
 International Journal of Scientific Research in Engineering and Management (IJSREM)

 Volume: 07 Issue: 04 | April - 2023 Impact Factor: 8.176 ISSN: 2582-3930

© 2023, IJSREM | www.ijsrem.com DOI: 10.55041/IJSREM19050 | Page 1

FORENSIC SCANNER IDENTIFICATION USING DEEP LEARNING

Aakash Kumar, A.Nikhil, K.Pawan Sai Krishna Reddy, V. Vishal

Mrs. G Kalpana (Guide)

Department of Computer Science & Engineering

BACHELOR OF TECHNOLOGY

VIDYA JYOTHI INSTITUTE OF TECHNOLOGY

(An Autonomous Institution)

(Approved by AICTE , Accredited by NAAC, NBA & permanently Affiliated to JNTUH,)

Aziz Nagar Gate, C.B. Post, Hy derabad-500075

ABSTRACT

Due to the increasing availability and functionality of image editing tools, many forensic techniques such

as digital image authentication, source identification and tamper detection are important for forensic image

analysis. In this project, we describe a machine learning based system to address the forensic analysis of

scanner devices. The proposed system uses machine-learning to automatically learn the intrinsic features

from various scanned images.

 Our experimental results show that high accuracy can be achieved for source scanner identification.

The proposed system can also generate a reliability map that indicates the manipulated regions in an

scanned image.

Keywords:

 Reliability map, digital image authentication, deep learning, convolutional neural network.

http://www.ijsrem.com/

 International Journal of Scientific Research in Engineering and Management (IJSREM)

 Volume: 07 Issue: 04 | April - 2023 Impact Factor: 8.176 ISSN: 2582-3930

© 2023, IJSREM | www.ijsrem.com DOI: 10.55041/IJSREM19050 | Page 2

CHAPTER-1

INTRODUCTION

With powerful image editing tools such as Photoshop and GIMP being easily accessible, image

manipulation has become very easy. Hence, developing forensic tools to determine the origin or verify the

authenticity of a digital image is important. These tools provide an indication as to whether an image is

modified and the region where the modification has occurred. A number of methods have been developed

for digital image forensics.

For example, forensic tools have been developed to detect copy-move attacks and splicing attacks.

Methods are also able to identify the manipulated region regardless of the manipulation types. Other tools

are able to identify the digital image capture device used to acquire the image which can be a first step in

many types of image forensics analysis.

The capture of “real” digital images (not computer-generated images) can be roughly divided into

two categories: digital cameras and scanners. In this paper, we are interested in forensics analysis of images

captured by scanners. Unlike camera images, scanned images usually contain additional features produced

in the pre-scanning stage, such as noise patterns or artifacts generated by the devices producing the “hard-

copy” image or document.

 These scanner independent features increase the difficulty in scanner model identification. Many

scanners also use 1D “line” sensors, which are different than the 2D “area” sensors used in cameras.

Previous work in scanner classification and scanned image forensics mainly focus on handcrafted feature

extraction. They extract features unrelated to image content, such as sensor pattern noise, dust and scratches.

 Extract statistical features from images and use principle component analysis (PCA) and support

vector machine (SVM) to do scanner model identification. The goal is to classify an image based on scanner

model rather than the exact instance of the image. In linear discriminant analysis (LDA) and SVM are used

with the features which describe the noise pattern of a scanned image to identify the scanner model.

The increasing availability and functionality of image editing tools, many forensic techniques such

as digital image authentication, source identification and tamper detection are important for forensic image

analysis. In this project, we describe a machine learning based system to address the forensic analysis of

scanner devices. The proposed system uses machine-learning to automatically learn the intrinsic features

from various scanned images.

http://www.ijsrem.com/

 International Journal of Scientific Research in Engineering and Management (IJSREM)

 Volume: 07 Issue: 04 | April - 2023 Impact Factor: 8.176 ISSN: 2582-3930

© 2023, IJSREM | www.ijsrem.com DOI: 10.55041/IJSREM19050 | Page 3

Unlike camera images, scanned images usually contain additional features produced in the pre-

scanning stage, such as noise patterns or artifacts generated by the devices producing the “hard-copy” image

or document. These scanner independent features increase the difficulty in scanner model identification.

Many scanners also use 1D “line” sensors, which are different than the 2D “area” sensors used in cameras.

Previous work in scanner classification and scanned image forensics mainly focus on handcrafted feature

extraction. They extract features unrelated to image content, such as sensor pattern noise ,dust and scratches.

This method achieves high classification accuracy and is robust under various post-processing (e.g.

, contrast stretching and sharpening). In Dirik et al. propose to use the impurities (i.e. , dirt) on the scanner

pane to identify the scanning device. Convolutional neural networks (CNNs) such as VGG , ResNet ,

GoogleNet , and Xception have produced state-of-art results in object classification on ImageNet .

 CNNs have large learning capacities to “describe” imaging sensor characterstics by capturing

low/median/high-level features of images [8]. For this reason, they have been used for camera model

identification , and have achieved state-of-art results. In this paper, we propose a CNN-based system for

scanner model identification.

