

“Footstep Power Generation Using Arduino”

Prof. Dipak P. Charde¹, Devashri Askar², Gayatri Raut³, Divya Jadhao⁴, Mohini Chavhan⁵, Aniket Rathod⁶, Kshitij Gayakwad⁷, Praful Rathod⁸, Sagar Sonwane⁹

Assistant Professor, Student, Student, Student, Student, Student, Student, Student

Department of Electrical Engineering

Jagadamba College of Engineering and Technology, Yavatmal, India

ABSTRACT

The review paper presents an overview of non-microcontroller-based automatic tap systems, emphasising designs that operate without the use of Arduino or other programmable devices. The objective is to analyse the working principle. Circuit configuration and performance of a system that relies on fundamental electronic components such as infrared (IR) sensors, photodiodes, a transistor photodiode, a transistor, an operational amplifier, and a relay to achieve automatic water control. By eliminating the need for a microcontroller, these systems offer advantages in terms of cost, simplicity and maintenance while maintaining effective touchless operation to enhance hygiene and reduce water wastage. The paper further reviews various approaches and materials used in sensor design, power management and valve control mechanisms. Comparative analysis with a microcontroller-based system highlights the trade-off between flexibility and circuit efficiency. This review concludes that non-Arduino is an automatic and reliable alternative for public and domestic water management applications.

Keywords: Non-microcontroller-based system, Infrared (IR) sensor, Photodiode, Transistor, Operational amplifier (Op-amp), Relay control, Sensor-based control system, Cost effective automation, Power management, Circuit configuration, Comparative analysis,

I. INTRODUCTION

Footstep power generation using Arduino is a sustainable project that converts the mechanical energy from footsteps into usable electricity, ideal for high-traffic areas like malls or stations, using piezoelectric sensors or pressure sensors to generate charge, which is then managed and monitored by an Arduino microcontroller, stored in batteries, and can be used for charging devices or lighting LEDs. The Arduino (typically an Uno or Nano) acts as the "brain" of the system, performing the following management tasks:

Monitoring: It reads the generated voltage through its analog pins and calculates the power output in real-time.

Data Display: It interfaces with an LCD (often 16x2) to show real-time metrics such as voltage levels and total step count.

Energy Management: It can control the charging process and manage external modules like RFID for authorized power access or GSM for remote monitoring.

II. LITERATURE REVIEW

The primary objective of a footstep power generation project using Arduino is to harvest wasted kinetic energy from human footsteps in high-traffic areas (malls, stations) using sensors (piezoelectric/force), convert it to usable electrical energy with an Arduino microcontroller, store it (battery), and potentially display its status, demonstrating a low-cost, sustainable renewable energy source for small devices or lighting.

The main goals of developing an Arduino-based footstep power generator include:

Energy Harvesting: To design a system that captures mechanical pressure from walking or running and transforms it into an electrical charge using piezoelectric sensors.

Storage & Management: To store the generated energy in a rechargeable battery (such as Li-ion or Lead-acid) for future use in small electronic devices.

Real-Time Monitoring: To use an Arduino Uno to monitor, calculate, and display parameters such as instantaneous voltage, step counts, and total accumulated energy on an LCD.

Sustainability: To promote eco-friendly, non-conventional energy sources that do not rely on fuel or climate conditions.

Smart Access Control: To integrate advanced features like RFID modules, ensuring only authorized users can access the stored power for tasks such as mobile phone charging.

III. WORKING PRINCIPLE

The system relies on the piezoelectric effect, where mechanical stress applied to specific crystals (like quartz or PZT ceramics) generates an electric charge.

Mechanical Input: When a person steps on a platform, they apply force to an array of piezoelectric sensors mounted beneath it.

Energy Conversion: The pressure deforms the piezoelectric material, creating an AC (alternating current) voltage proportional to the force applied.

Rectification: A Bridge Rectifier converts the generated AC voltage into DC (direct current).

