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Abstract: This study presents a numerical investigation of the viscous Burgers’ equation subjected to an 

external sinusoidal source term, utilizing an explicit finite difference method. The model incorporates 

nonlinear advection, viscous diffusion, and spatially varying forcing, representing a physically relevant 

nonlinear partial differential equation. The numerical scheme uses forward time stepping, upwind 

discretization for the convective term, and central differencing for the diffusive term. Through simulation, the 

evolution of the solution profile is visualized using 3D surface plots, space-time contours, and cross-sectional 

curves. The results demonstrate a consistent amplification near the domain center due to the source term and 

show the smoothing influence of viscosity over time. The study also addresses the scheme's stability and 

convergence under suitable discretization parameters. 
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1. Introduction: Nonlinear partial differential equations (PDEs) are fundamental in modeling various 

complex phenomena in fluid dynamics, wave propagation, traffic flow, and heat transfer. Among them, the 

Burgers’ equation serves as a simplified yet insightful model that captures essential features of convection and 

diffusion. When modified to include an external forcing term, the equation becomes a versatile tool to 

simulate scenarios where additional energy or momentum is introduced into the system. In this context, the 

viscous Burgers’ equation with a sinusoidal source provides a compelling model for analyzing how nonlinear 

effects interact with diffusion and external influences. This work focuses on solving such an equation using an 

explicit finite difference scheme, enabling visualization of the dynamic behavior of the solution and 

assessment of numerical stability. The initial and boundary conditions are chosen to reflect physically 

meaningful constraints, and the simulation results are analyzed through graphical interpretations. 

Oruç et al. (2015) proposed a hybrid numerical approach combining the Haar wavelet method with the finite 

difference method to solve the modified Burgers’ equation. Their method effectively captured the nonlinear 

dynamics and provided improved numerical accuracy. The hybridization strategy helped overcome issues of 

stability and convergence often encountered in pure finite difference schemes for nonlinear PDEs. Oruç et al. 
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(2016) extended their work by applying the Haar wavelet method to the regularized long wave equation. The 

study emphasized the efficiency of Haar wavelet-based approaches in handling dispersive wave phenomena 

and preserving key wave characteristics over long time simulations. Oruç et al. (2016) developed a Haar 

wavelet collocation method for coupled nonlinear Schrödinger–KdV equations. The research highlighted the 

strength of wavelet-based methods in handling systems of coupled nonlinear PDEs, showcasing high 

resolution in spatial localization and good computational performance. Reutskiy (2016) introduced a meshless 

radial basis function method for two-dimensional steady-state heat conduction in anisotropic and 

inhomogeneous media. This study demonstrated the flexibility of meshless techniques in modeling complex 

geometries and material distributions, thereby offering an alternative to structured grid-based approaches like 

finite differences. Mittal and Pandit (2018) presented a quasilinearized scale-3 Haar wavelet-based algorithm 

for fractional dynamical systems. By linearizing the nonlinear terms and utilizing multiscale wavelets, they 

achieved accurate approximations of fractional PDEs. The method demonstrated high accuracy and 

computational efficiency for a wide class of nonlinear systems. Mittal and Pandit (2018) also explored the 

sensitivity analysis of shock wave solutions in the Burgers’ equation using a novel scale-3 Haar wavelet-based 

algorithm. This contribution underscored the potential of wavelet methods in capturing sharp gradients and 

shock phenomena, which are typically challenging for classical numerical techniques. Mittal and Pandit 

(2019) proposed a new algorithm based on scale-3 Haar wavelets for the numerical simulation of second-order 

ordinary differential equations. Although focusing on ODEs, the foundational techniques have implications 

for PDE simulations, especially in terms of adaptive multiresolution and localized error control. Haq et al. 

(2019) addressed variable-order time fractional advection-dispersion and diffusion models in one and two 

dimensions. Their work provided robust numerical schemes for capturing anomalous diffusion behavior and 

emphasized the adaptability of fractional order methods for modeling physical processes with memory effects. 

Shukla and Kumar (2022) developed a numerical solution method for the Burgers–Huxley equation using 3-

scale Haar wavelets, along with an in-depth error analysis. The study demonstrated the accuracy and 

efficiency of Haar wavelets in resolving nonlinearities and reaction-diffusion dynamics within fractional 

frameworks. Shukla and Kumar (2022) also extended their investigation to time and space fractional PDEs, 

employing the same 3-scale Haar wavelet methodology. Their findings confirmed the capability of wavelets to 

model complex fractional dynamics with high spatial and temporal resolution. Vallejo-Sánchez and Villegas 

(2022) proposed a meshless method for solving coupled Burgers equations, utilizing radial basis functions. 

The work demonstrated the flexibility of meshless methods in solving coupled nonlinear systems, especially 

in domains where meshing is computationally expensive or geometrically complex. Kumar et al. (2023) 

developed a two-dimensional uniform and non-uniform Haar wavelet collocation method for nonlinear PDEs. 