We will investigate the reduction of the network depth and number of parameters to account for

small image patches (i.e. , 64 × 64 pixels) while keeping the time for training in a reasonable range. Inspired

by we propose a network that is light-weight and also combines the advantages of ResNet and GoogleNet

.The proposed system can achieve a good classification accuracy and generate a reliability map (i.e. , a heat

map, to indicate the suspected manipulated region)

CHAPTER-2

LITERATURE SURVEY

Digital camera identification from sensor pattern noise

In this project, we propose a new method for the problem of digital camera identification from its images

based on the sensor's pattern noise. For each camera under investigation, we first determine its reference

pattern noise, which serves as a unique identification fingerprint. This is achieved by averaging the noise

obtained from multiple images using a de-noising filter.

http://www.ijsrem.com/

 International Journal of Scientific Research in Engineering and Management (IJSREM)

 Volume: 07 Issue: 04 | April - 2023 Impact Factor: 8.176 ISSN: 2582-3930

© 2023, IJSREM | www.ijsrem.com DOI: 10.55041/IJSREM19050 | Page 4

 To identify the camera from a given image, we consider the reference pattern noise as a

spreadspectrum watermark, whose presence in the image is established by using a correlation detector.

Experiments on approximately 320 images taken with nine consumer digital cameras are used to estimate

false alarm rates and false rejection rates. Additionally, we study how the error rates change with common

image processing, such as JPEG compression or gamma correction. As digital images and video continue

to replace their analog counterparts, the importance of reliable, inexpensive, and fast identification of digital

image origin will only increase.

Reliable identification of the device used to acquire a particular digital image would especially

prove useful in the court for establishing the origin of images presented as evidence. In the same manner

as bullet scratches allow forensic examiners to match a bullet to a particular barrel with reliability high

enough to be accepted in courts, a digital equivalent of bullet scratches should allow reliable matching of a

digital image to a sensor.

Source camera identification based on CFA interpolation

In this work, we focus our interest on blind source camera identification problem by extending our results

in the direction of M. Kharrazi et al. (2004). The interpolation in the color surface of an image due to the

use of a color filter array (CFA) forms the basis of the paper. We propose to identify the source camera of

an image based on traces of the proprietary interpolation algorithm deployed by a digital camera. For this

purpose, a set of image characteristics are defined and then used in conjunction with a support vector

machine based multi-class classifier to determine the originating digital camera. We also provide initial

results on identifying source among two and three digital cameras. In contrast to the other two papers,

Kirchner and B¨ohme describe a method to circumvent the forgery detection described above by restoring

CFA-like correlations. The naıve method would be to simply sample the forged image with a CFA filter,

and reinterpolate it. However, this form of sub-sampling the image could introduce aliasing if the forged

area’s spectrum was too wide. A much better method would be to find the additive tamper error (the

difference between tampered and original), low-pass filter it (e.g. Gaussian blur), and add it to the image

before sampling the result with a CFA filter. This would work, however it is not guaranteed to give the

minimal error from the original.

Camera model identification with the use of deep convolutional neural networks

In this project, we propose a camera model identification method based on deep convolutional neural

networks (CNNs). Unlike traditional methods, CNNs can automatically and simultaneously extract features

and learn to classify during the learning process. A layer of preprocessing is added to the CNN model, and

http://www.ijsrem.com/

 International Journal of Scientific Research in Engineering and Management (IJSREM)

 Volume: 07 Issue: 04 | April - 2023 Impact Factor: 8.176 ISSN: 2582-3930

© 2023, IJSREM | www.ijsrem.com DOI: 10.55041/IJSREM19050 | Page 5

consists of a high pass filter which is applied to the input image. Before feeding the CNN, we examined the

CNN model with two types of residuals.

The convolution and classification are then processed inside the network. The CNN outputs an

identification score for each camera model. Experimental comparison with a classical two steps machine

learning approach shows that the proposed method can achieve significant detection performance. The well

known object recognition CNN models, AlexNet and GoogleNet, are also examined.

 CHAPTER-3

 FEASIBILITY STUDY

In order to evaluate if the project can be done in the given time frame, we are using the TEL-evaluation

methods, where we cover the feasibility of the project from a technological, economical and legal

perspective. Those perspectives would help us have a broad vision on the requirements and implications

related to the project. We also discuss in this section the methodology used in conducting the project.

3.1 Technological Side

This project would be developed using technologies and libraries pertinent to object detection and tracking.

3.2 Economical Side

This project will be based on Free and Open Source Technologies and Libraries that are readily

available to developers and scientists, free of cost. This means that we don’t have to worry about costs

related to licensing or reusing source code and that the only costs related to the project are related to the

time and the effort spent into developing it.

http://www.ijsrem.com/

 International Journal of Scientific Research in Engineering and Management (IJSREM)

 Volume: 07 Issue: 04 | April - 2023 Impact Factor: 8.176 ISSN: 2582-3930

© 2023, IJSREM | www.ijsrem.com DOI: 10.55041/IJSREM19050 | Page 6

CHAPTER-4

SYSTEM REQUIREMENTS

4.1 EXISTING SYSTEM:

With powerful image editing tools such as Photoshop and GIMP being easily accessible, image

manipulation has become very easy. Hence, developing forensic tools to determine the origin or verify the

authenticity of a digital image is difficult. These tools doesn’t provide an indication as to whether an image

is modified and the region where the modification has occurred. A number of methods have been developed

for digital image forensics. For example, forensic tools have been developed to detect copy-move attacks

and splicing attacks.

Limitations:

• Does not indicate the area where the tampering has occurred.