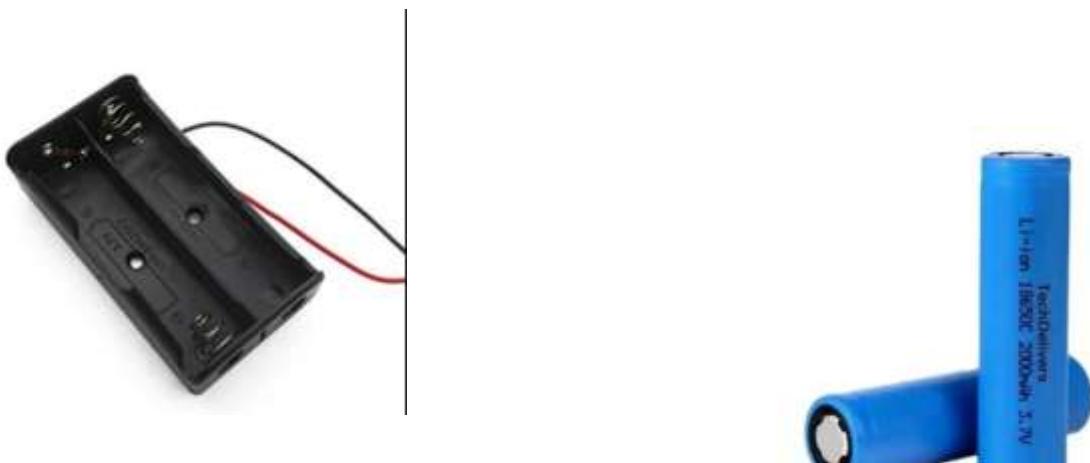
Smoothing: A Capacitor filters out ripples to provide a stable DC output.


Storage & Regulation: The DC energy is stored in a rechargeable battery (e.g., Li-ion or Lead-Acid). A Voltage Regulator (like the 7805) or a Buck-Boost Converter is often used to ensure the voltage matches the battery or device requirements.

IV. BASIC COMPONENT

Microcontroller: Arduino Uno or Nano (typically based on the ATmega328P) to process sensor signals, count steps, and calculate voltage.

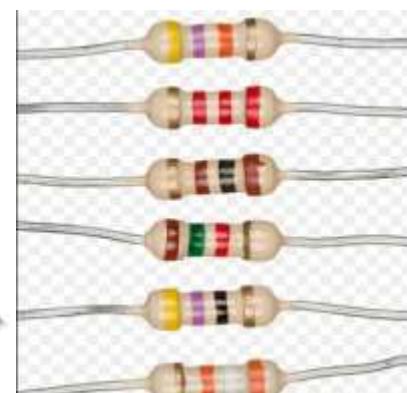
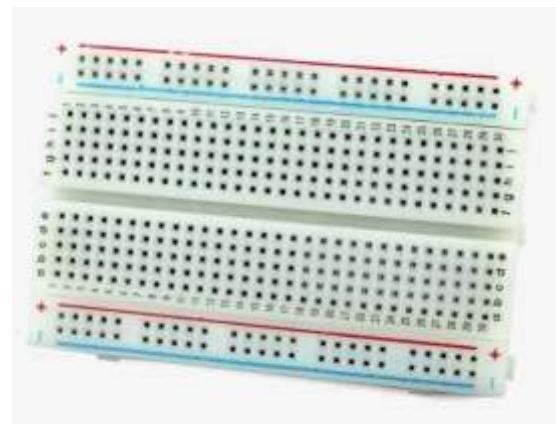
Piezoelectric Sensors: 35mm Piezoelectric Transducers (discs) usually arranged in series or series-parallel on a platform to maximize voltage output.

