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Abstract - A successful supply chain is essential to the 

functioning of many different industries, including the 

healthcare sector. Healthcare management of supply chains 

require demand forecasting and inventory control to guarantee 

the best possible patient outcomes, keep costs under control, 

and reduce waste. Numerous advanced methods for inventory 

control and demand forecasting have been made possible by 

technological and data analytics advancements. To lower 

costs and improve patient care, this study intends to take 

advantage of these developments to precisely forecast demand 

as well as control the surgical supply inventory. A long-short-

term memory (LSTM) model is created to forecast the 

demand for frequently used surgical supplies to accomplish 

this goal. Furthermore, the number of scheduled surgeries 

impacts the demand for specific surgical supplies. A 

literature-based LSTM model is used to predict medical case 

volumes and supplies for specific procedures. The adopted 

model now includes new features to account for COVID-19-

related variations in surgical case volumes in 2020. The study 

uses Mixed Integer Programming (MIP) to create a dynamic 

replenishment model for multiple items. Forecasting can 

frequently be inaccurate, and demand is rarely predetermined 

in the real world. To address these issues, we developed a 

Two-Stage Stochastic Programming (TSSP) model. 
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inventory management, LSTM model. 

 

 

 

1.INTRODUCTION 

 
With a predicted growth rate of 5.1% from 2021 to 2030, the 

US national healthcare expenditure as a percentage of GDP is 

expected to be slightly above 18.0% in 2023 and reach roughly 

$6.8 trillion by that time [1, 2]. A significant portion of this 

expense is attributed to the cost of carrying out the surgical 

procedures and the supplies needed for them. These expenses 

are growing more and more expensive daily [3]. According to 

a 2016 study by [4], a single neurosurgery department 

squandered almost $2.9 million on out-of-date surgical 

supplies. Due to the significant amount of outdated inventory, 

patients and insurance companies bear the brunt of the 

increased costs. As a result, access to and cost of healthcare are 

increased. Since some surgical supplies are perishable and 

demand is unpredictable, inventory management for surgical 

supplies is an extremely difficult task. One of the biggest 

issues facing hospitals and other healthcare facilities is demand 

uncertainty. Hospitals need to make sure they have everything 

they need to give patients the care they need. They find it 

extremely difficult to determine the right level of inventories 

while maintaining a high level of service, though, due 

accurately and profitably to demand uncertainty. The risk of 

both overstocking and understocking arises frequently in the 

healthcare supply chain as a result. 

However, some emergency medical and surgical supplies, like 

gloves, gowns, syringes, and emergency vaccinations, are 

consumable and have a short shelf life [5]. The supplies 

should hold steady or hold onto their identity, strength, 

quality, and purity through the indicated expiration date. 

Therefore, to prevent health hazards and guarantee high-

quality service, these items must be used before the expiration 

date. To boost sales and lower the chance of items in their 

inventory going out of manner, manufacturers frequently offer 

a discounted price on their products [6]. Because of this, 

hospitals frequently buy supplies in bulk to take advantage of 

the lower prices, lower the chance of a product shortage, and 

lengthen the typical product shelf life [7]. A healthcare supply 

chain presented in figure 1.1. 

In this study, surgical supplies are divided into two categories: 

procedure-specific supplies, such as specific types of 

equipment and drugs required to perform a specific surgery, 

and commonly used surgical supplies, such as surgical blades, 

forceps, preoperative skin antiseptics, skin preparation 

solutions, and so on. Through combining the supplies with the 

anticipated demand of the corresponding procedures, the 

expected demand for special surgical supplies is predicted. 

Conversely, one can forecast the total number of anticipated 

surgical cases or create a demand forecasting model using 

historical consumption data to determine the expected demand 

for commonly used surgical supplies. Conversely, one can 

forecast the total number of anticipated surgical cases or 

create a demand forecasting model using historical 

consumption data to determine the expected demand for 

commonly used surgical supplies. Estimating the total number 

of surgical cases over a given time frame may be exceedingly 

difficult. Furthermore, there is no guarantee on the 

prediction's accuracy, making the indirect estimate of surgical 

supply demand unreliable. Thus, it is better to use a direct 

demand forecasting model to estimate the demand for 

frequently used surgical supplies. The surgical supply chain 

and logistical model are presented in figure 1.2. In order to 

help the administration schedule the operating room, staff, and 

restock surgical supplies, hospitals use forecasting models to 

estimate the number of surgical cases [18, 19]. Costs are 

increased by both overestimating and underestimating surgical 

resources. Thus, coordinating surgical supplies with the 

demand (surgical procedures) and allocating resources 

accordingly reduces operating expenses and inventory [20]. 

