

Footstep Power Generation

Chithra M¹, Dr.Malatesh S H², Devi Reddy Nikitha³ , Gowthami N⁴ , Anantha Ramya Sri⁵

¹Chithra M ,CSE Department & M S Engineering College

²Dr.Makatesh S H,HOD & Prof. CSE Department & College

³Devi reddy nikitha ,CSE Department & M S Engineering College

⁴Gowthami N ,CSE Department & M S Engineering College

⁵Anantha ramya sri,CSE Department & M S Engineering College

Abstract - This paper presents a footstep-based energy harvesting system that converts mechanical pressure generated during human movement into electrical energy using piezoelectric sensors. When a person walks over the platform, the applied force produces an electrical output that is conditioned through rectification and voltage regulation circuits. The processed energy is stored in a rechargeable battery and utilized for low-power applications such as mobile phone charging and operation of small electronic devices. Experimental testing under varying loads and pressures demonstrates a proportional relationship between applied force and generated voltage. The proposed system offers a practical, sustainable, and economically viable solution for energy harvesting in locations with heavy pedestrian movement such as transport terminals, educational institutions, and commercial complexes. With further optimization, this approach can support renewable energy integration in smart infrastructure development.

Key Words: Piezoelectric Sensor, Renewable Energy, Footstep Power Generation, Energy Harvesting, Voltage Regulation, Mobile Charging, Sustainable Technology, Smart City Applications.

1. INTRODUCTION

Footstep Power Generation is an innovative method for sustainable energy harvesting, focusing on the conversion of mechanical energy from human footsteps to usable electrical power. The project is targeted at capturing this wasted energy from urban populations across public spaces, where immense kinetic energy is generated each day by walkers and converting it into a renewable source of power by using piezoelectric sensors with mechanical conversion mechanisms.

The project proposes capturing that dissipated energy into a renewable source of power using piezoelectric sensors and mechanical conversion mechanisms. The proposed system finds particularly constructive applications in

high-footfall areas like railway stations, bus stands, shopping malls, parks, pedestrian pathways, and school/college campuses. Every step applies pressure on the tiles embedded with piezoelectric materials or mechanical systems such as rack and pinion. This applied pressure is converted into electrical energy, which after rectification through rectifier circuits is stored in rechargeable batteries for later use.

Power stored this way can be utilised to charge small electronic devices, LED light up, power streetlights, operate IoT devices, or even feed micro renewable energy grids. The design integrates a microcontroller-based monitoring system for voltage level tracking and management of power distribution in order to utilize energy efficiently. These are very robust, scalable under mechanical and electrical engineering principles, and could fit into real-time applications.

Footstep energy harvesting facilitates clean energy while making people aware of renewable energy technologies. Deploying these systems in public places can reduce human dependency on non-renewable sources of energy, thus building a green environment. The project interprets how human activity in simple terms can be transformed into a renewable energy source that might contribute toward the global green technology and smart energy initiative.

2. Methodology

Energy Generation from Footsteps

A piezoelectric sensor or mechanical arrangement is placed under the footstep platform. When a person applies pressure by walking, mechanical energy gets converted into electrical energy.

AC to DC Conversion

The small amount of AC voltage generated by the piezoelectric sensors is passed through a rectifier circuit to convert it into DC voltage.

Voltage Regulation

The voltage regulator prevents any voltage deviations and maintains it within the correct range for safe charging of devices, thus preventing system malfunction.

Energy Storage

The regulated DC power is stored in a rechargeable battery (Li-ion or lead-acid). This would provide operating power to the system when nobody is stepping on the platform.

Microcontroller Monitoring

A microcontroller monitors the battery voltage, power generation level, and output load. The microcontroller also serves to maintain stable power delivery and protects the system against overcharging or overloading conditions.

Output Utilization

Output Usage The stored energy is utilized to operate small loads such as LED lights, sensors, or mobile charging via a USB port.