• Less Accuracy

4.2 PROPOSED SYSTEM:

The proposed system An input image is first split into smaller sub-images Is of size n ×m pixels. This is

done for four reasons: a) to deal with large scanned images at native resolution, b) to take location

independence into account, c) to enlarge the dataset, and d) to provide low pre-processing time.

Advantages:

• Indication of tampering is specified.

• More accurate.

4.3 SYSTEM REQUIREMENTS:

4.3.1 SOFTWARE REQUIREMENTS:

• OS : Windows 7 and above (with any web browser)

• Software : Jupiter

• Libraries : OpenCV, Numpy, Pandas, Pillow, Matplotlib, PyLab, sklearn, keras

OpenCV:

The OpenCV full form is Open Source Computer Vision Library .OpenCV is a Python library that allows

you to perform image processing and computer vision tasks. It provides a wide range of features, including

object detection, face recognition, and tracking.

http://www.ijsrem.com/

 International Journal of Scientific Research in Engineering and Management (IJSREM)

 Volume: 07 Issue: 04 | April - 2023 Impact Factor: 8.176 ISSN: 2582-3930

© 2023, IJSREM | www.ijsrem.com DOI: 10.55041/IJSREM19050 | Page 7

The library has more than 2500 optimized algorithms, which includes a comprehensive set of both classic

and state-of-the-art computer vision and machine learning algorithms. These algorithms can be used to

detect and recognize faces, identify objects, track camera movements, track moving objects etc.

From this opencv module we used background subtraction algorithm for detection of vehicles. This

algorithm extracts the foreground objects from dynamic videos sequence i.e moving objects. We also used

morphology operations which are present in this module used for hole filling and noise removal.

Numpy:

NumPy, which stands for Numerical Python, is a library consisting of multidimensional array objects and

a collection of routines for processing those arrays. Using NumPy, mathematical and logical operations on

arrays can be performed.

In particular, NumPy arrays provide an efficient way of storing and manipulating data. NumPy also

includes a number of functions that make it easy to perform mathematical operations on arrays. This can

be really useful for scientific or engineering applications.

In our project we used this NumPy array to detect the vehicle and also to store the information about

the vehicle that is being detected for further tracking. Based on this information the vehicle counter is

increased efficiently.

Pandas:

Pandas is an open-source library that is made mainly for working with relational or labeled data both easily

and intuitively. It provides various data structures and operations for manipulating numerical data and time

series.

This library is built on top of the NumPy library. Pandas is fast and it has high performance &

productivity for users. It offers a variety of data structures and operations for working with time series and

numerical data. This library is developed on top of the NumPy library, which supports multi-dimensional

arrays.

 Pandas are quick and offer users high performance and productivity. Being one of the most widely

used data-wrangling tools, Pandas integrates well with a variety of different data science modules within

the Python environment and is frequently available in all Python distributions, including those that come

with your operating system and those sold by commercial vendors like ActiveState's ActivePython.

http://www.ijsrem.com/

 International Journal of Scientific Research in Engineering and Management (IJSREM)

 Volume: 07 Issue: 04 | April - 2023 Impact Factor: 8.176 ISSN: 2582-3930

© 2023, IJSREM | www.ijsrem.com DOI: 10.55041/IJSREM19050 | Page 8

Matplotlib :

Matplotlib is a python library used to create 2D graphs and plots by using python scripts. It has a module

named pyplot which makes things easy for plotting by providing feature to control line styles, font

properties, formatting axes etc. It supports a very wide variety of graphs and plots namely - histogram, bar

charts, power spectra, error charts etc. It is used along with NumPy to provide an environment that is an

effective open source alternative for MatLab. It can also be used with graphics toolkits like

PyQt and wxPython.

Matplotlib is a cross-platform, data visualization and graphical plotting library for Python and its

numerical extension NumPy. As such, it offers a viable open source alternative to MATLAB. Developers

can also use matplotlib’s APIs (Application Programming Interfaces) to embed plots in GUI applications.

A Python matplotlib script is structured so that a few lines of code are all that is required in most

instances to generate a visual data plot. The matplotlib scripting layer overlays two APIs:

The pyplot API is a hierarchy of Python code objects topped by matplotlib. pyplot. An OO (Object-

Oriented) API collection of objects that can be assembled with greater flexibility than pyplot. This API

provides direct access to Matplotlib’s backend layers.

PyLab :

PyLab is a Python package that provides us a namespace in Python programming, which is very similar to

MATLAB interface, by importing the functions from Python Numpy and Matplotlib Module. If we talk

about these modules' role in the PyLab package, Matplotlib Module provides functions that help us to create

visualizations of data, whereas the Numpy Module provides efficient numerical vector calculation functions

that are based on underlying C and Fortran binary libraries. We will learn about PyLab Module in this

section, and we will then plot some basic graphs and charts using the elements & functions which this

module provides to us.