The study emphasized how non-uniform grids could enhance solution accuracy near regions of rapid change 

and showed how Haar wavelets could be effectively adapted to complex spatial features. Ghafoor et al. 

(2024) analyzed the nonlinear Burgers’ equation incorporating a time fractional Atangana–Baleanu–Caputo 
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derivative. Their approach introduced a nonlocal and nonsingular kernel to better reflect real-world diffusion 

phenomena, improving solution accuracy and modeling capabilities for systems with memory. Khan et al. 

(2024) investigated scalar reaction-diffusion equations with cubic nonlinearity and time-dependent 

coefficients using the wavelet method of lines. The study underscored the effectiveness of combining wavelet 

transforms with time discretization in simulating strongly nonlinear and time-varying processes. Bilal et al. 

(2025) developed a comprehensive numerical scheme integrating finite difference methods with scale-3 Haar 

wavelets to solve two-dimensional diffusion and Burgers systems. Their work stands out for providing 

stability and error estimates and demonstrates how hybrid methods can yield accurate, stable solutions to 

nonlinear PDEs. The research further validates the robustness of wavelet-FDM combinations in multi-

dimensional, nonlinear simulations involving advection and diffusion. 

2. Nonlinear PDE: The Viscous Burgers’ Equation with a Source Term: 

𝜕𝑢

𝜕𝑡
+ 𝑢

𝜕𝑢

𝜕𝑥
= 𝜈

𝜕2𝑢

𝜕𝑥2 + 𝜆𝑠𝑖𝑛(𝜋𝑥)         (1) 

where: 

𝑢(𝑥, 𝑡): velocity or field variable 

𝜈 > 0: viscosity coefficient (diffusion-like term) 

𝜆: strength of the external source term 

𝑥 ∈ [0,1], t ∈ [0,0.1]  

Initial Condition: 𝑢(𝑥, 0) = 𝑠𝑖𝑛𝜋𝑥; 0 ≤ 𝑥 ≤ 1 

This gives a smooth sine wave as the initial velocity profile. 

Boundary Conditions (Dirichlet type): 𝑢(0, 𝑡) = 𝑢(𝑙, 𝑡) = 0 

These homogeneous boundary conditions represent a scenario such as a velocity that is pinned to zero at both 

ends (like fixed endpoints in a pipe or channel). 

3. Finite Difference Method for the Solution of Proposed PDE: Let’s define: 

𝑥𝑖 = 𝑖∆𝑥, Where 𝑖 = 0,1,2, … , 𝑁, ∆𝑥 =
1

𝑁
  

𝑡𝑛 = 𝑛∆𝑡 , for time steps 𝑛 = 0,1,2, … 

We denote: 𝑢𝑖
𝑛 ≈ 𝑢(𝑥𝑖 , 𝑡𝑛) 

𝜕𝑢

𝜕𝑡
≈

𝑢𝑖
𝑛+1−𝑢𝑖

𝑛

∆𝑡
            (2) 
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𝜕𝑢

𝜕𝑥
≈

𝑢𝑖
𝑛−𝑢𝑖−1

𝑛

∆𝑥
            (3) 

𝜕2𝑢

𝜕𝑥2
=

𝑢𝑖+1
𝑛 −2𝑢𝑖

𝑛+𝑢𝑖−1
𝑛

 (∆𝑥)2
           (4) 

Putting it all together, the explicit scheme becomes: 

𝑢𝑖
𝑛+1−𝑢𝑖

𝑛

∆𝑡
 + 𝑢𝑖

𝑛 [
𝑢𝑖

𝑛−𝑢𝑖−1
𝑛

∆𝑥
] = 𝜈 [

𝑢𝑖+1
𝑛 −2𝑢𝑖

𝑛+𝑢𝑖−1
𝑛

 (∆𝑥)2
] + 𝜆𝑠𝑖𝑛(𝜋𝑥)  

𝑢𝑖
𝑛+1 = 𝑢𝑖

𝑛 − ∆𝑡 𝑢𝑖
𝑛 [

𝑢𝑖
𝑛−𝑢𝑖−1

𝑛

∆𝑥
] + 𝜈 ∆𝑡 [

𝑢𝑖+1
𝑛 −2𝑢𝑖

𝑛+𝑢𝑖−1
𝑛

 (∆𝑥)2 ] + ∆𝑡𝜆𝑠𝑖𝑛(𝜋𝑥𝑖)     (5) 

Initialize: Set 𝑢𝑖
0 = 𝑠𝑖𝑛(𝜋𝑥𝑖)          (6) 

Apply boundary conditions: 

For all 𝑛, set 𝑢0
𝑛 = 0, 𝑢0

𝑁 = 0            (7) Loop over 

time: 

For 𝑛 = 0 to max time steps: 

