

FLOOD PREDICTION analysis using machine learning based on logistic regression algorithm by applying Python and Jupyter tool

¹Prajna M R, ²Deepti S, ³Shrinidhi R , ⁴Pooja J

PG scholars, Department of MCA, DSCE Mahendra Kumar B, Asst.Prof, Dept of MCA

Abstract : Floods are among the most destructive natural disasters, which are highly complex to model. The research on the advancement of flood prediction models contributed to risk reduction, policy suggestion, minimization of the loss of human life, and reduction of the property damage associated with floods. [4]

In this paper, we developed a time series data mining approach to predict the flood in different locations with the help of causes, rise in water level and so on.

IndexTerms:LogisticRegression[1],numpy,panda,matplo tlib,accuracyscore

INTRODUCTION

Among the natural disasters, floods are the most destructive, causing massive damage to human life, infrastructure, agriculture, and the socioeconomic system. Governments, therefore, are under pressure to develop reliable and accurate maps of flood risk areas and further plan for sustainable flood risk management focusing on prevention, protection, and preparedness.

Flood prediction models are of significant importance for hazard assessment and extreme event management. The applications in flood prediction can be classified according to flood resource variables, i.e., water level, river flood, soil moisture, rainfall–discharge, precipitation, [5] river inflow, peak flow, river flow, rainfall–runoff, flash flood, rainfall, streamflow, seasonal stream flow, flood peak discharge, urban flood, plain flood, groundwater level, rainfall stage, flood frequency analysis, flood quantiles, surge level, extreme flow, storm surge, typhoon rainfall, and daily flows[6].

SPECIFICATIONS

- Python
- Machine learning Models
- [3]Jupyter Notebook(tool)
- Tableau(Visualization)

HARDWARE REQUIREMENTS

Processor	: Pentium IV and above
Hard Disk	: 250 GB
RAM	: 4 GB

SOFTWARE REQUIREMENTS

Operating System: Windows 7/XP Web server: Apache Server Scripting: Python Database Server: MySQL

STEPS INVOLVED IN THE PROCESS

STEP 1 : DEFINING THE PROBLEM

[2]Flood prediction is the use of forecasted precipitation and stream flow data in rainfall-runoff and stream flow routing models to forecast flow rates and water levels for periods ranging from few hours to days ahead, depending on the size of the watershed or river basin[7].

STEP 2 : COLLECTION OF DATA

The data was collected with the help of google according to the survey done on particular flood affected areas such as water level, altitude, rainfall, reasons etc

STEP 3 : PREPARE THE DATA

First you must upload the data to the [3]jupyter notebook for analysis. Check are there any null rows or columns, if any remove the rows or fill the columns with the mean value of that particular column.

Import all the packages and functions that are necessary for the analysis process.

STEP 4 : SPLITTING THE DATA INTO TRAINING AND TESTING

Here in this step we split the data into two separate tables training and testing respectively[8]. Training table is used for analysis and alteration purpose, whereas testing table is used to test the data in the

final step. We will also split the table data into 80% and 20%.

STEP 5 : ALGORITHM SELECTION

Here we select the appropriate algorithm/model that is necessary for the analysis purpose, we have selected [1]logistic regression model for processing the dataset.

STEP 6 : TRAINING THE ALGORITHM WITH DATA FOR MACHINE

Here the data is divided into xtrain, ytrain, xtest and ytest where 80% of data is taken as train

DATA SET FOR FLOOD PREDICTION

data and remaining 20% of data is taken as test data.

Then if there are any nulls in the rows or column, remove those and clean the data and also if you have any high range values take the mean of those and reduce the range of those values.

Then the algorithm is trained with 80% cleaned data of xtrain and ytrain.