PyLab Module is an associated module with the Matplotlib Module of Python, and it gets installed

alongside when we are installing Matplotlib Module in our system. We can also say that PyLab is a

procedural interface of the Matplotlib Module, an object-oriented plotting library of Python. PyLab in itself

is a convincing module for us because its bulky import the NumPy Module's functions and matplotlib.pyplot

package in a single namespace to provide us a MATLAB-like namespace.

http://www.ijsrem.com/

 International Journal of Scientific Research in Engineering and Management (IJSREM)

 Volume: 07 Issue: 04 | April - 2023 Impact Factor: 8.176 ISSN: 2582-3930

© 2023, IJSREM | www.ijsrem.com DOI: 10.55041/IJSREM19050 | Page 9

 While performing some tasks, we have to use graphs like line charts, bar graphs, etc., for many

reasons like to make the task more interactive, to pass the information in a very interesting way, graphs are

easy and self-explanatory, etc. That's why plotting a graph or chart is a very important and integrated part

of many functions. Graphs and charts play a very important role in the field of programming, and developers

are always recommended for using graphs in their programs.

Therefore, it becomes very important that we should be aware of how we can plot graphs from a

program. MATLAB is considered the best to plot graphs and charts, but it is not possible for everyone to

use MATLAB for plotting graphs & charts. We have many interactive modules present in Python that allow

us to plot graphs and charts in the output, but here we will talk about the module, which provides us a

MATLAB-like namespace by importing functions.

Keras :

Keras is an open-source high-level Neural Network library, which is written in Python is capable enough

to run on Theano, TensorFlow, or CNTK. It was developed by one of the Google engineers, Francois

Chollet.

 It is made user-friendly, extensible, and modular for facilitating faster experimentation with deep

neural networks. It not only supports Convolutional Networks and Recurrent Networks individually but

also their combination.

It cannot handle low-level computations, so it makes use of the Backend library to resolve it. The backend

library act as a high-level API wrapper for the low-level API, which lets it run on TensorFlow, CNTK, or

Theano.

Initially, it had over 4800 contributors during its launch, which now has gone up to 250,000

developers. It has a 2X growth ever since every year it has grown. Big companies like Microsoft, Google,

NVIDIA, and Amazon have actively contributed to the development of Keras. It has an amazing industry

interaction, and it is used in the development of popular firms likes Netflix, Uber, Google, Expedia, etc.

Keras being a model-level library helps in developing deep learning models by offering high-level

building blocks. All the low-level computations such as products of Tensor, convolutions, etc. are not

handled by Keras itself, rather they depend on a specialized tensor manipulation library that is well

http://www.ijsrem.com/

 International Journal of Scientific Research in Engineering and Management (IJSREM)

 Volume: 07 Issue: 04 | April - 2023 Impact Factor: 8.176 ISSN: 2582-3930

© 2023, IJSREM | www.ijsrem.com DOI: 10.55041/IJSREM19050 | Page 10

optimized to serve as a backend engine. Keras has managed it so perfectly that instead of incorporating one

single library of tensor and performing operations related to that particular library, it offers plugging of

different backend engines into Keras.

Keras consist of three backend engines, which are as follows:

TensorFlow

TensorFlow is a Google product, which is one of the most famous deep learning tools widely used in the

research area of machine learning and deep neural network. It came into the market on 9th November 2015

under the Apache License 2.0. It is built in such a way that it can easily run on multiple CPUs and GPUs

as well as on mobile operating systems. It consists of various wrappers in distinct languages such as Java,

C++, or Python.

 Theano

Theano was developed at the University of Montreal, Quebec, Canada, by the MILA group. It is an open-

source python library that is widely used for performing mathematical operations on multi-dimensional

arrays by incorporating scipy and numpy. It utilizes GPUs for faster computation and efficiently computes

the gradients by building symbolic graphs automatically. It has come out to be very suitable for unstable

expressions, as it first observes them numerically and then computes them with more stable algorithms.

 CNTK

Microsoft Cognitive Toolkit is deep learning's open-source framework. It consists of all the basic building

blocks, which are required to form a neural network. The models are trained using C++ or Python, but it

incorporates C# or Java to load the model for making predictions.

SkLearn :

Scikit-learn is an open source data analysis library, and the gold standard for Machine Learning (ML) in

the Python ecosystem. Key concepts and features include:

Algorithmic decision-making methods, including:

Classification: identifying and categorizing data based on patterns.

Regression: predicting or projecting data values based on the average mean of existing and planned data.

Clustering: automatic grouping of similar data into datasets.

Algorithms that support predictive analysis ranging from simple linear regression to neural network pattern

recognition.

http://www.ijsrem.com/

 International Journal of Scientific Research in Engineering and Management (IJSREM)

 Volume: 07 Issue: 04 | April - 2023 Impact Factor: 8.176 ISSN: 2582-3930

© 2023, IJSREM | www.ijsrem.com DOI: 10.55041/IJSREM19050 | Page 11

Interoperability with NumPy, pandas, and matplotlib libraries.

ML is a technology that enables computers to learn from input data and to build/train a predictive model

without explicit programming. ML is a subset of Artificial Intelligence (AI).

Scikit-learn (Sklearn) is the most useful and robust library for machine learning in Python. It provides a

selection of efficient tools for machine learning and statistical modeling including classification, regression,

clustering and dimensionality reduction via a consistence interface in Python. This library, which is largely

written in Python, is built upon NumPy, SciPy and Matplotlib.

Pillow:

The Python Pillow library is a fork of an older library called PIL. PIL stands for Python Imaging Library,

and it’s the original library that enabled Python to deal with images. PIL was discontinued in 2011 and only

supports Python 2.

