

Volume: 09 Issue: 10 | Oct - 2025 SJIF Rating: 8.586 ISSN: 2582-3930

Firefighting Training Effectiveness: Lessons from Multiple Industrial Fire Case Studies

¹Arshdeep Singh, ²Dr Deepchand Dhankher

¹Research scholar Liutbem university

²Research Mentor Luitbem university

Abstract

Industrial fire incidents continue to pose severe threats to worker safety, community well-being, and economic stability. This research investigates the effectiveness of firefighting training by analyzing multiple industrial fire case studies across India, including major accidents in Telangana, Andhra Pradesh, Uttar Pradesh, and Maharashtra. Using a case study approach, the paper evaluates how training, preparedness, and regulatory compliance influenced outcomes in these emergencies. Literature review highlights gaps in fire safety regulations, evolving training methodologies, and the growing role of technology such as virtual reality and data analytics. Findings underscore the need for comprehensive, industry-specific training that integrates regulatory compliance, hazard identification, and practical emergency response. The study concludes that modernizing training programs, aligning them with industrial risks, and embedding technology-driven methods can significantly improve preparedness and reduce casualties. Recommendations stress the importance of blended training approaches, robust enforcement of safety codes, and continuous evaluation of training effectiveness to build resilient industrial safety frameworks.

Keywords: Firefighting Training Effectiveness, Industrial Fire Safety, Case Study Analysis, Regulatory Compliance, Emergency Preparedness, Virtual Reality Training, Occupational Safety

Keywords:

Introduction

Fire safety is of paramount importance in industrial sectors due to the inherent risks associated with complex machinery, hazardous materials, and large-scale operations. Industrial fires can lead to catastrophic losses, including human casualties, extensive property damage, environmental contamination, and significant economic disruption. Effective fire safety measures are crucial for protecting lives, assets, and the broader community. The provided source, "Firefighting Training Effectiveness: Lessons from Multiple Industrial Fire Case Studies", sets the stage for investigating this critical area.

Effective firefighting training is a cornerstone of any robust industrial fire safety strategy. It equips personnel with the necessary knowledge, skills, and confidence to respond swiftly and efficiently to fire incidents, thereby minimizing their impact. Proper training can significantly reduce response times, enhance fire containment success, and ultimately lead to a reduction in casualties and material damages. The rationale for this study stems from the critical role of training in mitigating fire-related losses in industrial environments.

Despite the recognized importance of firefighting training, gaps often exist in current programs, affecting their overall effectiveness, the preparedness of personnel, and their ability to execute real-time responses efficiently. These gaps can manifest in outdated training methodologies, insufficient practical experience, or a lack of alignment with specific industrial risks. Identifying and addressing these deficiencies is central to improving industrial fire safety outcomes.

Legal and Regulatory Requirements for Safety Training

The legal framework governing fire and safety training is central to employee protection and organizational compliance. Regulations such as OSHA standards mandate that employers provide fire safety training, equipment, and evacuation protocols, thereby minimizing hazards and ensuring effective emergency response. Local fire codes complement these requirements by prescribing region-specific measures, including maintenance of firefighting equipment, periodic fire

Volume: 09 Issue: 10 | Oct - 2025 SJIF Rating: 8.586 ISSN: 2582-3930

drills, and adherence to evacuation procedures. Non-compliance can result in financial penalties, liability, or legal action. To meet these obligations, many organizations collaborate with specialized fire safety institutes offering structured programs and certifications. Such training not only ensures compliance with statutory requirements but also strengthens workplace safety culture and preparedness.

Benefits of Fire and Safety Training

Fire and safety training enhances both individual preparedness and organizational resilience. Trained employees respond more effectively to emergencies, reducing injuries and property loss while fostering a culture of safety and compliance with regulations. For organizations, such training strengthens operational protocols, lowers liability risks, and may even reduce insurance premiums. On an individual level, participants gain confidence, practical skills, and recognized certifications that extend their safety awareness beyond the workplace. Collectively, these benefits highlight the critical role of structured fire and safety training in improving emergency response and workplace safety outcomes.