Testing & Evaluation

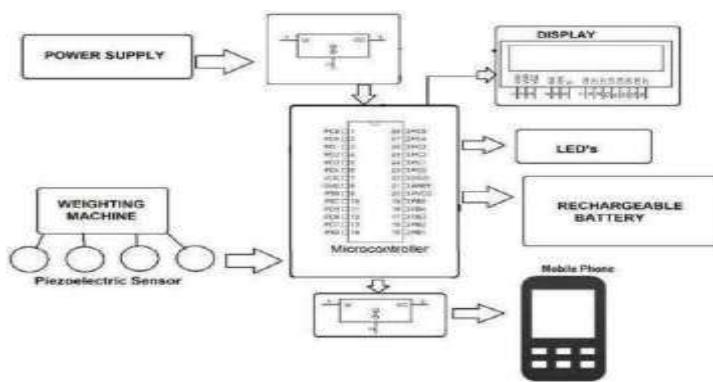
Testing & Evaluation Efficiency, voltage generation, and charging capability are measured by testing the system under different loads and footstep pressures.

3. Requirements

3.1 Functional Requirement

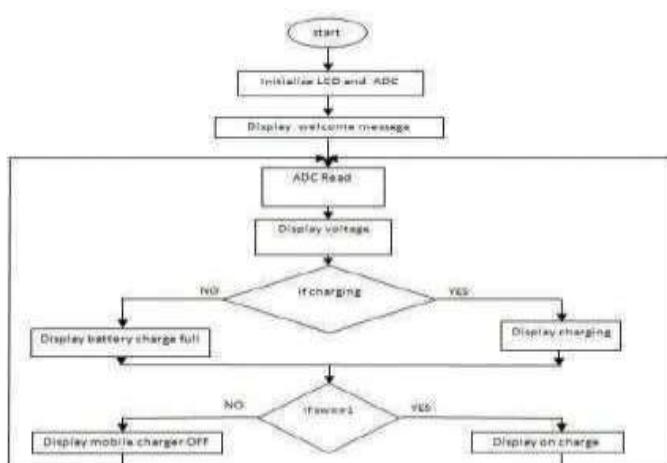
The proposed footstep power generation system is designed to convert mechanical pressure from human footsteps into electrical energy using piezoelectric or mechanical mechanisms. The generated electrical output is converted into a regulated DC supply and stored in an internal rechargeable battery to ensure uninterrupted power availability. The system incorporates a microcontroller to supervise voltage levels, battery status, and load conditions, ensuring safe and efficient operation.

A regulated USB output is provided to enable secure mobile phone charging. Visual indicators or display modules are included to show power generation and charging status. The footstep platform is constructed to withstand repeated mechanical stress and is suitable for installation in high-traffic public environments.


3.2 Non-Functional Requirement

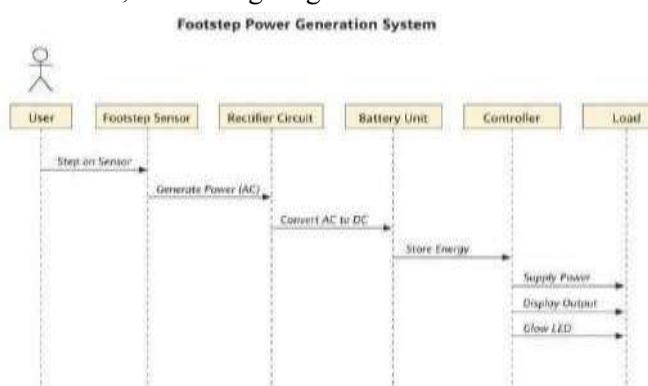
Non-Functional Requirement The Footstep Power Generation system should be designed to work reliably under continuous foot pressure, hence giving consistent performance in a high-traffic environment. The platform should also be durable for long life, be able to withstand environmental conditions such as dust and vibration, besides supporting heavy and frequent use. The safety standard would be maintained by ensuring all electrical components are properly insulated and that the output voltage would be stable during mobile charging. Other non-functional requirements include efficiency: it should not waste much power through conversion, storage, and delivery. Its design should be user-friendly; there should be indicators or displays of generated power and charging status. It should also be portable with easy installation, hence deployable in different locations without complicating the setup process. Cost-effective; components used should ensure good performance at an affordable cost for the overall project. Maintainability is also crucial, whereby the system could be serviced or upgraded easily when need be.