To use its developers’ own description, Pillow is the friendly PIL fork that kept the library alive and

includes support for Python 3

There’s more than one module in Python to deal with images and perform image processing. If you want

to deal with images directly by manipulating their pixels, then you can use NumPy and SciPy. Other popular

libraries for image processing are OpenCV, scikit-image, and Mahotas. Some of these libraries are faster

and more powerful than Pillow.

However, Pillow remains an important tool for dealing with images. It provides image processing

features that are similar to ones found in image processing software such as Photoshop. Pillow is often the

preferred option for high-level image processing tasks that don’t require more advanced image processing

expertise. It’s also often used for exploratory work when dealing with images. Pillow also has the advantage

of being widely used by the Python community, and it doesn’t have the same steep learning curve as some

of the other image processing libraries.

4.3.2 HARDWARE REQUIREMENTS:

• Processor : Pentium IV onwards or Intel I5+

• RAM : 2 GB or higher

• Hard Disk Space : 20 GB or higher

• Input : Image

http://www.ijsrem.com/

 International Journal of Scientific Research in Engineering and Management (IJSREM)

 Volume: 07 Issue: 04 | April - 2023 Impact Factor: 8.176 ISSN: 2582-3930

© 2023, IJSREM | www.ijsrem.com DOI: 10.55041/IJSREM19050 | Page 12

4.4 REQUIREMENTS :

After the severe continuous analysis of the problems that rose in the existing system, we are now familiar

with the requirement that is required by the current system. The requirements that the system needs is

categorized into the functional and non-functional requirements. These requirements are listed below:

4.4.1 FUNCTIONAL REQUIREMENTS

 Functional requirement define which functions or features that are to be incorporated in any system to

full fill the business requirements and to be acknowledged by the clients. On the premise, the functional

requirements specify relationship between the inputs and outputs. All the operations to be performed on

the input data to obtain output are to be specified. This includes specifying the validity checks on the input

and output data, parameters affected by the operations and the other operations, which must be used to

transform the inputs into outputs. Functional requirements specify the behavior of the system for valid input

and outputs.

4.4.2 NON-FUNCTIONAL REQUIREMENTS

Non-functional requirements provide a description of features, characteristics and capacity of the system

and furthermore it may constraints the boundaries of the proposed system.

The following are the non-functional requirements that are essential depending on the performance, cost,

control and gives security efficiency and services.

Based on the above explained non-functional pre-requisites are as follows:

• User friendly

• System should provide better accuracy

• To perform efficiently with better throughput and response time

http://www.ijsrem.com/

 International Journal of Scientific Research in Engineering and Management (IJSREM)

 Volume: 07 Issue: 04 | April - 2023 Impact Factor: 8.176 ISSN: 2582-3930

© 2023, IJSREM | www.ijsrem.com DOI: 10.55041/IJSREM19050 | Page 13

CHAPTER-5

HIGH LEVEL DESIGN

5.1 Design consideration

In the design consideration the high level design of our project it includes four modules, for this

architecture pattern is as follows. Software design is a process of envisioning and defining software

solutions to one or more set of solutions one of the main component software design is the software

requirement analysis.

5.2 Architecture Design

 Figure: 5.1 Architecture

5.2.1 Image Split

The input image I is split into sub-images Is (n × m pixels) in zig-zag form. The values of n and m should

be no smaller than 64.The basic idea of region splitting is to break the image into a set of disjoint regions

which are coherent within themselves:

• Initially take the image as a whole to be the area of interest.

• Look at the area of interest and decide if all pixels contained in the region satisfy some similarity

constraint.

• If TRUE then the area of interest corresponds to a region in the image.

• If FALSE split the area of interest (usually into four equal sub-areas) and consider each of the

sub-areas as the area of interest in turn.

http://www.ijsrem.com/

 International Journal of Scientific Research in Engineering and Management (IJSREM)

 Volume: 07 Issue: 04 | April - 2023 Impact Factor: 8.176 ISSN: 2582-3930

© 2023, IJSREM | www.ijsrem.com DOI: 10.55041/IJSREM19050 | Page 14

• This process continues until no further splitting occurs. In the worst case this happens when the

areas are just one pixel in size.

If only a splitting schedule is used then the final segmentation would probably contain many neighbouring

regions that have identical or similar properties.

5.2.2 Patch Extraction

 From each Is, a patch of size 64 × 64 is extracted from a random location. We denote this extracted patch

as Ip. These extracted patches Ip along with their corresponding labels S are inputs into the network. This

pre-processing enables the proposed system to work with small-size images and use a smaller network

architecture to save training time and memory usage. Designing a suitable network architecture is an

important part in the scanner model identification system. There are several factors that need to be

considered to build the network: a) the kernel size, b) the utilization of pooling layers, c) the depth of the

network, and d) the implementation of the network modules.

A patch is small (generally rectangular) piece of an image. For example, an 8x8 patch is a square

patch containing 64 pixels of a larger image (of size say, 256x256 pixes). Due to the smaller size, some of

the image processing algorithms such as denoising/super resolution etc. are easier to operate on patches

rather than operating on the entire image itself. These algorithms split an image into several smaller sized

patches (of size say, 8x8), operate individually on each of these patches, and finally tile all these patches at

their respective locations.

Image patch is a container of pixels in larger form. For example, let’s say you have a image of 100px

by 100px. If you divide this images into 10x10 patches then you will have an image with 100 patches (that

is 100px in each patch). If you have developed an algorithm that will operate on 10px by 10px, that 10px

by 10px is the patch size. For example, pooling layer of CNN takes larger patches and turns them into one

pixel. You may think of it as window in signal processing.