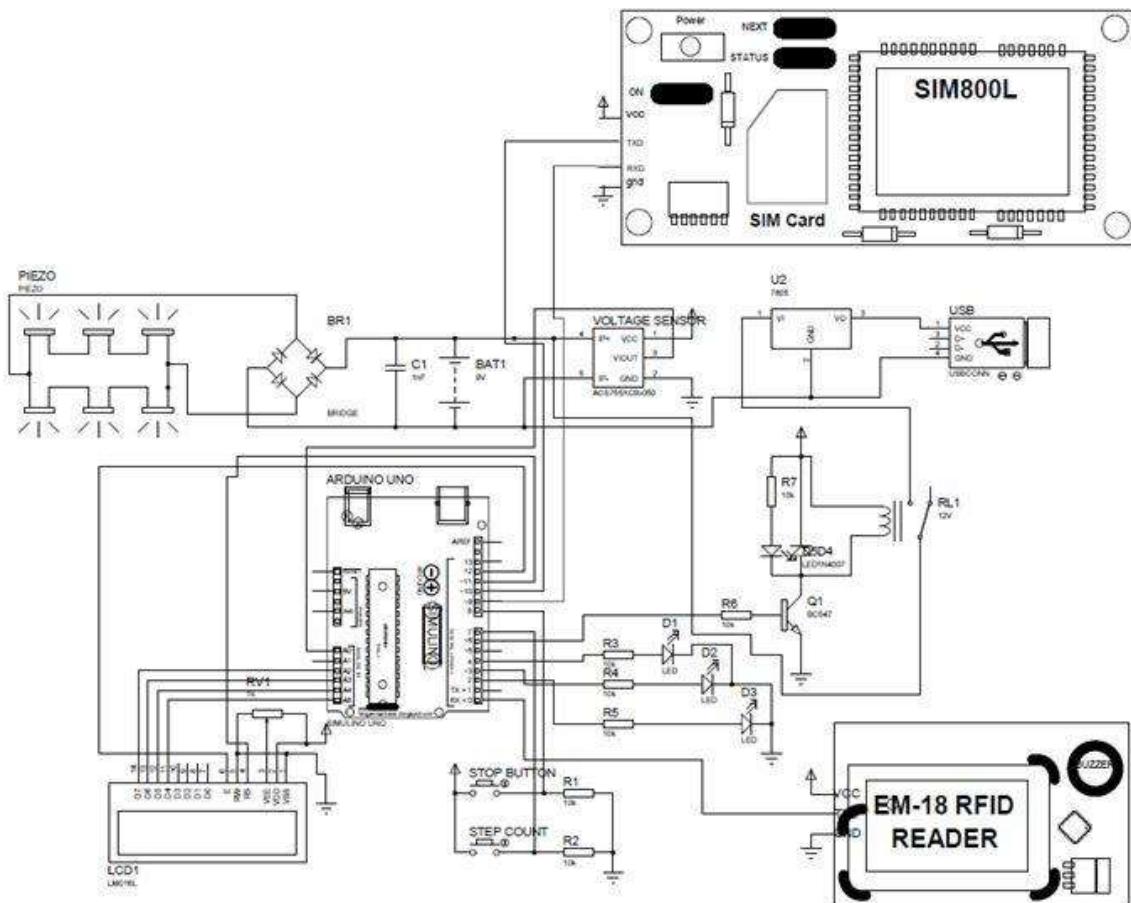


Bridge Rectifier: (e.g., using 1N4007 diodes) to convert AC voltage from piezo discs to DC.

Filter Capacitor: (e.g., 10µF) to smooth the DC output and eliminate ripples.

Voltage Regulator: IC 7805 to provide a stable 5V output for the Arduino and charging circuits.


Storage: Rechargeable battery (e.g., 4V Lead-Acid or 3.7V 18650 Li-ion).

Output/Display: 16x2 I2C LCD Display to show real-time voltage, power generated, and total step count.

Other components:

CIRCUIT DIAGRAM

V. OPERATION

Energy Capture (Piezoelectric Sensors): When you step on a piezoelectric disc or tile, the mechanical pressure causes it to generate a small AC voltage (e.g., 10mV to 100mV).

Multiple sensors are often used and connected to increase energy yield.

Signal Processing & Control (Arduino):

Rectification: A diode bridge converts the AC output to DC.

Voltage Boosting/Regulating: The low voltage from the sensors is boosted (e.g., from ~4V to 15V) using converters or boosters and then regulated to charge batteries.

Microcontroller (Arduino): The Arduino Uno reads the voltage/current, counts the steps (often when voltage exceeds a threshold), and sends data to an LCD display.

VI. APPLICATION

Emergency Charging Stations: Most commonly used to power mobile phone charging points in high-traffic public areas like malls, airports, and railway stations.

Smart Street Lighting: Powers LED street lamps by harvesting energy from pedestrians on busy sidewalks or stairs.

Public Monitoring & IoT: Provides electricity for IoT sensors used in air quality monitoring, noise detection, and Wi-Fi networks in smart cities.

Crowd Analytics: The Arduino can simultaneously act as a step counter, displaying real-time data on foot traffic volume on an LCD screen.

