transactions more secure in general. 
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I. INTRODUCTION 

Financial fraud is a potential danger in the banking, insur- 

ance, and e-commerce sectors, resulting in billions of dollars 

lost to businesses and individuals each year. Type of frauds like 

credit card fraud, identity theft, money laundering, and insider 

trading take advantage of weak points in financial systems, and 

the result is huge financial and reputational losses. With 

fraudsters evolving more complex techniques, conventional 

rule-based detection systems fail to keep up, producing high 

false positive rates and false negatives. 

To overcome these issues, contemporary financial fraud de- 

tection systems utilize sophisticated technologies like machine 

learning, artificial intelligence (AI), and big data analytics. 

These methods allow organizations to detect sophisticated 

fraud patterns, identify anomalies in real time, and enhance the 

accuracy of fraud prediction models. Through the examination 

of large amounts of transactional data, AI-based systems can 

learn to evolve with new fraud schemes and minimize the use 

of manual investigation. 

Despite all these developments, financial fraud detection is 

not without several challenges that it presently faces, such 

as data imbalances, real-time processing requirements, and 

interpretability of AI-driven models. This paper discusses 

several of the techniques applied to fraud detection, how 

effective they are, and with which challenges fraud detection is 

still grappling. By improving fraud detection processes, 

financial institutions can reduce losses, safeguard customers, 

and ensure financial system trust. 

II. REVIEW 

Substantial research exists on financial fraud detection 

owing to its significant role in preventing cyber crimes as well 

as from a business perspective. Some researchers have also 

performed literature reviews of articles that have been 

published in the 2000s and 2010s. To identify financial fraud, 

researchers mostly employ outlier detection methods (Jayaku- 

mar et.al., 2013) with highly imbalanced data sets. Various 

categories of financial frauds can also occur. Four types of 

financial fraud – financial statement fraud, transaction fraud, 

insurance fraud and credit fraud are suggested in one article 

(Jans et al., 2011). Transaction fraud in particular is the focus 

of this project as it relates to mobile payments. Numerous 

methods have been experimented with in order to identify 

financial fraud. Phua et al., (2004) applied Neural Networks, 

Na¨ıve Bayes and Decision Trees to identify automobile in- 

surance fraud. Ravisankar et al., (2011) identify fraud in 

financial statements of Chinese companies, another research 

employed SVM, Genetic Programming, Logistic Regression 

and Neural Networks. Density-based clustering (Dharwa et al., 

2011) and cost-sensitive Decision Trees (Sahin et al., 2013) 

have been applied to credit card fraud. Sorournejad et al., 

(2016) addresses both supervised and unsupervised machine 

learning-based methods encompassing ANN (Artificial Neural 

Networks), SVM, HMM (Hidden Markov Models), clustering. 

Wedge et al., (2018) discuss the issue of data imbalance 

that lead to an extremely large number of false positives, 

and certain research papers suggest methods to overcome this 

issue. But there is hardly any literature on the detection of 

fraudulent mobile payments, likely owing to comparatively 

recent developments in the technology. 
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III. METHODOLGY 

This methodology served as the deliverables of the project. 

It describes the results of each phase that was tried out and do 

a comparison between them to identify which is the optimum 

method to solve the fraud detection issue. 

IV. LITRATURE SURVEY 

Financial frauds have been researched thoroughly by aca- 

demic and industrial studies because they play a vital role in 

various critical industries. Hence, fraud detection has been a 

delicate issue over the last years in several areas by numerous 

surveys and review articles. They encompass fraud types, fraud 

areas, and fraud detection methods and approaches. Therefore, 

we examined the recent research studies and techniques to 

detect fraud in financial areas with the help of data mining 

techniques and correlate the prevailing trends There has been a 

wealth of published research literature that has investigated the 

use of anomaly detection methods in different applications, 

which has been the subject of interest for most survey and 

review articles over the past few years. Of these surveys, some 

have emphasized a wide range of applications, approaches, and 

methods that have had a remarkable influence on future 

research in many areas. Hodge and Austin wrote one of the 

earliest reviews on anomaly or outlier detection methods in 

2004, giving a detailed overview on the topic (Hodge and 

Austin, 2004). The literature offers extensive background on 

outliers or anomalies and the difficulties of detecting them and 

a detailed review of early statistical, machine learning and 

ensemble approaches used to the task. In 2009, Chandola et al. 