In image processing patch and window is interchangeable most of the time, but patch is usually used

in context when your algorithm mainly focused on the fact that bunch of pixels share similar property. For

instance, patch is used in context of sparse representation or image compression, while window is used in

edge detection or image enhancement.

http://www.ijsrem.com/

 International Journal of Scientific Research in Engineering and Management (IJSREM)

 Volume: 07 Issue: 04 | April - 2023 Impact Factor: 8.176 ISSN: 2582-3930

© 2023, IJSREM | www.ijsrem.com DOI: 10.55041/IJSREM19050 | Page 15

5.2.3 CNN

CNN is a type of deep learning model for processing data that has a grid pattern, such as images, which is

inspired by the organization of animal visual cortex and designed to automatically and adaptively learn

spatial hierarchies of features, from low- to high-level patterns. CNN is a mathematical construct that is

typically composed of three types of layers (or building blocks): convolution, pooling, and fully connected

layers. The first two, convolution and pooling layers, perform feature extraction, whereas the third, a fully

connected layer, maps the extracted features into final output, such as classification.

A convolution layer plays a key role in CNN, which is composed of a stack of mathematical

operations, such as convolution, a specialized type of linear operation. In digital images, pixel values are

stored in a two-dimensional (2D) grid, i.e., an array of and a small grid of parameters called kernel, an

optimizable feature extractor, is applied at each image position, which makes CNNs highly efficient for

image processing,

since a feature may occur anywhere in the image. As one layer feeds its output into the next layer,

extracted features can hierarchically and progressively become more complex. The process of optimizing

parameters such as kernels is called training, which is performed so as to minimize the difference between

outputs and ground truth labels through an optimization algorithm called backpropagation and gradient

descent, among others.

In any Neural Network, first layer will be input layer and last will be the output layer. Input layer

contains all the inputs, here images is inputs. These images are given as input to the first convolutional

layer. The output of 1st layer will be given as input to the 2nd layer, so on & so forth. This process will

continue till the last layer.

While defining Neural Network, first convolutional layer requires the shape of image that is passed

to it as input. After passing the image, through all convolutional layers and pooling layers, output will be

passed to dense layer.

We can not pass output of convolutional layer directly to the dense layer because output of

convolutional layer is in multi-dimensional shape and dense layer requires input in single-dimensional

shape i.e. 1-D array.

So we will use Flatten() method in between convolutional and dense layer. Flatten() method converts multi-

http://www.ijsrem.com/

 International Journal of Scientific Research in Engineering and Management (IJSREM)

 Volume: 07 Issue: 04 | April - 2023 Impact Factor: 8.176 ISSN: 2582-3930

© 2023, IJSREM | www.ijsrem.com DOI: 10.55041/IJSREM19050 | Page 16

dimensional matrix to single dimensional matrix. In Neural Network, non-linear function is used as

activation function.

Pooling layer

A pooling layer provides a typical down sampling operation which reduces the in-plane dimensionality of

the feature maps in order to introduce a translation invariance to small shifts and distortions, and decrease

the number of subsequent learnable parameters. It is of note that there is no learnable parameter in any of

the pooling layers, whereas filter size, stride, and padding are hyperparameters in pooling operations,

similar to convolution operations.

Max pooling

The most popular form of pooling operation is max pooling, which extracts patches from the input feature

maps, outputs the maximum value in each patch, and discards all the other values A max pooling with a

filter of size 2 × 2 with a stride of 2 is commonly used in practice. This down samples the in-plane dimension

of feature maps by a factor of 2. Unlike height and width, the depth dimension of feature maps

remains unchanged.

Convolution layer

A convolution layer is a fundamental component of the CNN architecture that performs feature extraction,

which typically consists of a combination of linear and nonlinear operations, i.e., convolution operation and

activation function.

Convolution

Convolution is a specialized type of linear operation used for feature extraction, where a small array of

numbers, called a kernel, is applied across the input, which is an array of numbers, called a tensor. An

element-wise product between each element of the kernel and the input tensor is calculated at each location

of the tensor and summed to obtain the output value in the corresponding position of the output tensor,

called a feature map This procedure is repeated applying multiple kernels to form an arbitrary number of

feature maps, which represent different characteristics of the input tensors; different kernels can, thus, be

considered as different feature extractors Two key hyperparameters that define the convolution operation

are size and number of kernels. The former is typically 3 × 3, but sometimes 5 × 5 or 7 × 7. The latter is

arbitrary, and determines the depth of output feature maps.

http://www.ijsrem.com/

 International Journal of Scientific Research in Engineering and Management (IJSREM)

 Volume: 07 Issue: 04 | April - 2023 Impact Factor: 8.176 ISSN: 2582-3930

© 2023, IJSREM | www.ijsrem.com DOI: 10.55041/IJSREM19050 | Page 17

The Dropout Layer

Another typical characteristic of CNNs is a Dropout layer. The Dropout layer is a mask that nullifies the

contribution of some neurons towards the next layer and leaves unmodified all others. We can apply a

Dropout layer to the input vector, in which case it nullifies some of its features; but we can also apply it to

a hidden layer, in which case it nullifies some hidden neurons.