Data set

ID	LOCATION	SEASON	Y E A R	ABOVE SE	EA LEVELTEMPARATURE REASON	RISE IN WATER LEVELFLOOD PREDICTION DE	ATH RATE
	1 Kodagu	Rainy		2018900m	20 Heavy Rain	1277 Yes	200
	2 Kerala	Monsoon		20172695m	19 Heavy Rain	1095 Yes	150
	3 Bangalore	Monsoon		2018900m	24 Rain	500 No	0
	4 Mumbai	Monsoon		2019450m	26 Lack of Vegitation	700 Yes	80
	5 Oddisa	Spring		20191672m	22 Cyclone	1000 Yes	155
	6 Waynad	Rainy		2017888m	25 Rain	300 No	0
	7 Kedharnath	Summer		2015 3582 m	19 Melting if ice	900 Yes	300
	8 Mantralaya	Winter		2019950m	25 Heavy Rain	200 Yes	30
	9 Delhi	Monsoon		2017216m	10	100 No	0
	10 Kolkata	Spring		20169.14m	25 Cyclone	150 No	0
	11 KanyaKum ari	Winter		2004 30 m	23 Tsunami	250 Yes	50
	12 Mangalore	Winter		2004 22 m	28 Tsunami	320 Yes	126
	13 Chennai	Winter		20156.7m	32 Heavy Rain	200 Yes	70
	14 Kochi	Rainy		20189m	24 Cyclone	125 Yes	67
	15 Andaman	Winter		200416m	26 Tsunami	380 Yes	135
	16 Gujarat	Rainy		2015 150 m	23 Cyclone	340 y es	81
	17 Andheri	Rainy		2005 57.5m	25 Rain fall	644 y es	1094
	18 Pondecherry	Winter		2015 530 m	28 Cyclone	780 y es	500
	19 Bhubaneshwa	r Rainy		2015 500 m	18 Rain fall	425 y es	600
	20 Uttarakhand	Rainy		201390m	15 Rain fall	106 yes	5700
	21 Banaskantha	Rainy		201140m	22 Rain fall	152 y es	80
	22 Tripura	Mansoon		201850m	20 Heavy Rain	320 y es	176
	23 Jammu and Ka	sMansoon		2018557m	7 Heavy Rain	220 y es	67
	24 Guwahati	Rainy		2016700m	18 Heavy Rain	380 y es	15
	25 Odissa	Rainy		200817.8m	15 Cyclone	330 Yes	96

STEP 7: EVALUATE TEST DATA

After the algorithm is trained with 80% of data, the algorithm is to be tested with remaining 20% of data.

Before that check there are any nulls in the test data, if present remove those nulls and obtain clean data. Then evaluate the algorithm with test data for predictions.

STEP 8: PARAMETER TUNING

A tuning is to be done for algorithm in order to control the behaviour of the algorithm. There are many tuning methods available, here we applied [1]logistic regression.

[1]Logistic regression is suitable for life expectancy because its most widely used predictive model.

STEP 9: START USING YOUR MODEL

After the algorithm is trained with test data, it gives the prediction that is it gives the accuracy of our model.

If the prediction is below 70% then the model is failed, there may be a mistake in choosing the data , cleaning the data or methods etc.

If the prediction is above 70% then the model is good and ready for usage.

IMPLEMENTATION: Tool used : [3]Jupyter Notebook

coding: utf-8

In[282]:

import numpy import pandas import sklearn import seaborn from sklearn.model_selection import train_test_split from sklearn.linear_model import LogisticRegression [1] from sklearn.metrics import accuracy_score from sklearn.metrics import mean_squared_error,r2_score from sklearn import preprocessing import matplotlib.pyplot as plt get_ipython().run_line_magic('matplotlib', 'inline')

In[283]:

fp = pandas.read_csv('C:/Users/Prajna/Downloads/PRO JECT data.csv') fp

In[284]:

fp1 = fp[['LOCATION','ABOVE SEA LEVEL','TEMPARATURE','RISE IN WATER LEVEL','FLOOD PREDICTION','DEATH RATE']]

In[285]:

seaborn.countplot(x='FLOOD
PREDICTION',data=fp1)

In[286]:

fp1.isnull().any()

