
 INTERNATIONAL JOURNAL OF SCIENTIFIC RESEARCH IN ENGINEERING AND MANAGEMENT (IJSREM)

 VOLUME: 06 ISSUE: 12 | DECEMBER - 2022 IMPACT FACTOR: 7.185 ISSN: 2582-3930

© 2022, IJSREM | www.ijsrem.com DOI: 10.55041/IJSREM17133 | Page 1

Flappy Bird Game

Kavita Ugale, Parth Shethji, Kartik Parsodkar, Hitesh Pariani, Aditya Partole, Ritiksha Pardhi

Department of Engineering, Sciences and Humanities (DESH)

Vishwakarma Institute of Technology, Pune, 411037, Maharashtra, India

Abstract — We are all accustomed to playing this game.

The player's primary goal in this game is to protect the

bird from obstacles while racking up as many points as

possible. Here, we'll use Python to create our own Flappy

Bird game. To make this Flappy Bird game, we used the

Python module Pygame. An open-source package called

Pygame is made specifically for creating video games. It

aids in the development of multimedia and fully

functional games in Python.

Keywords:- Python, pygame, controls, collision, score

I. INTRODUCTION

Owing to the increasing use of smartphones over

the past ten years, mobile games have significantly

increased in popularity. Due to their addictive and amusing

qualities, numerous games have gained prominence over

time. Around the time of its introduction, thousands of

people played Flappy Bird, which was one of the most

well-liked games ever. The game was first released in

2013, but its inventor deleted it later that year out of shame

about the growing addiction. Numerous versions of the

game have been released online as a result of its popularity,

and they continue to be well-liked users of the console

version. Dong Nguyen, a Vietnamese videogame

programmer, is the creator of the popular mobile game

Flappy Bird. Similar to the well-known video game Super

Mario Brothers, the side-scrolling game Flappy Bird has

the user controlling a bird in a 2D setting. The player can

only influence the bird's vertical movement, unlike Mario.

The bird's main objective is to move as far without

colliding with any green pipes as it can. The game's

objective and controls are straightforward, but as the bird

moves quicker the further it goes, the complexity and

franticness of the game's gameplay increase. Python is a

computer programming language used for various software

programs, and when combined with resources like Python

Arcade, it may be used to develop online video games. One

of the games that can be made with Python is Flappy Bird,

and if it is designed properly, it can be a near-perfect

replica of the original. We developed a game design

strategy for our Flappy Bird project throughout the

implementation stage, with checkpoints every two to three

weeks. In the early phases, a sound plan had to be

established, the code had to be divided up, and a framework

had to be built by using simple programming. Later stages

required building on the foundation by introducing more

obfuscated code, adding auxiliary components like sprites,

colors, and lighting, as well as adding the game's finishing

touches.

Formerly, Flappy Bird could be played on a phone

by tapping the screen to make the bird fly. If the bird

touches any pipes or edges of the screen, the game is

finished, and the player should restart. The space bar or the

up key can be used to control the bird in the computer

version of the game. The programming language we'll use

is Python. Additionally employed will be a cross-platform

set of Python modules specifically created for game

development. There are libraries for graphics and sound

that were made expressly for Python use. Pygame is

suitable for creating client-side plans over that could later

be compiled into a standalone executable.

II. METHODOLOGY/EXPERIMENTAL

The necessary modules are being introduced.

Random will be utilized to create random numbers for the

purposes of our game. In the sys module, invoking sys.exit

will lower the deficit. In lines 3 and 4, we are importing

Pygame and the basic Pygame imports, respectively. After

that, we declare a variety of game-related global variables.

First, the fps, screen width, and screen height values are

set. The screen is then created by passing the screen width

and screen height as parameters to the pygame.display.set

mode() function. Then, we construct a ground-y variable

http://www.ijsrem.com/

 INTERNATIONAL JOURNAL OF SCIENTIFIC RESEARCH IN ENGINEERING AND MANAGEMENT (IJSREM)

 VOLUME: 06 ISSUE: 12 | DECEMBER - 2022 IMPACT FACTOR: 7.185 ISSN: 2582-3930

© 2022, IJSREM | www.ijsrem.com DOI: 10.55041/IJSREM17133 | Page 2

that will supply the y-coordinate for our base image as well

as two dictionaries, game pictures and game sounds, which

will house the various images and sounds utilized for the

game. The player (a bird), backdrop, pipe, and title images

are then stored in these variables by giving their paths. The

main method will be where our game launches, and it will

need that all pygame modules be configured using

pygame.init (). In order to keep track of time, we also

construct the fps clock variable and use the

pygame.tick.Clock() function. The photos will then be

allocated to the "numbers" key in the game images

dictionary after being initially stored in a tuple and given a

title. Using pygame.image.load(), convert alpha(), and the

paths to the pictures as parameters, we may transform an

image's pixel format, including per-pixel alphas. The

images of the message, base, pipe, backdrop, player, and

title are added to the dictionary using various keys in a

similar fashion. Additionally, we added a picture of an

inverted pipe for the pipe by turning the image by 180

degrees using the pygame.transform.rotate() function. In

order to add the sounds to the game's noises dictionary after

that, we use a variety of keys. In a manner similar to how

we handled photos, the pygame.mixer.Sound() function,

which saves the sounds, is given a list of paths to various

sounds as an argument. both mainGame() and

welcomeScreen() which are defined in the following

sections, are then called as part of a loop.

