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Abstract 

This study explores the application of ARIMA (AutoRegressive Integrated Moving Average) models for forecasting 

onion production in India. Accurate forecasting of agricultural production is essential for effective planning and 

decision-making in the agricultural sector. ARIMA models, which integrate autoregression, differencing, and 

moving average components, offer a robust methodology for time series forecasting. This study aims to explore the 

application of ARIMA models in forecasting onion production in India. By utilizing historical production data, the 

study will identify suitable ARIMA parameters and evaluate the model’s effectiveness in predicting future 

production levels. Use the fitted model to forecast future onion production. Evaluate the model's performance using 

metrics like Mean Absolute Error (MAE), Mean Squared Error (MSE), or Root Mean Squared Error (RMSE).The 

goal is to provide insights that can help stabilize onion supply and contribute to better planning and decision-

making within the agricultural sector. 
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Introduction 

Onion production plays a crucial role in the agricultural sector of India, which is one of the largest producers of 

onions globally. The vegetable is an essential staple in Indian cuisine, contributing significantly to the country’s 

food security and agricultural economy. However, onion production is subject to various factors such as climatic 

conditions, market demand, and agricultural practices, which can cause substantial fluctuations in yield. 

Effective forecasting of onion production is vital for managing these fluctuations and ensuring a stable supply to 

meet consumer demand. Accurate forecasts can help farmers, policymakers, and stakeholders in making informed 

decisions related to production planning, pricing strategies, and supply chain management. 

In recent years, time series forecasting models have gained prominence in predicting agricultural outputs. Among 

these, the ARIMA (AutoRegressive Integrated Moving Average) model is widely used due to its ability to handle 

various types of time series data by incorporating autoregressive, differencing, and moving average components. 

The ARIMA model is especially useful in analyzing and forecasting data that exhibit trends or seasonality. 

In the following sections, we will outline the methodology for data collection, preprocessing, model identification, 

and forecasting, followed by an analysis of the results and their implications for stakeholders involved in onion 

production and distribution. 

 

Understanding ARIMA Models 

ARIMA models are used for analyzing and forecasting time series data. They consist of three main components: 

1. AutoRegression (AR): Refers to the model that uses the relationship between an observation and a 

number of lagged observations. 

2. Integrated (I): Refers to differencing of raw observations to make the time series stationary (i.e., removing 

trends and seasonality). 

3. Moving Average (MA): Involves modeling the error of the forecast as a linear combination of error terms 

observed at previous time points. 

The model is typically denoted as ARIMA(p, d, q):  

• p: Number of lag observations (lag order). 

http://www.ijsrem.com/
mailto:Sameerabanup.set@dsuniversity.ac.in


          International Journal of Scientific Research in Engineering and Management (IJSREM) 
                        Volume: 08 Issue: 08 | Aug - 2024                         SJIF Rating: 8.448                                     ISSN: 2582-3930                                                                                                                                               

 

© 2024, IJSREM      | www.ijsrem.com                                 DOI: 10.55041/IJSREM37087                   |        Page 2 

• d: Degree of differencing (number of times the data have had past values subtracted). 

• q: Size of the moving average window. 

Build an ARIMA Model for Forecasting Onion Production: 

1. Data Collection: 

o Gather historical data on onion production. This can include monthly or yearly production volumes 

over several years. 

2. Preprocessing: 

o Check for Stationarity: The data should be stationary for ARIMA to work effectively. Use 

statistical tests like the Augmented Dickey-Fuller test. 

o Differencing: Apply differencing to make the series stationary if it is not already. This involves 

subtracting the previous observation from the current observation. 

3. Model Identification: 

o Determine the values of p, d, and q using tools like the Autocorrelation Function (ACF) and Partial 

Autocorrelation Function (PACF) plots. 

4. Parameter Estimation: 

o Use statistical software or programming languages like R or Python to estimate the parameters of 

the ARIMA model. Libraries such as statsmodels in Python can be very useful. 

5. Model Fitting: 

o Fit the ARIMA model to your data and check the residuals to ensure they resemble white noise 

(i.e., they are uncorrelated and have a constant mean and variance). 