4 .System Architecture


The Footstep Power Generation System is designed to convert the pressure of a footstep into electrical energy and make it usable for mobile charging and small loads. The system starts with a footstep platform containing piezoelectric sensors or a mechanical unit that would produce voltage upon the application of pressure. A generated AC voltage is passed through a bridge rectifier in order to convert it into DC.

A voltage regulator is used to keep the output stable and safe for charging. The regulated energy is stored in a rechargeable battery that allows the system to provide power even when no one is stepping on the platform. A microcontroller continuously monitors the voltage, battery level, and charging status, while controlling LED indicators or displays. Finally, the stored energy will be supplied to a USB port for mobile charging or other low-power applications.

System Architecture


5. Data Flow Diagram

A data flow diagram (DFD) is a graphical representation of the flow of data within a system. It's a powerful tool used in system analysis and design to illustrate how data moves through different processes and interactions in a system.

6. Sequence Diagram

A sequence diagram in Unified Modelling Language (UML) is a kind of interaction diagram that shows how processes operate with one another and in what order. It is a construct of a Message Sequence Chart. Sequence diagrams are sometimes called event diagrams, event scenarios, and timing diagrams.

Sequence Diagram

7. Workflow

Footstep Applied

People step on the specially designed tiles, generating mechanical pressure.

Energy Conversion

This pressure is converted to electrical energy using: Piezoelectric sensors-these produce voltage when pressed. Dynamo mechanism- the motion drives a generator.

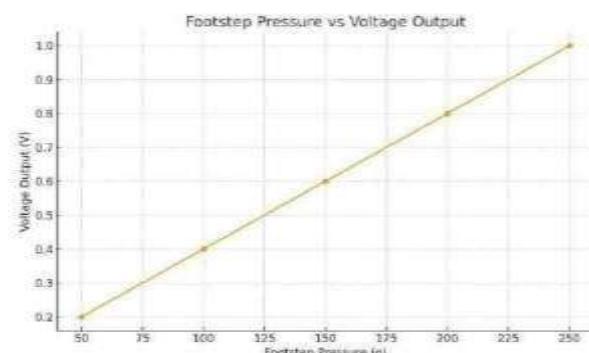
Power Conditioning

The raw electricity is: Rectified; AC → DC Regulated to a stable voltage level.

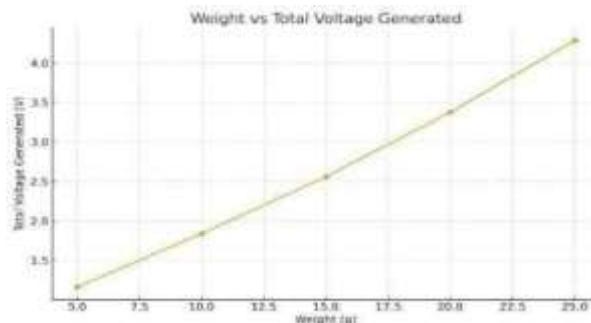
Energy Storage

The regulated power is stored in a: Rechargeable battery, or Supercapacitor

Power Consumption


Stored energy is utilized for: LED lights Mobile charging Indicators or sensors Weight versus Voltage Generated

Optional Monitoring

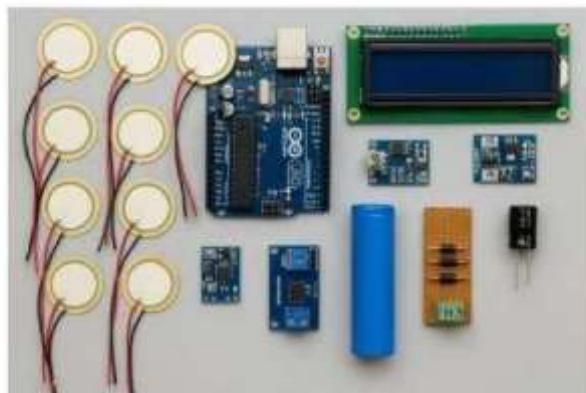

A display or microcontroller indicates: Voltage produced Step count, Battery status.