Dropout layers are important in training CNNs because they prevent overfitting on the training data. If they

aren’t present, the first batch of training samples influences the learning in a disproportionately high

manner. This, in turn, would prevent the learning of features that appear only in later samples or batches.

Flatten operation

Intuition behind flattening layer is to converts data into 1-dimentional array for feeding next layer. we

flatted output of convolutional layer into single long feature vector. which is connected to final

classification model, called fully connected layer. let’s suppose we’ve [5,5,5] pooled feature map are

flattened into 1x125 single vector. So, flatten layers converts multidimensional array to single

dimensional vector.

Dense Layer

it is simple layer of neurons in which each neuron receives input from all the neurons of previous layer,

thus called as dense. Dense Layer is used to classify image based on output from convolutional layers. A

dense layer is connected deeply with preceding layers in any neural network. Each neuron in the dense

layer is connected to every neuron of its preceding layer. Dense layers are the most commonly used layers

in Artificial Neural Networks models. The neurons in the dense layers in a model receive an outcome from

every neuron of the preceding layer. That's where neurons of the dense layer perform matrix-vector

multiplication. So in the background, the dense layer performs a matrix-vector multiplication. It is a

procedure where the row vector of the outcome from its previous layers equals the column vector of

the dense layer.

5.2.4 Reliability Map

Since our system is aimed at extracting intrinsic features of scanner models, it should also be able to identify

manipulated region irrespective of image content. In this task, we investigate to generate a reliability map

(i.e. a heat map) that can indicate suspicious forged areas in the images. The reliability map is generated

based on the predicted label obtained by majority vote.

In the reliability map, the color of the pixel represents the probability that it is generated by the

http://www.ijsrem.com/

 International Journal of Scientific Research in Engineering and Management (IJSREM)

 Volume: 07 Issue: 04 | April - 2023 Impact Factor: 8.176 ISSN: 2582-3930

© 2023, IJSREM | www.ijsrem.com DOI: 10.55041/IJSREM19050 | Page 18

predicted scanner model. Color “dark red” indicates a probability value equal to 1.0, and color “dark blue”

indicates a probability value equal to 0.0. Then we use the original image to generate manipulated images

in Photoshop. The forged images are shown in the first column. The top one is generated by self-image

copy-move with translation operations. The bottom one is generated by copy-pasting regions in an other

image source from different scanner model. The reliability maps generated with different stride size for

these two forged images. These results indicate the effectiveness of using our reliability map to indicate the

suspicious forgery.

Reliability maps are a tool that many industries use to plot the level of reliability of a product,

service, or system for a particular time frame. A reliability map can be used to make informed decisions on

how to improve the reliability of a particular product, service, or system. Reliability maps can plot the

likelihood of failure of a product or system, which can help managers determine how much time, effort,

and resources they need to invest in improving the system. Furthermore, reliability maps can also plot the

failure density on a particular system or product, allowing engineers to focus their efforts on specific areas

that might require more maintenance or replacement. Reliability maps are a valuable tool for predictive

maintenance, contributing to the optimization of the life cycle cost of equipment. With advanced IoT

sensors and analytics, reliability maps provide real-time insights into product performance, indicating when

a system or component is approaching its failure threshold.

5.3 Modules Specification

Vehicle detection and counting method mainly consist of 3 different modules.

5.3.1 PreProcessing

Pre-processing is a common name for operations with images at the lowest level of abstraction - both input

and output are intensity images. These iconic images are of the same kind as the original data captured by

the sensor, with an intensity image usually represented by a matrix of image function values (brightnesses).

The aim of pre-processing is an improvement of the image data that suppresses unwilling distortions or

enhances some image features important for further processing, although geometric transformations of

images (e.g. rotation, scaling, translation) are classified among pre-processing methods here since similar

techniques are used. Image pre-processing methods are classified into four categories according to the size

of the pixel neighborhood that is used for the calculation of a new pixel brightness. In this module we try

to improve the performance of forensic scanner.

http://www.ijsrem.com/

 International Journal of Scientific Research in Engineering and Management (IJSREM)

 Volume: 07 Issue: 04 | April - 2023 Impact Factor: 8.176 ISSN: 2582-3930

© 2023, IJSREM | www.ijsrem.com DOI: 10.55041/IJSREM19050 | Page 19

• It is also helpful in reducing the training period of the model.

• Here the given image as a input is splitted into number of sub-images randomly.

• Patches are extracted of size 64x64 from random location for each sub image.

• This Preprocessing enable the proposal system to work with small size images and use a small network

architecture to save training and memory usage.

5.3.2 Forensic Scanner

The capture of “real” digital images (not computer-generated images) can be roughly divided into

two categories: digital cameras and scanners. In this paper, we are interested in forensics analysis of images

captured by scanners. Unlike camera images, scanned images usually contain additional features produced

in the pre-scanning stage, such as noise patterns or artifacts generated by the devices producing the “hard-

copy” image or document.

These scanner independent features increase the difficulty in scanner model identification. Many

scanners also use 1D “line” sensors, which are different than the 2D “area” sensors used in cameras.

Previous work in scanner classification and scanned image forensics mainly focus on handcrafted feature

extraction. They extract features unrelated to image content, such as sensor pattern noise, dust and scratches.

• In This module we try to get the tampered image as an input from user.

• The execution of the project begins with this module.

• This module perform an important task of training the model for detecting tampered area in the image.