Loop over 𝑖 = 1 to 𝑁 − 1 

Update 𝑢𝑖
𝑛+1 using the update formula 

4. Stability Condition: The scheme is explicit, so stability requires: 

∆𝑡 ≤ 𝑚𝑖𝑛 (
∆𝑥

𝑚𝑎𝑥|𝑢|
,

(∆𝑥)2

2𝜈
)          (8) 

5. Results and Discussion: Let’s choose: 𝜈 = 0.01, 𝜆 = 1, 𝐿 = 1, 𝑁 = 100, ∆𝑥 = 0.01, ∆𝑡 = 0.0001 

 

http://www.ijsrem.com/


          International Journal of Scientific Research in Engineering and Management (IJSREM) 

                         Volume: 09 Issue: 08 | Aug - 2025                                SJIF Rating: 8.586                                    ISSN: 2582-3930                                                                                                                                               

 

© 2025, IJSREM      | www.ijsrem.com                                 DOI: 10.55041/IJSREM51695                                                 |        Page 5 
 

 

The 3D surface plot shown in Graph 1 illustrates the numerical solution 𝑢(𝑥, 𝑡) of the viscous Burgers’ 

equation with a sinusoidal source term, computed over the spatial domain 𝑥 ∈ [0,1] and time interval ∈

[0,0.1] . The plot reveals how the solution evolves smoothly over time due to the combined effects of 

nonlinear advection, diffusion (viscosity), and external forcing. The initial condition 𝑢(𝑥, 0) = 𝜆𝑠𝑖𝑛𝜋𝑥 

develops into a surface where the solution increases in amplitude before reaching a nearly steady state. The 

color gradient, ranging from blue (low values) to red (high values), indicates that the central region of the 

domain maintains the highest values of 𝑢, while the boundary conditions enforce zero values at both ends 𝑥 =

0 and 𝑥 = 1 . The plot clearly demonstrates the balance between the nonlinear steepening effect (from the 

advection term) and the smoothing influence of viscosity, alongside the contribution of the sinusoidal source 

term, which sustains the solution's amplitude near the center. 
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Graph 2 shows the cross-sectional profiles of the solution 𝒖(𝒙, 𝒕) at four different time instances: 𝑡 =

0.01,0.03,0.06 and 0.10 , corresponding to the red dotted, green dashed, blue dash-dotted, and black solid 

curves respectively. The initial sine-shaped profile gradually evolves due to the interplay of nonlinear 

convection, viscosity, and the external source term. Over time, the solution becomes more pronounced and 

shifts slightly upward in the central region (𝑥 = 0.5) , reflecting the growth in amplitude contributed by the 

sinusoidal source term 𝜆𝑠𝑖𝑛𝜋𝑥. The profiles remain symmetric about the midpoint, consistent with the source 

and boundary conditions, and the peak value of 𝑢(𝑥, 𝑡) increases with time while the solution maintains 

smoothness, indicating that the diffusion term successfully prevents the formation of sharp gradients. This 

graph effectively illustrates how the solution evolves over time and converges toward a steady-state 

influenced by persistent external forcing. 

 

 

Graph 3 presents a space-time contour plot of the solution 𝒖(𝒙, 𝒕), offering a 2D visual representation of how the 

solution evolves over both spatial and temporal dimensions. The horizontal axis represents the spatial coordinate ∈ [0,1] 

, the vertical axis shows time 𝑡 ∈ [0,0.1] , and the contour colors indicate the magnitude of 𝒖(𝒙, 𝒕). Initially, the 

solution starts with a sinusoidal profile, and as time progresses, we observe a clear amplification of the central region 

(near 𝑥 = 0.5), where the solution reaches its maximum due to the persistent influence of the sinusoidal source term 

𝜆𝑠𝑖𝑛𝜋𝑥. The color bands evolve smoothly and maintain symmetry about the center, reflecting the boundary conditions 

and the source profile. The contour lines become denser near the edges and more spread near the center as time 

increases, highlighting the balance between diffusive smoothing and source-driven growth. This plot effectively 

captures the continuous evolution of the solution and provides insight into the space-time interaction of nonlinear 

effects, diffusion, and forcing. 
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6. Concluding Remarks: Nonlinear partial differential equations (PDEs) are fundamental in modeling 

various complex phenomena in fluid dynamics, wave propagation, traffic flow, and heat transfer. Among 

them, the Burgers’ equation serves as a simplified yet insightful model that captures essential features of 

convection and diffusion. When modified to include an external forcing term, the equation becomes a versatile 

tool to simulate scenarios where additional energy or momentum is introduced into the system. In this context, 

the viscous Burgers’ equation with a sinusoidal source provides a compelling model for analyzing how 

nonlinear effects interact with diffusion and external influences. This work focuses on solving such an 

equation using an explicit finite difference scheme, enabling visualization of the dynamic behavior of the 

solution and assessment of numerical stability. The initial and boundary conditions are chosen to reflect 

physically meaningful constraints, and the simulation results are analyzed through graphical interpretations. 
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