The Role of Technology in Fire and Safety Training

Technology has become a transformative force in modern fire and safety training, offering more realistic, engaging, and effective learning experiences. Virtual reality (VR) simulations, for example, immerse trainees in lifelike fire scenarios without exposing them to real danger. This approach allows participants to practice evacuation, hazard identification, and decision-making under simulated high-stress conditions, thereby strengthening their readiness for actual emergencies. In addition, VR ensures consistency in training delivery and helps replicate diverse industrial and residential fire situations that may be difficult to stage in conventional drills. Beyond VR, online learning platforms have grown in popularity, particularly for fire engineering and safety courses, providing flexibility for professionals to learn at their own pace. These modules incorporate interactive quizzes, multimedia content, and role-play activities, which improve knowledge retention and broaden access to safety education.

Another significant advancement is the integration of data analytics and performance tracking in training programs. Instructors can now monitor participants' progress in real time, identify weaknesses, and customize learning pathways to suit individual needs. This personalized feedback loop not only boosts participant confidence but also improves the overall effectiveness of safety programs. Moreover, digital tools ensure better documentation of compliance and certification, which is increasingly valued in regulatory audits. For institutions, adopting these technologies demonstrates a commitment to modern standards of preparedness, while for individuals, it enhances professional credibility through certifications that reflect both practical and technological competence. As innovations continue to evolve, fire safety training is likely to become more adaptive, immersive, and data-driven, ultimately fostering safer workplaces and communities.

Objectives of the Study

This study aims to evaluate the effectiveness of firefighting training in industrial settings, identify gaps in preparedness and response, and derive lessons from past fire case studies to recommend improvements for reducing fire-related risks.

Literature Review

Govindaraj et al. (2024) provide a comprehensive overview of the evolution of Fire and Rescue Services in Tamil Nadu, linking their growth to the state's socio-economic and technological changes. From the modest Madras Fire Brigade of the 19th century to today's network of over 330 stations, the services have undergone remarkable transformation. The study emphasizes how industrialization and urbanization necessitated equipment upgrades, structural reorganization, and specialized training programs, with a descriptive methodology using government records and directories. Similarly, Rodrigues et al. (2017) examine Brazil's fire safety regulations, noting that decades of catastrophic fires led to fragmented state-level rules, creating inconsistencies and inefficiencies. Their comparative study argues for a unified national regulation to address administrative and technical disparities. In the European context, Osácar et al. (2021) analyze Spain's regulatory frameworks, identifying significant gaps between "ideal" standards and current implementation, highlighting risks from regulatory failures evident in cases like England. Complementing this, Benson et al. (2019) explore the aftermath of the Grenfell Tower fire in the UK, showing how weak central guidance and inconsistent use of fire authority expertise create postcode-level disparities in safety.

Volume: 09 Issue: 10 | Oct - 2025 SJIF Rating: 8.586 ISSN: 2582-3930

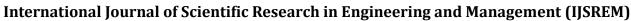
The regulatory perspective is also evident in Schellenberg et al. (2020), who discuss India's evolving but inconsistent pollution control and safety regulations, contextualizing them within global trends of urbanization and sustainability. Mamatha et al. (2023) trace the historical evolution of fire safety codes, underscoring how tragic events drive reactive reforms in building codes, yet challenges persist with high-rise and modern construction materials. Kodur et al. (2019) critically review contemporary fire protection measures, noting their inadequacy in addressing modern hazards, and propose an integrated framework emphasizing regulation, awareness, technological advancement, and training. Ghassempour et al. (2022) demonstrate the value of targeted regulation in practice, showing how reduced fire risk (RFR) cigarette policies in Australia led to measurable declines in fire incidents and severity, reinforcing the role of legislative interventions in risk mitigation. Collectively, these studies emphasize that regulations, whether in India, Europe, or Latin America, evolve through reactive cycles but require harmonized, proactive frameworks to strengthen fire safety.

