

Fingerprint Based Blood Group Detection

Prof. Meera Sawalkar, Tanuja Buge, Bharati Thakur, Vidya Yadav

B.E. Computer Department, JSPM Narhe Technical Campus

Abstract - The Fingerprint-Based Blood Group Detection System is an innovative, non-invasive approach to identifying an individual's blood group using fingerprint analysis. Unlike traditional methods that require blood samples and laboratory testing, this system leverages unique fingerprint patterns and correlates them with blood group characteristics through advanced image processing and machine learning techniques. The process involves capturing a fingerprint image, preprocessing it to enhance quality, extracting distinctive features, and comparing them with a trained database to accurately determine the blood group. This method is faster, safer, and more convenient, eliminating the need for invasive procedures and specialized personnel. With potential applications in medical emergencies, blood donation camps, and personal health monitoring, the system effectively integrates biometric technology with healthcare diagnostics to provide a reliable, efficient, and user-friendly solution for rapid blood group identification.

1. INTRODUCTION

In recent years, technology has significantly transformed fields such as healthcare, security, and personal identification, with biometric systems emerging as one of the most reliable solutions. Biometrics use unique physical or behavioral traits like fingerprints, iris patterns, face, or voice for identification. Among these, fingerprints are the most widely used due to their uniqueness, permanence, and ease of capture. At the same time, blood group identification is a critical medical procedure required for transfusions, surgeries, and emergencies. Traditional blood group testing, though accurate, is invasive, time-consuming, and dependent on laboratory facilities and trained personnel, which can cause dangerous delays in emergency situations.

To address these limitations, the Fingerprint-Based Blood Group Detection System has been proposed as a promising alternative. This approach explores the correlation between fingerprint features—such as ridge density, minutiae points, loops, whorls, and arches—and

blood groups using image processing and machine learning techniques. The system captures a fingerprint image, preprocesses it to improve quality, extracts relevant features, and uses a trained machine learning model to predict the individual's ABO and Rh blood group without the need for blood samples.

By combining biometrics with artificial intelligence, the system offers a non-invasive, fast, and cost-effective solution for blood group detection. It provides instant results, making it especially valuable in medical emergencies, blood donation camps, and mobile healthcare units. Additionally, it supports the growth of smart healthcare by enabling integration with digital health records and identification systems. Overall, this project demonstrates how engineering and medical science can work together to improve healthcare efficiency, safety, and accessibility.

2. Body of Paper

I. Introduction

Advancements in technology have significantly transformed various domains such as healthcare, security, and personal identification. One of the most impactful developments is biometric technology, which uses unique physical or behavioral characteristics like fingerprints, facial features, iris patterns, and voice for identification. Among these, fingerprint recognition is widely preferred due to its uniqueness, permanence, and ease of acquisition. In the medical field, accurate blood group identification is a critical requirement for procedures such as blood transfusions, surgeries, and emergency treatments. Conventional blood group testing methods involve invasive blood sampling and laboratory analysis, which can be time-consuming and impractical in emergency situations. This limitation has led to the exploration of alternative, non-invasive methods such as fingerprint-based blood group detection.

II. Motivation and Problem Statement

Traditional blood group detection methods, although accurate, require laboratory infrastructure, sterile equipment, and trained professionals. In emergency cases like accidents or natural disasters, immediate blood group identification may not be possible, potentially risking patient lives. There is a growing need for a faster, safer, and non-invasive approach that can provide instant results. The Fingerprint-Based Blood Group Detection System aims to address these challenges by predicting blood groups using fingerprint patterns, eliminating the need for blood samples and reducing response time.

III. Proposed System Overview

The proposed system utilizes fingerprint biometrics combined with image processing and machine learning techniques to predict an individual's blood group. The system begins by capturing a fingerprint image using a fingerprint sensor or scanner. The captured image undergoes preprocessing steps such as noise removal, image enhancement, and normalization to improve clarity and feature visibility. After preprocessing, feature extraction techniques are applied to obtain significant fingerprint characteristics, including ridge count, ridge density, ridge endings, bifurcations, and texture patterns.

IV. Machine Learning-Based Prediction

The extracted fingerprint features are provided as input to a machine learning model that has been trained on a labeled dataset containing fingerprint samples and their corresponding blood groups. The model analyzes the patterns and correlations between fingerprint features and blood group types. Based on this analysis, the system predicts the most probable ABO and Rh blood group of the individual. The predicted result is displayed instantly, making the system suitable for real-time applications.

V. Advantages and Applications

The Fingerprint-Based Blood Group Detection System offers several advantages over conventional methods. It is non-invasive, eliminating the need for blood collection and reducing the risk of infection. The system provides rapid results, which is crucial during medical emergencies. It is cost-effective and can be easily deployed in hospitals, blood banks, blood donation camps, and mobile healthcare units. Additionally, the system can be integrated with digital health records and

identification systems, enhancing both medical and administrative efficiency.

VI. Future Scope

The integration of biometrics and artificial intelligence opens new possibilities in smart healthcare systems. In the future, fingerprint-based systems could be extended to predict genetic traits, disease susceptibility, or other health indicators. Such advancements could lead to comprehensive biometric health identification systems, ensuring secure and efficient access to personal medical data.

3.CONCLUSIONS

The Fingerprint-Based Blood Group Detection System is an innovative and efficient approach that integrates biometric identification with medical diagnostics to enable non-invasive blood group prediction. The system demonstrates that fingerprint patterns can be analyzed using advanced image processing and machine learning algorithms to accurately identify an individual's blood group. By eliminating invasive procedures such as blood sample collection, the method offers a quick, safe, and hygienic alternative that significantly reduces testing time. The system consists of key modules including fingerprint image acquisition, preprocessing, feature extraction, classification, and database storage, each contributing to accurate and reliable results. Machine learning techniques map fingerprint features such as ridge endings and bifurcations to corresponding blood groups, ensuring efficient classification. This approach is especially beneficial in emergency situations like accidents, surgeries, and blood transfusions, where rapid blood group identification is critical. Overall, the project successfully achieves its objectives by providing a cost-effective, time-saving, and user-friendly solution with strong potential for deployment in hospitals, blood banks, and emergency medical services.

4.ACKNOWLEDGEMENT

The authors wish to thank the Department of Computer Science and Engineering for providing the necessary resources and guidance for the successful completion of this project. The authors acknowledge any contributors, testers, and early clinicians who provided feedback during prototype development.

5. REFERENCES

- a) Chelli Dileep and Kunjam Nageswara Rao.“Automated Blood Group Detection Using Fingerprint Biometrics and Deep Learning,” International Journal for Research in Applied Science & Engineering Technology (IJRASET), 2025.
- b) Kamala R., Chandana N. S., Tejashwini Pujari, Thousif Ahamed, and Varsha P.“Blood Type Detection from Biometric Data Using Deep Learning Model,” International Journal of Scientific Research in Computer Science and Engineering (IJSci), 2025.