8. Performance Evaluation

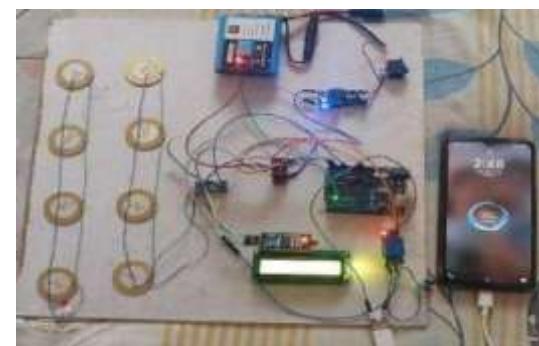
Footstep Pressure vs Voltage Output

Footstep Pressure vs Voltage Output

Weight vs Voltage Generated


Weight vs Voltage Generated

9. Screenshots


This section highlights the hardware components in pictures, LCD readings, the layout of the components, and charging output snapshots. Each picture is provided with a caption to explain how the project operates.

Components Used in the Project

The list describes in detail all components: various piezo disks, one Arduino UNO, one LCD, one Li-ion battery, various regulators, driver modules, and Printed Circuit Boards. It is an easy-to-understand view of various pieces of hardware combined into one system.

Another depiction shows the mobile phone that will be connected to the prototype and charging through the power management module, demonstrating its capability to act as an emergency charging.

Mobile Charging Demonstration

10. Results

The Footstep Power Generation System was subjected to tests based on varying pressures and weights of foot steps. The result shows that the voltage produced will increase with the increase of pressure and weight applied on the piezoelectric sensors.

The experimental data clearly shows that the voltage output increases proportionally with both pressure and applied weight on the piezoelectric sensors.

SL.No	Footstep Pressure(lbs)	Voltage Output(V)
1	50	0.2
2	100	0.4
3	150	0.6
4	200	0.8
5	250	1.0

1. Result from Theoretical Voltage Generated
Based on the readings:

Theoretical Voltage

SL.No	Weight(g)	Theoretical Voltage Generated(V)
1	5	0.2
2	10	0.4
3	15	0.6
4	20	0.8
5	25	1.0

Practical Voltage Generated by the Device

The data obtained suggests that the voltage is greater with increased weight or when pressed multiple times. The highest voltage detected was at 4.29V with a weight of 25g, verifying the efficiency of the system in extracting energy from continuous pressures applied by the feet.

Overall Result

Both theoretical and practicals confirm that:

The output voltage increases when the pressure or weight increases. The piezoelectric module generates efficiently in practical conditions.

It can supply enough voltage to power small devices such as LEDs and mobile phones when connected to a regulator and a battery.

The resulting graphs illustrate the increase in voltage with pressure and weight.

Future Scope

The Footstep Power Generation System has a high potential for development and implementation on a mass scale. The system has the potential to be developed into a successful and competent source of renewable energies when proper design and technological knowledge is acquired. The major areas to be focused on to enhance its success are:

Massive Scale in Public Spaces

Use the system in busy areas like railway stations, bus stops, airports, shopping malls, schools, and sidewalks where the energy generated by thousands of footfalls can be tapped.

Increased Power Output

Make use of advanced piezoelectric materials, multi-layer sensors, or mechanical designs to increase the amount of electricity produced and use the electricity to drive larger loads

Integration with Smart City Infrastructure

This solution integrates with the produced power to energize street lighting, corridor lighting, advertising signs, and small electronics in a smart city infrastructure.

IoT-Driven

The future versions may include IoT modules that allow the tracking of voltage output, battery condition, footsteps, and system health in real time using mobile applications or dashboards.

Energy Storage Upgrades

Leverage augmented batteries or supercaps; that will increase the amount of energy that can be stored by this system, especially when there is low traffic.

Portable Design

The idea can be developed into transportable floor tiles or mats that can be installed easily and relocated when the need arises.

Combined Renewable Systems

When combined with solar cells or kinetic energy harvesters, a hybrid system is formed, and efficiency is enhanced.