Alongside regulations, training and preparedness are emphasized as crucial elements of fire safety effectiveness. Grabowski et al. (2020) highlight the role of virtual reality (VR) in recreating hazardous fire scenarios, offering safe, immersive training environments for firefighters. Schulte et al. (2018) contribute a psychometrically validated Feedback Instrument for Rescue forces Education (FIRE), designed to measure and enhance the quality of firefighter training. Horn et al. (2019) focus on physiological responses in different training fire environments, showing the need to balance realism and safety. Smith et al. (2024) underscore the direct link between effective safety training, knowledge acquisition, and proper PPE usage, affirming training as a determinant of safety behaviors. Bęś et al. (2024) expand this perspective, using SWOT and multi-criteria analyses to show that blended approaches combining active methods, gamification, simulations, and VR yield the most effective training outcomes, especially in high-risk industries like mining or construction. Finally, the work of N. et al. (2023) and Govindaraj et al. (2024) collectively highlight how firefighter training and evolving service structures in India reflect adaptive strategies to complex socio-technical challenges, placing training effectiveness at the center of resilient fire safety frameworks.

Method of Research

This research paper, employed a case study approach as its primary research methodology. This approach was specifically chosen to analyze firefighting training effectiveness through the examination of multiple industrial fire case studies.

The core of the methodology centered on the use of previous cases as the basis of investigation. It involved a detailed, retrospective analysis of historical industrial fire incidents. The purpose of this examination was to extract lessons regarding how training protocols, procedures, and practical applications influenced outcomes and responses during these real-world events. By delving into the specifics of past incidents, the research sought to highlight the strengths and limitations of existing or prior training regimes.


Through a comprehensive study of the selected industrial fire incidents, the research aimed to identify critical factors related to training effectiveness. This included assessing the degree to which firefighters had been prepared for the unique challenges presented by industrial environments, evaluating the influence of specific training modules, and identifying areas where training could have been improved. The reliance on historical data from multiple industrial fire case studies provided a robust foundation for drawing conclusions and formulating recommendations intended to enhance current and future firefighting training protocols in industrial settings

Case study analysis

This research uses a case study method to analyze significant industrial fire cases in India, such as Sigachi Industries, Escientia Pharma, Hapur, and SVS Aqua Technologies. The study is based on how firefighting training, preparedness, and regulatory compliance impacted outcomes, with an emphasis on repeated safety lapses and the weakness of generic training. By looking at these actual events across various industrial settings, the research discovers patterns of failure as well as lessons learned and on this basis recommends improvements to training procedures and safety protocols in high-risk settings.

Case 1: Sigachi Industries, Telangana

Date & Location: 30 June 2025, Pashamylaram, Sangareddy, Telangana

IJSREM | e-Journal |

Volume: 09 Issue: 10 | Oct - 2025 SJIF Rating: 8.586 ISSN: 2582-3930

Figure 1. Sigachi Plant Blast

Key Facts: On 30 June 2025, the Sigachi Industries plant in Pashamylaram, Telangana, experienced a catastrophic explosion in its spray dryer unit, resulting in the collapse of a four-story building while over 140 workers were inside. Official reports confirmed 46 deaths, 33 injuries, and 8 missing, with several victims requiring DNA testing for identification due to the severity of burns. The disaster not only caused a human tragedy but also disrupted nearly one-fourth of Sigachi's annual microcrystalline cellulose (MCC) production, forcing the company to reroute operations to its Gujarat facilities while the Telangana unit was shut down for 90 days.

From a safety and training perspective, the incident highlighted critical shortcomings in fire preparedness, evacuation drills, and in-plant firefighting infrastructure. The combination of fire and structural collapse revealed the complexity of industrial emergencies, emphasizing the necessity of training that addresses multiple hazards simultaneously. For firefighting professionals, the Sigachi case reinforces the importance of specialized industrial fire training, robust suppression systems, and proactive safety management to minimize loss of life and ensure resilience in high-risk manufacturing environments.