In[287]:

fp1.isnull().sum() # In[288]: fp data X = fp1[['LOCATION','ABOVE SEALEVEL', 'TEMPARATURE', 'RISE IN WATER LEVEL', 'DEATH RATE']] fp data Y = fp1[['FLOOD PREDICTION']]# In[289]: X train, X test, Y train, Y test = train test split(fp data X,fp data Y,test size=0.2 0) # In[290]: encoder = preprocessing.LabelEncoder() # In[291]: X train['LOCATION']=encoder.fit transform(X train['LOCATION']) # In[292]: data = X train['RISE IN WATER LEVEL'] price frame = pandas.DataFrame(data) min max normalizer preprocessing.scale(price frame) price frame normalized _ pandas.DataFrame(min max normalizer) price frame normalized # In[293]: X train['RISE IN WATER LEVEL']=preprocessing.scale(X train['RISE IN WATER LEVEL']) # In[294]: data = X train['ABOVE SEA LEVEL'] sea = pandas.DataFrame(data) min max normalizer = preprocessing.scale(sea) price_frame_normalized pandas.DataFrame(min max normalizer) price_frame_normalized # In[295]: X train['ABOVE SEA LEVEL']=preprocessing.scale(X train['ABOVE SEA LEVEL'])

In[296]:

data = X_train['TEMPARATURE']
 temp = pandas.DataFrame(data)
 min_max_normalizer =
 preprocessing.scale(temp)
 price_frame_normalized =
 pandas.DataFrame(min_max_normalizer)
 price_frame_normalized

In[297]:

X_train['TEMPARATURE']=preprocessing.sca le(X_train['TEMPARATURE'])

In[298]:

data = X_train['DEATH RATE']
price_frame = pandas.DataFrame(data)
min_max_normalizer
preprocessing.scale(price_frame)
price_frame_normalized
pandas.DataFrame(min_max_normalizer)
price_frame_normalized

In[299]:

X_train['DEATH RATE']=preprocessing.scale(X_train['DEATH RATE'])

In[300]:

X_test['LOCATION']=encoder.fit_transform(X _test['LOCATION'])

In[301]: data = X_test['RISE IN WATER LEVEL'] price_frame = pandas.DataFrame(data) min_max_normalizer = preprocessing.scale(price_frame) price_frame_normalized = pandas.DataFrame(min_max_normalizer) price_frame_normalized

In[302]:

X_test['RISE IN WATER LEVEL']=preprocessing.scale(X_test['RISE IN WATER LEVEL'])

In[303]:

data = X_test['ABOVE SEA LEVEL']
sea = pandas.DataFrame(data)
min_max_normalizer =
preprocessing.scale(sea)
price_frame_normalized =
pandas.DataFrame(min_max_normalizer)
price_frame_normalized

In[304]:

X_test['ABOVE SEA LEVEL']=preprocessing.scale(X_test['ABOVE SEA LEVEL'])

In[305]:

data = X_test['TEMPARATURE'] temp = pandas.DataFrame(data) min_max_normalizer = preprocessing.scale(temp) price_frame_normalized = pandas.DataFrame(min_max_normalizer) price_frame_normalized

In[306]:

X_test['TEMPARATURE']=preprocessing.scal e(X_test['TEMPARATURE'])

In[307]:

data = X_test['DEATH RATE']
price_frame = pandas.DataFrame(data)
min_max_normalizer =
preprocessing.scale(price_frame)
price_frame_normalized =
pandas.DataFrame(min_max_normalizer)
price_frame_normalized

In[308]:

X_test['DEATH RATE']=preprocessing.scale(X_test['DEATH RATE'])

In[309]:

logistic_regression = LogisticRegression() [1]

VOLUME: 03 ISSUE: 08 | AUGUST -2019

ISSN: 2590-1892

In[310]:

Flood Prediction

logistic_regression.fit(X_train,Y_train) [1]

In[311]:

y_pred = logistic_regression.predict(X_test) [1]

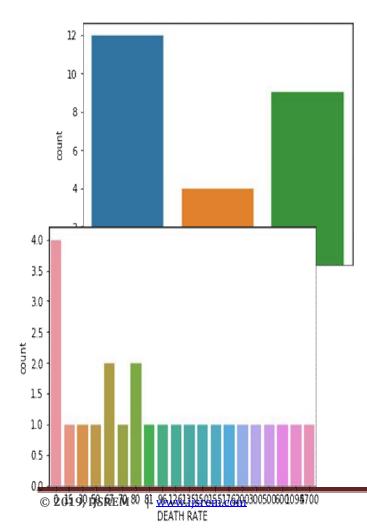
In[312]:

print(accuracy_score(Y_test,y_pred))