VII. ADVANTAGES

Eco-Friendly and Renewable: Harnesses wasted kinetic energy without fuel or emissions, making it a sustainable "green" energy source.

Real-Time Monitoring: Using an Arduino allows for smart features like real-time tracking of generated voltage, current, and battery levels via an LCD display.

Low Maintenance: Modern designs using piezoelectric transducers have few or no moving parts, leading to a long service life and reduced maintenance costs.

Scalability: The modular nature of Arduino and sensor tiles allows the system to be expanded to cover larger areas like stadiums or subway stations.

Self-Sustaining: The system can operate in remote or off-grid areas as it generates its own power to run the monitoring circuitry.

VIII. DISADVANTAGES

Low Power Output: The energy generated per footstep is relatively small (typically in the millivolt range), necessitating complex storage and boosting circuits to power significant loads.

High Initial Cost: While operation is cheap, the upfront cost of high-quality piezoelectric sensors and the required power management hardware can be high.

Material Fragility: Many piezoelectric materials (like ceramics) are brittle and can crack under extreme or sudden mechanical.

IX. APPLICATION

Emergency Charging Stations: Most commonly used to power mobile phone charging points in high-traffic public areas like malls, airports, and railway stations.

Smart Street Lighting: Powers LED street lamps by harvesting energy from pedestrians on busy sidewalks or stairs.

Public Monitoring & IoT: Provides electricity for IoT sensors used in air quality monitoring, noise detection, and Wi-Fi networks in smart cities.

Crowd Analytics: The Arduino can simultaneously act as a step counter, displaying real-time data on foot traffic volume on an LCD screen.

Smart Cities/Public Areas: Ideal for high-traffic zones like subway stations, malls, and schools to provide localized power.

Sustainable Energy: Harvests wasted human kinetic energy, offering a green solution.

Low-Power Devices: Powers small electronics, sensors, and LED lighting.

X. FUTURE SCOPE

The future scope for Arduino-based footstep power generation involves integrating it into smart cities for powering public spaces (malls, stations), leveraging improved piezoelectric materials, incorporating IoT for smart grids, using AI for optimization, and scaling up through hybrid systems, moving beyond simple low-power applications (like LEDs) to potentially powering larger devices or contributing to energy grids, making it a key part of sustainable energy solutions.

XI.

CONCLUSION

Feasibility and Sustainability: The system successfully converts mechanical pressure from footsteps into electrical energy using piezoelectric sensors, offering a reliable renewable source that does not depend on fuel or weather conditions.

Arduino's Role: Integrating an Arduino microcontroller is essential for energy management and real-time monitoring. It enables the tracking of total steps, instantaneous voltage levels, and battery status, making the system interactive and efficient.

XII. REFERENCES

- Chu, Steven, and Arun Majumdar. "Opportunities and challenges for a sustainable energy future." *Nature* "Smart privacy for the smart grid: embedding privacy into the design of electricity conservation." *Identity In the Information Society* 3.2 (2010): 275-294.
- Willems, P. A., G. A. Cavagna, and N. C. Heglund. "External, internal and total work in human Locomotion." *Journal of Experimental Biology* 198.2 (1995): 379-393.
- Madhushree, M., Utkarsh Kumar Rawat, And K. Internal Guide. *Design And Fabrication Of Footstep Power Generation By Crankshaft Mechanism*. 2017.
- Arduino, Store Arduino. "Arduino." *Arduino LLC* (2015).
- Teikari, Petteri, et al. "An inexpensive Arduino based LED stimulator system for vision research." *Journal Of neuroscience methods* 211.2 (2012): 227-236.

BIOGRAPHY

Devashri M. Askar

Email:- devashriaskar@gmail.com

Divya S. Jadhao

Email:- divyajadhao426@gmail.com

Gayatri R. Raut

Email:- rautravindra389@gmail.com

Mohini U. Chavhan

Email:- mohinichavhan06@gmail.com

Praful Rathod

Email:- prafulrathod8055@gmail.com

Kshitij Gayakwad

Email:- kshitijgayakwad4@gmail.com

Aniket Rathod

Email:- aniketrathod1645@gmail.com

Sagar Sonawane

Email:- sonawanesagar348@gmail.com