Why It's Useful for Studying Training Effectiveness: Shows effects of process control failures, structural safety, emergency response, detection systems (alarms, heat sensors). Good for investigating training in risk detection and preventive maintenance.

Case II:

Atchutapuram-Escientia Pharma Explosion

Date & Location: 21 August 2024, Atchutapuram, Visakhapatnam, Andhra Pradesh

Figure 2. Atchutapuram Pharmaceutical Factory Explosion

Volume: 09 Issue: 10 | Oct - 2025 SJIF Rating: 8.586 ISSN: 2582-3930

Key Facts: On August 21, 2024, a devastating explosion struck the Escientia Advanced Sciences pharmaceutical plant in Atchutapuram SEZ, Anakapalli district, Andhra Pradesh, killing at least 18 workers and injuring over 50. The blast, reportedly triggered by an electrical fire around 2:15 p.m., caused severe chemical burns and widespread destruction. With 400 employees on site across two shifts, the timing just after lunch meant fewer workers were present, likely preventing even greater casualties. Thick smoke, intense heat, and collapsed structures hampered rescue operations, as fire brigades battled the flames with multiple engines.

The victims included senior staff such as the assistant general manager, along with chemists and operators, underscoring the human cost of the tragedy. Authorities, including State Labor Minister Vasamsetty Subhash and District Collector Vijaya Krishnan, confirmed ongoing rescue and identification efforts. The incident follows a troubling pattern of industrial accidents in Andhra Pradesh: similar explosions at Vasanth Chemicals in July 2024 and Sahiti Pharma in June 2023 also claimed lives. This recurrence highlights systemic gaps in regulatory enforcement and workplace safety protocols within the pharmaceutical and chemical sectors.

Chief Minister N. Chandrababu Naidu expressed condolences and promised government support to victims' families, while emphasizing urgent improvements in safety oversight. The Escientia disaster has reignited debates on industrial accountability, emergency preparedness, and regulatory compliance. More than a single event, it reflects the pressing need for stronger fire safety measures, rigorous inspections, and comprehensive training to prevent such catastrophic accidents in high-risk industries.

Why It's Useful for Studying Training Effectiveness: Helps examine training in operations in pharmaceutical plants, handling of electrical risks, firefighting under chemical/hazardous material exposure, and rescue under smoke

Case III: Hapur Chemical Plant Explosion

Date & Location: 4 June 2022, Hapur, Uttar Pradesh

Figure 3. Hapur Chemical Plant Explosion

Key Facts: On June 4, 2022, a massive explosion ripped through an illegal industrial unit in Hapur district, Uttar Pradesh, killing at least 12 workers and leaving 21 others critically injured. The incident occurred when a fire broke out inside a factory located in the Dhaulana industrial area, where chemicals were reportedly being stored and handled unsafely. The intensity of the blast caused a section of the building to collapse, trapping several workers under debris. Rescue teams, including police and fire brigades, faced challenges in controlling the blaze and retrieving victims due to the hazardous materials present on site.

Authorities confirmed that many of the injured had sustained severe burns and were rushed to nearby hospitals for emergency treatment. Eyewitnesses described scenes of panic as flames and smoke engulfed the unit, with injured workers crying for help. Preliminary reports suggested serious lapses in safety compliance, as the factory was operating without proper clearances. Senior district officials and law enforcement agencies launched investigations into the cause of the fire and possible negligence by the factory management.

Volume: 09 Issue: 10 | Oct - 2025 SJIF Rating: 8.586 ISSN: 2582-3930

The Hapur blast underscores persistent risks in unregulated industrial operations where fire safety norms are neglected. Like other recent industrial disasters in India, it raises urgent concerns about regulatory oversight, workplace safety enforcement, and the accountability of employers. Beyond the tragic loss of life, the incident highlights the need for stricter compliance monitoring, fire safety training for workers, and stronger community-level preparedness to mitigate risks in hazardous industries.