Now that we know the welcome screen will

appear when the game starts, we can define the

welcomeScreen() function. For the player, message, and

title images, we start by figuring up their x- and y-

coordinate values. As we selected the arguments using a

hit-and-miss process, you can alter the values to best fit

your needs. This section contains the base's x-coordinate.

We then start a while loop, which always returns True, and

we start a loop that won't stop unless the control tells it to.

In this case, we employ the pygame.event.get() function to

examine each event that takes place during the game. After

that, we use the escape key to confirm that the game

window will exit whenever a cessation event occurs. The

next situation, whether we pressed the up key or the space

bar, will be investigated. If so, we'll adjourn the gathering

before returning to start the game. In addition, since no

keys or buttons are pushed, the welcome screen appears.

The backdrop, message, player, base, and title pictures will

be positioned using the screen.blit() function. We will use

pygame.display.update() to update our window and update

our clock variable with the fps number as an argument in

order to view only 32 frames per second.

As part of the implementation of the mainGame()

function, which also includes once again providing the

player picture and base coordinates, the variable score is

now initialized to 0. Then, we build 2 pipes for bletting on

the screen by using the getRandomPipe() function, which

will be defined later. The x and y coordinates for the lower

pipes and the inverted upper pipes are then listed. Once

more, we chose values using the hit and trial method. Then,

we created variables to represent the bird's various

directions of motion. We also provide an acceleration

variable. PlayerFlapVel is the player's flapping velocity,

and Player Flapped is set to false (which is true only if the

bird flaps. Then, we do another event search. First, we look

for game-ending events, and if any are found, we end the

game..

Then, it is identified whether the up or spacebar key was

used. If so, we check to see if the player is below the top of

the screen, at which point we update the game and activate

the wing's sound using the.play command ().

The next step is to check if we have crashed using the

isCollide() method, which we shall define shortly. If the

criterion is met, the function will end. The results will then

be examined and revised. In the event that we cross a pipe,

the score is increased, printed in the console using the

player's mid position and the pipe positions, and the point

sound is also played. If the player's velocity in the y-

direction has not yet reached its maximum, we will then

provide the acceleration. Later updates include updating

the position of the bird and the playerFlpped value. We

move the pipes to the left and add a new pipe when the first

pipe is ready to cross the far left corner of the screen. We'll

also see if the pipe is outside the boundaries of the screen;

if it is, we'll remove it, add our own pipes, show the results,

and then update the display screen. If there are more than

one digits in the score, we first access all of them before

inserting the required photos. We revise our clock one

more time.

 In the isCollide() function, we evaluate the

position of the bird to the position of the pipe to see if we

have reached the top of the base inline before looking for

collision with upper pipes. The procedure is then repeated

for lower pipes. If any of the collision conditions are

achieved, we play the hit sound and return True. We utilize

the offset variable to store one-third of the screen width and

the pipeHeight variable to store the pipe's height in the

getRandomPipe() function. We deploy random functions

to generate values for the x and y coordinates with identical

distances between the pipes but varying sizes for the upper

and lower pipes. We save the coordinates in a list called

pipe before returning them.

III. RESULTS AND DISCUSSIONS

 Designing a flappy bird game is simple and only

requires the sys, random, and pygame modules. The game

still has a few small flaws, such as instances where the

pipes overlap or come very close to one another. In order

to save scores permanently, we can also add a feature that

allows to see previous High Scores displayed on a screen.

We can include a start menu and different difficulty levels

to make the game more user-friendly.

http://www.ijsrem.com/

 INTERNATIONAL JOURNAL OF SCIENTIFIC RESEARCH IN ENGINEERING AND MANAGEMENT (IJSREM)

 VOLUME: 06 ISSUE: 12 | DECEMBER - 2022 IMPACT FACTOR: 7.185 ISSN: 2582-3930

© 2022, IJSREM | www.ijsrem.com DOI: 10.55041/IJSREM17133 | Page 3

IV. FUTURE SCOPE

[1]. Add start screen

[2]. Add high score of entire game

[3]. Make the graphics a little more attractive and smoothen

the contours

V. CONCLUSION

Python is one of the programming languages that is most

in demand today and is used for a wide range of tasks,

including data science, game development, and the

creation of software and other things. These days, game

programming is quite lucrative and may be applied to

advertising and education. Game development involves

many different subjects, including arithmetic, logic,

physics, AI, and much more, and it can be a tone of fun.

Python's pygame module is one of the best for game

programming and is used for it. The goal of the game is to

avoid pipes and earn the greatest score possible.

VI . REFERENCES

[1]. The dinosaur game on google when we are offline

[2]. Took reference from the original flappy bird game

[3] Also for coding and learning pygame and python we

took reference from GEEKS FOR GEEKS, YOUTUBE

[4]https://www.geeksforgeeks.org/python-programming-

language/

[5]https://www.geeksforgeeks.org/introduction-to-

pygame

http://www.ijsrem.com/
https://www.geeksforgeeks.org/python-programming-language/
https://www.geeksforgeeks.org/python-programming-language/
https://www.geeksforgeeks.org/introduction-to-pygame
https://www.geeksforgeeks.org/introduction-to-pygame