Thus, precise estimates of the expected number of surgical 

cases are necessary in order to allocate resources. 

The literature on surgical case volume prediction is extremely 

thin, despite its great importance. Time series forecasting 

models such as ARIMA and Seasonal ARIMA (SARIMA) are 

widely used in the literature [21]. To predict the volume of 

surgeries performed at a hospital, Trivedi et al. [22] used an 
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ARIMA model. According to the study, averaging the 

forecasting values produced by each separate ARIMA model 

outperforms choosing the best ARIMA model and making 

forecasts using it. Nonetheless, when examined separately, the 

ARIMA models that have smaller moving average and 

autoregressive terms function better. While this study predicts 

surgical case volumes overall, it ignores seasonal variations in 

time series data, which significantly affects how patients 

schedule surgeries. To predict the surgical case volume at a 

hospital, Zinouri et al. [6] used a historical per-day surgical 

volume dataset. The authors created a three-stage SARIMA 

model that includes identification, estimation, and diagnosis 

after taking the seasonality of the data into consideration. The 

forecasting authors took into account holidays as well, but 

they did not account for weekends because their demands are 

different from those of regular weekdays. According to the 

study, the SARIMA model achieves a MAPE score of less 

than 10% and outperforms the hospital's current prediction 

method. 

 

 

 
 

Fig -1.1: Healthcare Supply Chain 

 

 
 

 

Fig -1.2: Surgical Supply Chain and Logistic Model 

 

The prediction of surgical case volumes is also studied using 

linear regression models. A linear regression study was 

conducted by Tiwari et al. [23] in order to forecast surgical 

case volumes. Eggman et al. [8] used the multiple linear 

regression (MLR) model to study the medical case volume 

forecasting problem. Using four distinct MLR models, the 

authors estimated the number of surgeries seven, fourteen, and 

twenty-one days prior to the actual surgery day. Four 

independent variables are included in their study: the volume 

of scheduled surgeries, the number of scheduled surgeons, the 

total number of scheduled minutes, and the released group 

block. The analysis concludes that the seven-day-out model 

yields the most accurate prediction and accounts for the 

largest variance. However, as predicted, the model's 

performance decreases over time. These models assume that 

the time series is a linear function of historical values and 

random errors. As a result, these models are unable to provide 

high accuracy because they are unable to consider the 

nonlinear patterns of the data. For time series forecasting, 

these drawbacks and restrictions have led researchers to 

investigate probabilistic models in addition to machine 

learning (ML) and deep learning (DL) models [21]. While 

many researchers use ML and DL models for time series 

forecasting, such as Support Vector Regression (SVR), 

Artificial Neural Networks (ANN), Convolutional Neural 

Networks (CNN), Recurrent Neural Networks (RNN), Long 

Short-Term Memory Network (LSTM), Multilayer Perceptron 

(MLP), etc., there is little evidence in the literature that these 

models are used for surgical case volume prediction 

[24,25,26,27,28,29,30]. 

2. METHODOLOGY & MODEL DEVELOPMENT 
 

2.1 The Long Short Term Memory Model (LSTM) 

Recurrent neural networks (RNNs) of the type known as 
Long Short-Term Memory (LSTM) were first presented by 
Hochreiter, along with Schmidhuber, in 1997 [31] to address 
the issue of gradients that diminish, which standard RNNs 
frequently encounter during training. The network cannot 
develop long-term dependencies if mistake gradients, all of 
which transmit back via the network throughout instruction, 
get substantially inadequate as they shift back in time. This 
phenomenon is known as the "vanishing gradient problem." 
With the help of multiple gates that control the flow of 
information into and out of the memory cell, LSTMs created a 
cell with memory that can store information for a long time. 
The input, output, and forget gates are among the gates; their 
respective activation functions regulate how much data is 
permitted to flow through them. For data records, the LSTM 
model incorporates the encoder-decoder phenomenon. 
However, due to various limitations, it is a conditional model 
with many complexities. 