Why It's Useful for Studying Training Effectiveness: Useful for studying training in licensing compliance, proper hazard classification, worker awareness of substances, emergency coordination, and how unauthorized operations exacerbate risks.

Case IV: Pune Chemical Plant Fire (SVS Aqua Technologies / Sanitizer Plant)

Date & Location: 7 June 2021, Pirangut, Pune, Maharashtra

Figure 4. Pune Chemical Plant Fire

Key Fact:

On November 7, 2021, a devastating fire swept through the SVS Aqua Technologies chemical plant in Mulshi taluka, Pune district, Maharashtra, killing at least 18 workers. The blaze erupted during the packaging of sanitizers and related products, which contained highly flammable chemicals, causing the flames to spread rapidly across the facility. Thick smoke and the sudden escalation of the fire trapped several workers inside, with many unable to escape. Fire brigades and rescue teams responded quickly but faced severe challenges due to the intensity of the blaze and inadequate emergency exits, which worsened the death toll. Most of the victims were daily-wage workers in the production unit, highlighting the vulnerability of frontline laborers in hazardous industries.

Authorities reported that lapses in fire safety compliance and weak enforcement of safety standards contributed significantly to the tragedy. The state government announced compensation for the victims' families and pledged strict action against those responsible. However, the incident reflects recurring patterns of safety negligence within small and medium-scale chemical factories across India. Beyond the immediate loss of life, the Mulshi disaster underscores the urgent need for stringent safety audits, stronger regulatory oversight, and comprehensive fire safety training for workers handling flammable materials. This case stands as a grim reminder of the critical importance of preparedness and compliance in preventing industrial fire disasters.

Why It's Useful for Studying Training Effectiveness

Important for training in flammable storage, regulatory compliance, emergency evacuation, hazard assessment during maintenance work, worker supervision and safety leadership.

International Journal of Scientific Research in Engineering and Management (IJSREM) Volume: 09 Issue: 10 | Oct - 2025 SJIF Rating: 8.586 ISSN: 2582-3930

Table of another Industrial Fire / Explosion Cases in India

Case	Date & Location	What Happened / Key Facts	Why It's Useful for Studying Training Effectiveness
Jaipur IOC Oil Depot Fire	29 October 2009, Sitapura Industrial Area, Jaipur, Rajasthan	Fire & explosion in large petrol storage depot. 12 dead, 300+ injured. Massive evacuation, prolonged fire.	Good for studying large scale fire training, handling of liquid hydrocarbons, vapour cloud formation, evacuation planning, interagency coordination.
2020 Ahmedabad Chemical Factory Blast (Sahil Enterprises / Pirana, Gujarat)	4 Nov 2020, Ahmedabad, Gujarat	A chemical boiler factory explosion at Sahil Enterprises in a warehouse / estate. 12 killed, 9 injured; building collapse; adjacent textile unit impacted. Rescue by many fire engines.	Useful to study response times, structural integrity, bordering industries' influence, storage safety, spillover effects, and whether training covers interlinked facilities.
Srisailam Hydroelectric Power Plant Fire	20 August 2020, Srisailam, Telangana	Fire in underground hydroelectric power plant due to suspected electrical short circuit. 9 people (including engineers) died. Rescue delayed by smokefilled spaces, difficult access.	Excellent for studying training for power plants, underground/ confined spaces, electrical safety, emergency access & rescue, smoke management, first responder coordination.
Berger Paints Factory Fire — Howrah	8 June 2022, Shalimar, Howrah, West Bengal	Fire affecting raw materials handling area and exit gate, one fatality, about 22 injured. Preliminary cause: short circuit in AC unit. Plant's fire suppression systems (water & foam) used; exit/escape routes & safety compliance in focus.	Good for analyzing how factory internal fire suppression works, readiness of exit routes, how electrical maintenance and safety inspections are done, and whether training covers worst-case fire scenarios.
Ahmedabad / Gujarat multiple chemical fire incidents 2020	Around 2020, Gujarat, especially Pirana area etc.	Multiple small / medium scale chemical, boiler, warehouse type explosion / fire incidents, often with casualties, property damage; regulatory and compliance issues cited.	Useful for comparative study: similar region but differing outcomes; can examine whether training / safety culture / inspections differ among these, and what training helps avoid incidents.
LG Polymers Gas Leak, Visakhapatnam	7 May 2020, Visakhapatnam, Andhra Pradesh.	A styrene gas leak from chemical plant storage tank caused fatalities, many injuries and large	Though more of a toxic leak than fire, relevant for training on chemical leak response, community evacuation, hazard