Emergency Charging Heads

The bigger models can serve as a communal mobile charging point, in rural areas, at a park, or in a disaster relief shelter where power outlets are not easily available.

11. Conclusion

Footstep Power Generation System proves that the energy from human footsteps can be harnessed by piezoelectric technology to produce electrical power. This shows that even the pressure involved in simple walking can be tapped to produce a stable source of power. The test results show that there is an increase in voltage corresponding to the pressure and the footsteps. With the use of devices such as rectifiers, voltage regulators, and rechargeable batteries, the output is processed for usage. The most important milestone is the capacity to charge the mobile phone from the stored energy, which displays practicality. The tests show the platform stays constant and all the devices function properly, appropriate for use in areas of high traffic, including schools, malls, bus stops, and train stations. environmentally friendly, renewable solution to power production. It shows the way to an effective means of less dependence on traditional power sources and supports the use of renewable technology. With more development, the system has the potential to be enlarged to be integrated into smart city infrastructures to tap enormous power from the motion of humans.

12. Reference

1. **S. P. Sukhatme (2007).** Solar Energy: Principles of Thermal Collection and Storage. Tata McGraw-Hill. Useful for understanding renewable energy sources and micro- level generation.
2. **D. J. Inman (2013).** Engineering Vibration. Pearson Education. Covers vibration energy harvesting principles used in footstep systems.
3. **H. J. Goldsmid (2016).** Introduction to Thermoelectricity. Springer .Explains materials and principles similar to piezoelectric energy conversion.
4. **T. J. Xu (2019).** "Self-Powered Floor Tiles

for Public Places." Proceedings of the International Conference on Sustainable Energy Engineering. Discusses real-world application of footstep systems.

5. **K. R. Reddy (2020).** "Low-Cost Energy Harvesting System Using Piezoelectric Components." IEEE International Conference on Inventive Research in Computing Applications.

6. **IEEE Xplore Digital Library** – Research papers on human- motion energy harvesting and piezoelectric systems.

7. **ScienceDirect (Elsevier)** – Journals on renewable micro-Overall, the project provides an inexpensive,energy harvesting and material science.

8. **Dr. Malatesh S. H.,Bikash kumar singh, Braham kumar sha,Shubham kumar, and Shiv kumar yadav,** "Iot devoce for detecting leaves diseases in plants by image processing," International Journal of Innovative Research in Technology (IJIRT), vol. 11, no. 12, May 2025, 2349-6002.

9. **Dr. Malatesh S. H ,** Shreenidhi Kattimani, Pragati Palabhavi, Vaishnavi A P, and Dikshita M G, "**Intruder Detection and Protection System,**" International Journal of Innovative Research in Technology (IJIRT), vol. 11, no. 12, May 2025, ISSN: 6002.

10. **Dr. Malatesh S. H ,** Arvind G, Chandan B M, Komal A, Manish M N, "**A ML Framework for Predicting and Enhancing Students**" Emotion and Satisfaction in online Education," International Journal of Innovative Research in Technology (IJIRT), vol. 11, no. 12, May 2025, e-ISSN: 2359-6002,p-ISSN: 2395-0072.

11. **Dr. Malatesh S. H ,** Jyothi Patil, Ganavi C Kavana S, L G Srusti, "**Coin and RFID-Based Medicine Vending Machine,**" International Journal of Innovative Research in Technology (IJIRT), vol. 11, no. 12, May 2025, ISSN: 2349-6002.

12. **Dr. Malatesh S. H ,** Supriya S, Ramya B, Parvathi BV, "**IoT-Enabled Multi-Sensor Healthcare System with ML- Driven Predictive Analytics and Emergency Response,**" International Journal of Innovative Research in Technology (IJIRT), vol. 6, no. 12, May 2025, ISSN: 2349-6002.

13. **Dr. Malatesh S. H,** Puneethraj M R, Shreya

V karadi, Akhila S, 'Devika HD, "**Autonomous Sensor Technology in Hydroponics for Monitoring and Controlling Plant Growth,**" International Journal of Innovative