6. Forecasting: 

o Use the fitted model to forecast future onion production. Evaluate the model's performance using 

metrics like Mean Absolute Error (MAE), Mean Squared Error (MSE), or Root Mean Squared Error (RMSE). 

7. Validation: 

o Validate the model by comparing the forecasted values with actual values using a test dataset. 

Time Series Data  

Time series data is defined as a collection of values of a variable that differs over time. The intervals between 

observations of a time series can vary. However, the range of the intervals should be consistent throughout the 

observed period e.g. daily, weekly, monthly etc. In general, the time series is assumed to be stationary in empirical 

work based on time series (Gujarati & Porter 2008). 

Literature Review: 

Forecasting the Indian Stock Market As mentioned previously, the article “A Prediction Approach for Stock 

Market Volatility Based on Time Series Data” In the article, the logarithmic transformation is applied to the data 

and two ARIMA models are estimated to forecast the two indices. The best estimated models for the data were two 

ARIMA(0, 1, 0) with drift and the authors of the article conclude that a correctly chosen ARIMA model is 

sufficiently accurate in forecasting time series data. The conclusion is based on the fact that the predicted values of 

the used models in the article, on average, deviated by approximately 5% from the actual outcome, computed by 

the out-of-sample MPE (Idrees et al. 2019).   

Comparison of Forecasting Models Accuracy  In the article “ARIMA: An Applied Time Series Forecasting Model 

for the Bovespa Stock Index” the MAPE is used to determine which model, among several different forecasting 

models, is the most accurate in forecasting the Brazilian stock index Bovespa. Among the models, the authors 

compare an autoregressive model, two different exponential smoothing models, and an ARIMA(0, 2, 1). The Box-

Jenkins methodology is followed when building the ARIMA model in the article. The authors conclude that 

according to the data, an AR(1) is the most accurate model since it has the lowest out-of-sample MAPE. The 

authors further conclude that an AR(1) for the Bovespa stock index is an adequate model to use as a tool to forecast 

the index (Rotela Junior et al. 2014).  

Comparing the AIC of Different Models to Find the Best Fit By using Akaike’s information criterion, Snipes & 

Taylor (2014) performed a research to discover the best-fitted model to explain the relationship between the rating 

of wines and the respective price. In their research, they used what is known as the AICc which is a slightly 
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modified AIC. Similar to AIC, the AICc penalizes the addition of unnecessary information to a statistical model 

and the model with the lowest AICc score, among different models, has the best fit based on the data.  

 

Sequence Plot 

 

 

 
 

ONION_PRODUCTION 

 

Autocorrelations & Partial Autocorrelation: 

Series: ONION_PRODUCTION 

Lag Autocorrelation Partial 

Autocorrelati

on 

Box-Ljung Statistic 

Value df Sig.b 

1 -.282 -.282 3.585 1 .058 

2 .236 .170 6.167 2 .046 

3 .359 .518 12.282 3 .006 

4 -.132 .093 13.132 4 .011 

5 .403 .241 21.263 5 .001 

6 -.009 .030 21.267 6 .002 

7 .111 .005 21.919 7 .003 

8 .101 -.190 22.476 8 .004 

9 .020 -.078 22.499 9 .007 

10 .084 -.095 22.907 10 .011 

11 -.009 -.043 22.912 11 .018 

12 .121 .106 23.814 12 .022 

13 -.069 .031 24.117 13 .030 

14 -.030 -.131 24.175 14 .044 

15 .054 -.080 24.376 15 .059 

16 -.091 -.031 24.965 16 .070 

a. The underlying process assumed is independence (white noise). 

b. Based on the asymptotic chi-square approximation. 
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The above graph indicates that ARIMA (1, 1, 1),(1,1,3),(1,1,5),(3,1,1),(3,1,3),(3,1,5) overall provides a good fit for 

model ARIMA(3,1,5) ,Compared with above ARIMA Models., it has a wider confidence interval. It can be seen 

that the actual data from 1978 is to 2020- actually touches the interval, however, there still is a gap between the 

blue line and the interval in the ARIMA (1, 1, 5) forecast. 

 

I have evaluated all possible models and examined their error terms. Among the six models applied,  that models 

are  ARIMA (3,1,5) which error term reduction indicates the most appropriate fit for the models. Further I selected 

ARIMA (3,1,5) model.  