Volume: 09 Issue: 10 | Oct - 2025 SJIF Rating: 8.586 ISSN: 2582-3930

	interventions; affected	communication, and cross-
	surrounding communities.	agency coordination.

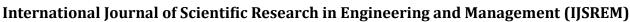
Discussion

The case studies find that repeated safety loopholes especially compliance failures, poor enforcement, and lack of preparedness continue to be the hallmark of industrial fire tragedies in India. Such events as the Escientia blast (2024) and Hapur explosion (2022) illustrate how a lack of training and poor worker knowledge intensify the magnitude of tragedy. A sharp point of observation is that training efficacy is very context-dependent: generic modules seldom equip workers to face the varied hazards of industrial settings. Tailored training for handling hazardous chemicals, working in confined spaces, and large-scale evacuation planning is required to deal with the special vulnerability of pharmaceutical, power, and petroleum industries. Additionally, advances like virtual reality simulations, web-based modules, and performance monitoring based on data bring enormous benefits by improving skill retention, situational decision-making, and adaptive learning well beyond what conventional training can achieve.

Technology alone cannot make up for fundamental structural inadequacies. The recurring repetition of disasters, especially in Andhra Pradesh, reflects systemic regulatory and organizational shortcomings, such as antiquated fire codes, inane inspections, and disjointed enforcement. This accentuates the significance of integrating training into a strong culture of safety buttressed by institutional responsibility and ongoing monitoring. Simultaneously, promoting a safety culture in organizations achieves human and monetary returns: systematic training lowers casualty risks, reduces long-term injuries, and may even reduce insurance liabilities. These results confirm that good firefighting training has to be blended with regulatory conformance, organizational dedication, and technological uptake in order to construct reliable industrial safety structures with the potential to block future catastrophes.

Conclusion

The study establishes that firefighting training is a critical determinant of safety outcomes in industrial environments but is often undermined by regulatory weaknesses, insufficient practical exposure, and lack of adaptation to specific hazards. Evidence from case studies shows that inadequate preparedness continues to result in preventable loss of life, highlighting the urgent need for modernized and comprehensive training programs. Integrating technology such as VR, simulation-based drills, and data-driven feedback can strengthen real-world applicability, while strict enforcement of fire codes and regulatory standards ensures accountability. Ultimately, the effectiveness of firefighting training depends not only on technical skills but also on fostering a culture of safety, continuous evaluation, and organizational commitment. By embedding these principles into industrial fire safety strategies, future risks can be mitigated, ensuring safer workplaces and resilient communities.


References

Rodrigues, E. E. C., Rodrigues, J. P. C., & da Silva Filho, L. C. P. (2017). Comparative study of building fire safety regulations in different Brazilian states. *Journal of Building Engineering*, *10*, 102–108. https://doi.org/10.1016/j.jobe.2017.03.001

-, R. K. (2025). Modern-Day Fire Protection Arrangements in Indian Urban Homes: The Role of Regulations. *International Journal For Multidisciplinary Research*, 7(2), 1–8. https://doi.org/10.36948/ijfmr.2025.v07i02.38593

Moreau, B., Deffayet, M., Chan, I., Lam, F., Chau, P., Bettelini, M., Ng, F., & Au, G. (2021). Fire safety issues in underground spaces: A need for regulatory evolution - French, Swiss and Hong Kong SAR, China (Hong Kong) contexts. *IOP Conference Series: Earth and Environmental Science*, 703(1). https://doi.org/10.1088/1755-1315/703/1/012044