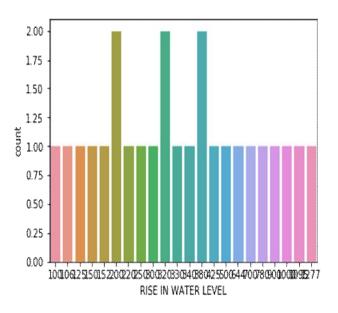
In[219]:

plt.scatter(fp1['RISE IN WATER LEVEL'],fp1['FLOOD PREDICTION']) plt.xlabel('RISE IN WATER LEVEL') plt.ylabel('FLOOD PREDICTION') plt.title('RISE IN WATER LEVEL - FLOOD PREDICTION')

VISUALIZATION

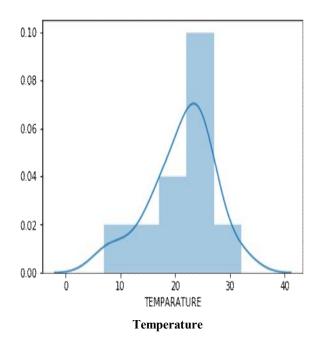


This graph shows the flood prediction column which is mentioned in the dataset. It shows the possibility of flood happening in particular area taking into consideration of rise in water level . This graph shows the number of people died in the flood in particular area and in particular year. The data considered for this graph is taken by the cleaned dataset.

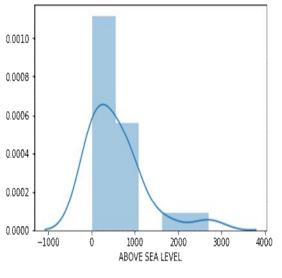


Rise in water level

This graph shows the rise in water level which causes the flood in particular area and in particular year. The data considered for this graph is taken by the cleaned dataset.

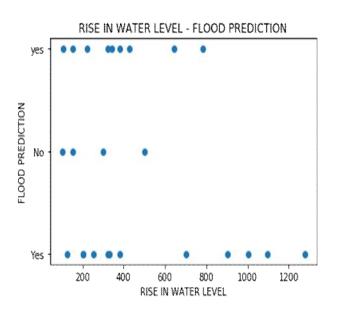


This graph shows the temperature in particular area and in particular year where the flood happened. The data considered for this graph is taken by the cleaned dataset.



Above sea level

This graph show that how much a particular are is above sea level. It helps in predicting the cause and the probability of flood happening.



Scatter plot

This scatter plot will show how the prediction is done on the basis of rise in water level in particular area. Here we can see that at what level of rise in water can cause the flood. We can predict whether the flood happens or not considering the statistics of rise in water level.

CONCLUSION:

Flood occurs most commonly from heavy rain fall when natural watercourses do not have capacity to excess water. In costal areas, water inundation can be caused by a storm, tsunami or high tide coinciding with higher than normal river levels.

References:

[1] Linear Logistic regression : an introduction,

author:T Haifley. Cypress Semicond. Corp., San Jose, CA, USA .

[2]Flood Prediction Using Machine Learning

Models:Literature Review, Author: Amir Mosavi, Pinar Qzturk, Kwok-wing Chau.

[3]Pysnippet: Accelerating Exploratory Data Analysis In Jupyter Notebook Through Facilitated Access To Example Code, Author: Alex Watson, Scott Bateman and Suprio Ray.

[4] web reference- www.mdpi.com

[5] web reference- www.preprints.org

[6] Journal paper- Amir Mosavi, Pinar Ozturk, Kwok-wing Chau. "Flood Prediction Using Machine Learning Models: Literature Review", Water, 2018

[7] Journal paper- Paper: Submitted to Victoria University College.

[8] Journal paper- Puneet Mathur. "Machine Learning Applications Using Python", Springer Nature, 2019

[9] Journal paper- Ramesh Naidu Laveti, Swetha Kuppili, Janaki Ch, Supriya N Pal, N. Sarat Chandra Babu. "Implementation of learning analytics framework for MOOCs using state-of-the-art in-memory computing", 2017 5th National Conference on E-Learning & E-Learning Technologies (ELELTECH), 2017