 

2.2 Inventory Management 

2.2.1 Economic Order Quantity (EOQ) 

The most well-known inventory control model is the 
conventional economic ordered quantity or EOQ. Ford 
Whitman Harris, an American production engineer, created 
this model in 1913 [32]. While there's a single product and 
demand is consistent, EOQ is used. The classical EOQ model's 
formulation is given below [33].  

 

Assumptions 

 Ordering and holding costs are fixed over time. 

 Lead time (L) is either zero or fixed. 

 Shortages are not permitted. 

 Demand is either deterministic or fixed per unit of 
time.  
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Notation 

D = demand for the product 

d = demand per unit of time 

S = Fixed cost 

C = purchasing price of per unit product 

Q = Ordering quantity 

H = Holding cost 

 

EOQ establishes the ideal order quantity to reduce the costs 
associated with ordering and keeping inventory. The total cost 
(TC) is, therefore. 

 

TC = Purchasing cost + Order cost + Holding cost 

 

EOQ = Q* = √2DS/hC 

 

Despite being a well-known and widely used inventory 
control model over time, EOQ has a few discernible 
shortcomings. Assuming a steady demand can result in 
stockouts or overstocking of inventory should the demand 
fluctuate. Additionally, it makes the assumption of a fixed 
order quantity, which may not be flexible when production 
costs or demand fluctuate. 

Furthermore, the EOQ model may not be appropriate for 
controlling inventory systems with numerous products or items 
since it was created for a single-item system of inventory. 

 

2.3 A simple MIP Model 

For the aim of this study, a multi-item equipped lot sizing 
problem was given a basic MIP model. The goal is to reduce 
all expenses, which include those related to ordering, holding 
inventory, purchasing, and shipping. Among the presumptions 
are that the time frame for planning remains constant and 
finite, the demands are known and deterministic, and each 
period has the same length. Requests are submitted at the start 
of each period, and every item is delivered at the start of the 
subsequent one. 

 

Below are definitions for every notation used in the model. 

 

Indices 

i = Item (i = 1,2,……..,I) 

j = Planning period (j = 1,2,.,..,J) 

 

Parameters 

Dij = Demand of item i in period j 

Ci = Purchasing price of item i  

hi = Inventory holding cost 

F = Fixed ordering cost 

T = Transportation cost 

U = Maximum capacity  

Vi = Volume of item  

M = A Big number  

 

Decision Variables 

Iij = Inventory of item i at the end of period j 

Xij = Binary variable (it is set as equal to 1 if item i is 
purchased in period j, 0) 

Qij = Quantity ordered 

Zij = Number of pellets dispatched 

 

Model Formulation 

 

 

 

 

This model's goal is to reduce the total cost, which includes 
the costs associated with ordering, transportation, inventory 
holding, and total purchases. The inventory balance restriction 
is the first one. Every period's inventory level is determined by 
adding up all of the previous period's inventory and deducting 
the demand for the current period from any fresh orders set at 
the start of the previous period. If an order is submitted for any 
specific item, the second constraint guarantees that the binary 
value is set to 1. The capacity constraint is the last restriction. 

 

Minimize TC = 

∑  [∑(𝐶𝑖𝑄𝑖𝑗 +  𝐹𝑋𝑖𝑗  +  
1

𝑊
 ∑(𝑃𝐶𝑖𝑆𝑖𝑗

𝑤 + ℎ𝑖𝐼𝑖𝑗
𝑤)) +  𝑇𝑍𝑗]

𝑊

𝑤=1

𝑖

𝑖=1

𝑗

𝑗=1

 

 

Subject to    

𝑄𝑖𝑗−1 + 𝑆𝑖𝑗−1
𝑤 −  𝐷𝑖𝑗

𝑤 =  𝐼𝑖𝑗
𝑤 −  𝐼𝑖𝑗−1

𝑤                         ∀𝑖, 𝑗, 𝑤 

 