Kodur, V., Kumar, P., & Rafi, M. M. (2020). Fire hazard in buildings: review, assessment and strategies for improving fire safety. *PSU Research Review*, 4(1), 1–23. https://doi.org/10.1108/PRR-12-2018-0033

IJSREM 3

Volume: 09 Issue: 10 | Oct - 2025 SJIF Rating: 8.586 ISSN: 2582-3930

Benson, C. M., & Elsmore, S. (2022). Reducing fire risk in buildings: the role of fire safety expertise and governance in building and planning approval. *Journal of Housing and the Built Environment*, 37(2), 927–950. https://doi.org/10.1007/s10901-021-09870-9

Safety, F. (2016). Edinburgh Research Explorer Fire safety regulation.

Govindaraj, A., & Pazhani, T. (2024). A Study on the Evolution of Fire and Rescue Services in Tamil Nadu. *Shanlax International Journal of Arts, Science and Humanities*, 11(4), 93–101. https://doi.org/10.34293/sijash.v11i4.7344

Ghassempour, N., Tannous, W. K., Agho, K. E., Avsar, G., & Harvey, L. A. (2022). The Impact of Reduced Fire Risk Cigarettes Regulation on Residential Fire Incidents, Mortality and Health Service Utilisation in New South Wales, Australia. *International Journal of Environmental Research and Public Health*, 19(19). https://doi.org/10.3390/ijerph191912481

Spinardi, G., Law, A., & Bisby, L. (2024). Vive La Résistance? Standard fire testing, regulation, and the performance of safety. *Science as Culture*, *33*(2), 121–145. https://doi.org/10.1080/09505431.2023.2227186

Osácar, A., Trueba, J. B. E., & Meacham, B. (2021). Evaluation of the legal framework for building fire safety regulations in Spain. *Buildings*, *11*(2), 1–27. https://doi.org/10.3390/buildings11020051

Schellenberg, T., Subramanian, V., Ganeshan, G., Tompkins, D., & Pradeep, R. (2020). Wastewater Discharge Standards in the Evolving Context of Urban Sustainability—The Case of India. *Frontiers in Environmental Science*, 8(April). https://doi.org/10.3389/fenvs.2020.00030

Chandran, M. N. A. (2023). Fire safety Codes-Evolution and Significance, a case of Global Perspective. 8(3), 133–143.

Holmgren, R., Haake, U., & Söderström, T. (2019). Firefighting training at a distance—a longitudinal study. *Journal of Vocational Education and Training*, 71(1), 65–86. https://doi.org/10.1080/13636820.2018.1464054

Leary, M., Thomas, J., Hayes, R., & Sherlock, L. (2020). Evaluation of an occupational exercise training program for firefighters: Mixed methods pilot study. *JMIR Formative Research*, 4(9). https://doi.org/10.2196/17835

Engelbrecht, H., Lindeman, R. W., & Hoermann, S. (2019). A SWOT Analysis of the Field of Virtual Reality for Firefighter Training. *Frontiers in Robotics and AI*, 6(October), 1–14. https://doi.org/10.3389/frobt.2019.00101

Wheeler, S. G., Engelbrecht, H., & Hoermann, S. (2021). Human Factors Research in Immersive Virtual Reality Firefighter Training: A Systematic Review. *Frontiers in Virtual Reality*, 2(October), 1–13. https://doi.org/10.3389/frvir.2021.671664


Chizewski, A., Box, A., Kesler, R. M., & Petruzzello, S. J. (2021). High intensity functional training (HIFT) improves fitness in recruit firefighters. *International Journal of Environmental Research and Public Health*, 18(24). https://doi.org/10.3390/ijerph182413400

Schulte, N., & Thielsch, M. T. (2019). Evaluation of firefighter leadership trainings. *International Journal of Emergency Services*, 8(1), 34–49. https://doi.org/10.1108/IJES-03-2018-0020