also surveyed the other anomaly detection methods suggested 

in literature not previously included in Hodge and Austin, 

offering greater understanding of the other real-world 

applications they are utilized in (Chandola et al., 2009). In 

2012, Zimek et al. released a survey published on unsupervised 

anomaly detection methods in particular for high-dimensional 

numerical data and explained the concepts of the ’curse of 

dimensionality’ in extensive detail (Zimek, Schubert, and 

Kriegel, 2012). The reading included comparisons between two 

groups of specialized algorithms: those that deal with the issue 

of irrelevant features or attributes and others dealing with issues 

of efficiency and effectiveness (Zimek et al., 2012). Temporal 

data also presents another problem for anomaly detection, one 

that was surveyed in great detail by Gupta et al. in 2014 

(Gupta, Gao, Aggarwal, and Han, 2014). With the evolution of 

computational powers allowing for temporal data of different 

types to become available, the authors comprehen- sively 

survey the methods that have been made possible for anomaly 

detection from time-series data (Gupta et al., 2014). The 

authors offer valuable insights into different applications of 

temporal anomaly detection and related challenges in each 

application. 

V. RECOMMENDATIONS 

By this project, we proved that it is possible to detect fraud- 

ulent transactions in financial transactions data with highly 

precise accuracy even with the high-class imbalance. We give 

the following suggestions from this exercise - Fraud detection 

in transactions data in which transaction amount and balances 

of the recipient and originator are known can be best executed 

using tree-based algorithms such as Random Forest Employing 

dispersion and scatter plots to represent the fractioning be- 

tween fraud and transactions non-fraud selection is critical for 

proper feature choice To remedy high-class imbalance which is 

a feature of most fraud detection tasks, sampling strategies such 

as oversampling, undersampling, SMOTE can be utilized. 

Although there are restraints in computing necessities with this 

type of measures, particularly dealing with large datasets. 

When measuring performance in fraud detection systems, there 

must be a high level of caution on selecting the correct measure. 

Recall parameter is a good measure because it traps whether 

an adequate number of fraudulent transactions are being 

correctly labeled or not. We shouldn’t depend on accuracy 

alone as it can be deceptive. 

VI. ANALYSIS 

We cleaned the financial transactions data and built a 

machine learning model to identify fraud. Data cleaning, 

exploratory analysis and predictive modeling were involved in 

the analysis. In data cleaning, we verified for missing values, 

changed data types and summarized variables in the data. In an 

exploratory analysis, we examined the class imbalance, and 

drilled down into each of the variables, specifically transaction 

type, transaction amount, balance and time step. We also found 

derived variables that could assist in fraud detection. We have 

also plotted some graphs to have a better visualization of 

the data and derive insights. In predictive modeling, we tried 

Logistic Regression and Random Forest algorithms. We found 

that Random Forest works best for this use case with near 

100results by undersampling, but the outcome was the same 

due to a lot of the data being excluded. We made sure that there 

is no overfitting in the models using cross-validation. We can 

say that fraud detection in financial transactions is effective in 

this labeled dataset, and the best algorithm for this is Random 

Forest. 

VII. FUTURE WORKS 

Financial fraud detection is a developing subject in which it 

is preferable to remain ahead of the offenders. Further- more, it 

is clear that there exist still areas of smart fraud detection which 

remain unexplored. In this section we outline some of the most 

important problems related to financial fraud detection and 

propose research directions. Some of the problems identified 

and challenges are as follows: • Common classification issues: 

CI and data mining-based financial fraud 

VIII. CONCLUSION 

In summary, we were able to successfully create a frame- 

work for identifying fraudulent transactions in financial data. 

This framework will aid in understanding the nuances of fraud 

detection like the generation of derived variables that can 

potentially differentiate the classes, dealing with class imbal- 

ance and selecting the appropriate machine learning We tested 

http://www.ijsrem.com/


          International Journal of Scientific Research in Engineering and Management (IJSREM) 
                                 Volume: 09 Issue: 03 | March - 2025                                 SJIF Rating: 8.586                                  ISSN: 2582-3930                                                                                                                                               

 

© 2025, IJSREM      | www.ijsrem.com                                           DOI: 10.55041/IJSREM43221                                                  |        Page 3 
 

two machine learning algorithms – Logistic Regression and 

Random Forest. The Random Forest algorithm provided much 

better results than Logistic Regression tree-based algorithms 

perform well on welldifferentiated classes of transactions data. 

This also highlights the importance of performing careful 

exploratory analysis to know the data in detail prior to building 

machine learning models. From this exploratory analysis, we 

obtained a few features that separated the classes better than the 

original data. 
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