 

Time Series Modeler 

 

Model Description 

 Model Type 

Model ID ONION_PRODUCTION Model_1 ARIMA(3,1,5) 

 

Model Summary 

    

 

Fit Statistic Mean 

Stationary R-

squared 
.539 

R-squared .989 

RMSE .918 

MAPE 10.535 

MaxAPE 33.588 

MAE .627 

MaxAE 2.489 

Normalized BIC .629 

 

Hypotheses 

The Ljung-Box test uses the following hypotheses: 

H0: The residuals are independently distributed. 

HA: The residuals are not independently distributed; they exhibit serial correlation. 

Ideally, we would like to fail to reject the null hypothesis. That is, we would like to see the p-value of the test be 

greater than 0.05 because this means the residuals for our time series model are independent, which is often an 

assumption we make when creating a model. 

Test Statistic 

The test statistic for the Ljung-Box test is as follows: 

Q = n(n+2) Σpk
2 / (n-k) 

Number of 

Outliers 
Statistics DF Sig. 

4.991 10 .892 0 

The test statistic of the test is Q = 4.991 and the p-value of the test is 0.892, which is much larger than 0.05. Thus, 

we fail to reject the null hypothesis of the test and conclude that the data values are independent. 
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ARIMA Model Parameters 

 Estimate SE t Sig. 

ONION_PRODU

CTION-Model_1 

ONION_P

RODUCTI

ON 

No 

Tra

nsfo

rma

tion 

Constant .633 .317 1.995 .054 

AR 

Lag 

1 
-.238 .478 -.498 .622 

Lag 

2 
.278 .311 .893 .378 

Lag 

3 
.306 .390 .784 .439 

Difference 1    

MA 

Lag 

1 
.207 10.957 .019 .985 

Lag 

2 
.197 13.378 .015 .988 

Lag 

3 
-.526 11.367 -.046 .963 

Lag 

4 
-.020 5.528 -.004 .997 

Lag 

5 
-.501 5.593 -.090 .929 

 

For Model: 

Yi = C1 + φ (Yi-1) + θ ε1, i-1       ... (1) 

Where C is constant, εi is white noise 

Yi = Yi - Yi-1        ... (2) 

Combine (1) and (2), we have: 

Yi - Yi-1 = C1 + φ (Yi-1 - Yi-2) + ε1 + θ1 ε1, i-1    ... (3) 

Then, 

Yi = 0.760324 - 0.191462 Yi-1 + ε1 +0 .207ε1, i-1+ 0 .197ε2, i-2 - 0 .526ε3, i-3- 0 .020ε4, i-4- 0 .501ε5, i-5 ……….(4 

Forecast: 

Forecast 

Model 44 45 46 47 48 49 50 51 52 53 

ONION_PRODUCTION-

Model_1 

Forecast 27.21 29.92 29.41 31.60 32.28 32.99 34.09 34.65 35.45 36.17 

UCL 29.03 31.99 31.90 35.14 36.41 38.42 40.53 42.08 43.93 45.57 

LCL 25.40 27.85 26.92 28.07 28.15 27.55 27.66 27.21 26.98 26.76 

 

For each model, forecasts start after the last non-missing in the range of the requested estimation period, and end at 

the last period for which non-missing values of all the predictors are available or at the end date of the requested 

forecast period, whichever is earlier. 

 

Fit ARIMA Models 

Statistical 

fit 
ARIMA(1,1,1) ARIMA(1,1,3) ARIMA(1,1,5) ARIMA(3,1,1) ARIMA(3,1,3) ARIMA(3,1,5) 

RMSE 1.189 1.039 0.914 0.980 0.937 0.913 

MAE 0.917 0.791 0.668 0.711 0.641 0.627 
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Result 

The best forecast is obtained from ARIMA (3,1,5) become it has low RMSE, MAE value compared to other model. 

 

 

 
Conclusion: 

Overall, it is noted that ARIMA(3,1,5) provides a good fit for Onion production in India. Its gives a fairly accurate 

forecasting. However, although forecast from 1978-2030 are within the 95% interval, the graph shows that the 

green line of actual data has gradually moved out of the confidence interval. 
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