Smith, T. D., Mondal, K., Lemons, K., Mullins-Jaime, C., Dyal, M. A., & DeJoy, D. M. (2024). Relationships between effective safety training, safety knowledge and personal protective equipment related behaviors among firefighters. *Journal of Safety Research*, 90, 137–143. https://doi.org/10.1016/j.jsr.2024.06.010

Jeon, S., Paik, S., Yang, U., Shih, P. C., & Han, K. (2021). The more, the better? Improving vr firefighting training system with realistic firefighter tools as controllers. *Sensors*, 21(21), 1–17. https://doi.org/10.3390/s21217193

ППП-4-68-2023-MAKET-1.pdf. (n.d.).

Volume: 09 Issue: 10 | Oct - 2025 SJIF Rating: 8.586 ISSN: 2582-3930

Horn, G. P., Stewart, J. W., Kesler, R. M., DeBlois, J. P., Kerber, S., Fent, K. W., Scott, W. S., Fernhall, B., & Smith, D. L. (2019). Firefighter and fire instructor's physiological responses and safety in various training fire environments. Safety Science, 116(February), 287–294. https://doi.org/10.1016/j.ssci.2019.03.017

Grabowski, A., & Jach, K. (2021). The use of virtual reality in the training of professionals: with the example of firefighters. Computer Animation and Virtual Worlds, 32(2), 1-6. https://doi.org/10.1002/cav.1981

Beś, P., & Strzałkowski, P. (2024). Analysis of the Effectiveness of Safety Training Methods. Sustainability (Switzerland) , 16(7). https://doi.org/10.3390/su16072732

Ubieto-artur, P., Asión-suñer, L., & García-hernández, C. (2025). Promoting Domestic Fire-Safety: Virtual Drills as a Training Tool for Citizens.

BBC News. (2020, May 7). India gas leak at LG Polymers chemical plant in Visakhapatnam. BBC. https://www.bbc.com/news/world-asia-india-52557655

British Safety Council. (2022, June 15). A burning issue: Fire at Berger Paints factory, Howrah. British Safety Council. https://www.britsafe.in/safety-management-news/2022/a-burning-issue

India Today. (2021, June 9). Pune fire tragedy: Owner of chemical plant sent to police custody till June 13. India Today. https://www.indiatoday.in/cities/pune/story/pune-fire-tragedy-owner-chemical-plant-police-custody-june-13-1812990-2021-06-09

Outlook India. (2020, June 10). Six industrial tragedies in five years: How India fails its factory workers. Outlook. https://www.outlookindia.com/national/six-industrial-tragedies-in-five-years-how-india-fails-its-factory-workers

The Guardian. (2020, May 7). Gas leak at chemical factory in India kills at least 11 and hospitalises hundreds. The Guardian. https://www.theguardian.com/world/2020/may/07/gas-leak-at-chemical-factory-in-india-kills-hospitalises-lgpolymers

Wikipedia contributors. (2025, September 8). Telangana chemical factory explosion. Wikipedia. https://en.wikipedia.org/wiki/Telangana chemical factory explosion

Wikipedia contributors. (2024, September 9). Atchutapuram pharmaceutical factory explosion. In Wikipedia. https://en.wikipedia.org/wiki/Atchutapuram pharmaceutical factory explosion

Wikipedia contributors. (2022,September Hapur 6). chemical plant explosion. In Wikipedia. https://en.wikipedia.org/wiki/Hapur chemical plant explosion

Wikipedia contributors. (2022, September 6). 2020 Ahmedabad chemical factory blast. Wikipedia. https://en.wikipedia.org/wiki/2020 Ahmedabad chemical factory blast

Wikipedia contributors. (2022, September 6). Srisailam hydroelectric power plant fire. Wikipedia. https://en.wikipedia.org/wiki/Srisailam hydroelectric power plant fire

Wikipedia contributors. September 6). 2009 Wikipedia. (2022,Jaipur In fire. https://en.wikipedia.org/wiki/2009 Jaipur fire