𝑀𝑋𝑖𝑗 ≥  𝑄𝑖𝑗                                            ∀𝑖, 𝑗 

 

𝑄𝑖𝑗 ≥  0                                            ∀𝑖, 𝑗 

(𝐼𝑖𝑗
𝑤) ≥ 0 
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3. RESULTS AND DISCUSSION 

3.1 Demand Forecasting 

Section 3.1 stated that data pertaining to the surgical 
procedure is included in the first category of data. But not 
every procedure is carried out on a regular basis. Only 22 
procedures have more than 800 records apiece, according to 
the data analysis. For every one of them, LSTM models were 
created by Bui et al. [9]. Based on some similarities, they 
clustered the remaining procedures into 26 groups and created 
LSTM models for each group. To see if the forecasting has 
improved, new features are added to a single, frequently used 
non-emergency procedure in this study. Between May 2014 
and September 2021, there were 1684 days with 5988 
schedulings for this procedure. 

 

Fig -3.1: Prediction with original model 

 

Fig -3.2: Prediction with original model 

 

Figures 3.1 and 3.2 show the predictions made by the 
original forecasting model (which lacked COVID features) and 
its modified version (which included COVID features) for 
surgical case volumes. The findings show that both models' 
performances drastically decline after the first four weeks, 
when predictions are still quite high. 

It is noteworthy that the adjusted model initially exhibits a 
marginally higher prediction accuracy, with corresponding R2 
values of 0.970 and 0.958. However, for later periods, the 
model without COVID features performs better. The model's 
long-term performance does not seem to have been appreciably 
improved by the addition of new features. The modified 

model’s projected surgical case volumes are assumed to 
represent procedure specific surgical supply demand and can 
be used in the inventory replenishment model. 

 

Fig -3.3: Demand prediction for item XYZ 

 

The demand prediction results for item XYZ are shown in 
Figure 3.3. The plot shows that the first five weeks' forecasting 
accuracy is noticeably high. But then there is a sharp decline in 
accuracy, as evidenced by the corresponding R2 value falling 
from 0.870 to 0.443. 

 

3.2 Inventory Replenishment 

3.2.1 Data Generation 

The inventory replenishment models took into account nine 
items across five periods. Demand for the items was assumed 
at random. We used three demand categories (10-40, 40-70, 
and 70-100) and three price categories (1-50, 50-200, and 200-
500) to estimate the items' demand and price. The items have 
varying demand and price levels, such as low demand-low 
price, low demand-medium price, low demand-high price, 
medium demand-low price, and medium demand-medium 
price. For each of the nine items, 52 random numbers were 
generated based on their demand. The first five numbers were 
assumed to reflect the item's demand over the first five periods. 
Safety stock was calculated for each item with a 95% service 
level. The average demand and safety stock values were 
combined to determine the initial inventory level for each item. 
Item volume (in cubic inches) was also assumed. Table 5.1 
shows the demand, price, and volume of items used in 
replenishment models. 

The cost of keeping inventory was estimated to be 20% of 
the item's base price. It was estimated that the fixed ordering 
cost would be $50 and the fixed transportation cost per pallet 
would be $300. Pallet dimensions of 48 by 40 by 48 inches 
were regarded as standard. 

A new parameter, the shortage penalty, was added to the 
TSSP model. Its value is assumed to be twice the base price of 
the corresponding item. There were five different uncertain 
demand states included. The demands for every state were 
produced by randomly choosing a number for each product in 
each period from the range of the actual demand, plus or minus 
three. The five-week planning horizon and the very high 
forecasting accuracy of the first five weeks led to the creation 
of new demands that were within a narrow range of the actual 
demands. 
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Table -3.1: Demand, price, and volume of items 

 

3.2.2 Results and Analysis of Optimization Models 

3.2.2.1 Simple MIP model 

First, the data from 5.2.1 were used to solve the basic MIP 
model. AMPL was used to code and solve the model. The 
model's best ordering selections are shown in Table 5.2. It 
comes to $352936.81 in total. 

 

Table -3.2: Optimum ordering decisions by the simple 
MIP model 

 

To examine their effects on the overall cost and decision 
variables, the fixed ordering cost, transportation cost, and 
inventory holding cost coefficients have been changed one at a 
time, from 0.6 to 1.4 with an increment of 0.1. Variations in 
fixed ordering costs and transportation costs have nearly 
identical effects on the overall cost, as Figure 5.4 illustrates. 

It is evident from figure 5.4 that changing the fixed 
ordering and transportation costs has a greater impact on the 
overall cost than does changing the holding cost. 

 

 

 

 

 

Fig -3.4: Effect of varying each parameter one at a time on 
the total cost obtained by the simple MIP model. 

 

 

Fig -3.5: Effect of varying fixed ordering cost on total 
transportation and total inventory holding costs. 

 

 

 

Fig -3.6: Effect of varying transportation costs on total 
fixed ordering and total inventory holding costs. 

 

Item Period 1 Period 2 Period 3 Period 4 Period 5 Price Volume 

1 15 21 13 13 12 8.88 12 

2 51 69 55 40 49 25.00 24 

3 93 85 93 80 78 33.00 80 

4 26 19 11 25 33 71.00 120 

5 56 59 42 42 47 200.97 336 

6 75 87 94 77 84 157.00 48 

7 29 17 21 10 24 289.00 75 

8 62 67 58 49 46 346.00 105 

9 79 80 89 87 92 459.00 192 

 

Item Period 1 Period 2 Period 3 Period 4 Period 5 

Total 

Quantity 

Ordered 

1 0 36 0 0 0 36 

2 190 0 0 0 0 190 

3 80 251 0 0 0 331 

4 74 0 0 0 0 74 

5 88 0 89 0 0 177 

6 64 94 161 0 0 319 

7 28 0 34 0 0 62 

8 59 58 95 0 0 212 

9 64 89 179 0 0 332 
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Fig -3.7: Effect of varying inventory holding cost on total 
fixed ordering and total transportation costs. 

 

The fixed order cost, transportation Figures 3.5, 3.6, and 
3.7 show the relationship between the parameters. Figure 3.5 
demonstrates that changing the fixed cost has no effect on the 
overall transportation cost but does have a minor impact on the 
total holding cost at both extremes. Lower fixed costs lead to 
lower overall inventory holding costs, and vice versa. 
However, the inventory holding cost remains constant, while 
the fixed ordering cost coefficient ranges from 0.7 to 1.3. 
Figure 3.6 demonstrates that while transportation costs have no 
effect on fixed ordering costs, they do have a minor impact on 
holding costs at the lower end. The holding cost is slightly 
reduced but remains unchanged. 

Figure 3.7 shows that when the holding cost changes, the 
total transportation cost remains constant, while the total fixed 
ordering cost initially increases and then stabilises. The 
analyses indicate a positive correlation between inventory 
holding costs and fixed ordering costs, but no effect on 
transportation costs. The model's performance is validated by 
the consistent total number of orders per item across all 
scenarios. 

 

4. CONCLUSION 

The primary goal of this investigation is to create efficient 
models and methodologies that can precisely forecast demand 
and effectively oversee the surgical supply inventory within 
the supply chain for healthcare. This study made two 
predictions about the demand for surgical supplies. With an 
LSTM model, the demand for frequently used supplies is 
forecasted. Specific surgical procedures have a direct impact 
on the demand for surgical supplies. Therefore, another LSTM 
model that was found in the literature is used to forecast the 
demand for surgical supplies that are specific to a given 
procedure. In conclusion, this study has significantly advanced 
the development of efficient models and strategies for 
precisely forecasting demand and controlling inventory of 
surgical supplies in the healthcare supply chain, even though 
there is still room for improvement. This research has 
important practical ramifications since it can be used to 
enhance the effectiveness of healthcare supply chains in actual 
scenarios. Hospitals can cut expenses, minimize waste, and 
enhance patient care by precisely forecasting demand and 
managing inventory levels. This makes healthcare more widely 
available and reasonably priced. 
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