• It also classifies and sets the metrics for CNN algorithm.

5.3.3 Tampered Area Detection:

The tamper detection design can be implemented to sense different types, techniques, and sophistication of

tampering, depending on the perceived threats and risks. The methods used for tamper detection are

typically designed as a suite of sensors each specialized on a single threat type, some of which may be

physical penetration, hot or cold temperature extremes, input voltage variations, input frequency variations,

x-rays, and gamma rays. Examples of techniques used to detect tampering may include any or all of the

following: switches to detect the opening of doors or access covers, sensors to detect changes in light or

pressure.

http://www.ijsrem.com/

 International Journal of Scientific Research in Engineering and Management (IJSREM)

 Volume: 07 Issue: 04 | April - 2023 Impact Factor: 8.176 ISSN: 2582-3930

© 2023, IJSREM | www.ijsrem.com DOI: 10.55041/IJSREM19050 | Page 20

• In this module we try to detect the area image which have been tampered.

• The image is passed to CNN algorithm which is trained in Forensic Scanner module.

• It processes the image and generate a reliability map as a result.

• Reliability map indicates which portion of the image contain reliable camera traces.

 CHAPTER-6

 UML Diagrams

UML diagram is designed to let developers and customers view a software system from a different

perspective and in varying degrees of abstraction. UML diagrams commonly created in visual modeling

tools include. In its simplest form, a use case can be described as a specific way of using the system from

a User’s (actor’s) perspective. A more detailed description might characterize a use case as:

• a pattern of behavior the system exhibits

• a sequence of related transactions performed by an actor and the system

• delivering something of value to the actor

Use cases provide a means to:

• capture system requirements

• communicate with the end users and domain experts

• Test the system

Use cases are best discovered by examining the actors and defining what the actor will be able to do with

the system. Since all the needs of a system typically cannot be covered in one use case, it is usual to have

a collection of use cases. Together this use case collection specifies all the ways of using the system.

A UML system is represented using five different views that describe the system from distinctly different

perspective. Each view is defined by a set of diagrams, which is as follows.

User Model View

• This view represents the system from the user’s perspective.

• The analysis representation describes a usage scenario from the end-user’s perspective.

 Structural model view

• In this model the data and functionality are arrived from inside the system.

• This model view models the static structures.

http://www.ijsrem.com/

 International Journal of Scientific Research in Engineering and Management (IJSREM)

 Volume: 07 Issue: 04 | April - 2023 Impact Factor: 8.176 ISSN: 2582-3930

© 2023, IJSREM | www.ijsrem.com DOI: 10.55041/IJSREM19050 | Page 21

Behavioral Model View

• It represents the dynamic of behavioral as parts of the system, depicting the interactions of collection

between various structural elements described in the user model and structural model view.

Implementation Model View

• In this the structural and behavioral as parts of the system are represented as they are to be built.

Environmental Model View

• In this the structural and behavioral aspect of the environment in which the system is to be implemented

are represented.

UML is specifically constructed through two different domains they are:

• UML Analysis modeling, this focuses on the user model and structural model views of the system.

• UML design modeling, which focuses on the behavioral

6.1 CLASS DIAGRAM:

Class diagrams are the blueprints of your system or subsystem. You can use class diagrams to model the

objects that make up the system, to display the relationships between the objects, and to describe what those

objects do and the services that they provide. Class diagrams are useful in many stages of system design.

The class diagram is used to represent a static view of the system. It plays an essential role in the

establishment of the component and deployment diagrams. It helps to construct an executable code to

perform forward and backward engineering for any system, or we can say it is mainly used for construction.

It represents the mapping with object-oriented languages that are C++, Java, etc. Class diagrams can be

used for the following purposes:

1. To describe the static view of a system.

2. To show the collaboration among every instance in the static view.

3. To describe the functionalities performed by the system.

4. To construct the software application using object-oriented languages.

http://www.ijsrem.com/

 International Journal of Scientific Research in Engineering and Management (IJSREM)

 Volume: 07 Issue: 04 | April - 2023 Impact Factor: 8.176 ISSN: 2582-3930

© 2023, IJSREM | www.ijsrem.com DOI: 10.55041/IJSREM19050 | Page 22

Fig. 6.1 class diagram for forensic scanner identification using deep learning

6.2 ACTIVITY DIAGRAM:

An activity diagram is used to model a large activity's sequential work flow by focusing on action sequences

and respective action initiating conditions. The state of an activity relates to the performance of each

workflow step. An activity diagram is represented by shapes that are connected by arrows.

An activity partition or a swimlane is a high-level grouping of a set of related actions. A single

partition can refer to many things, such as classes, use cases, components, or interfaces. If a partition cannot

be shown clearly, then the name of a partition is written on top of the name of an activity. Using a fork and

join nodes, concurrent flows within an activity can be generated. A fork node has one incoming edge and

numerous outgoing edges.

 It is similar to one too many decision parameters. When data arrives at an incoming edge, it is

duplicated and split across numerous outgoing edges simultaneously. A single incoming flow is divided

into multiple parallel flows.

http://www.ijsrem.com/

 International Journal of Scientific Research in Engineering and Management (IJSREM)

 Volume: 07 Issue: 04 | April - 2023 Impact Factor: 8.176 ISSN: 2582-3930

© 2023, IJSREM | www.ijsrem.com DOI: 10.55041/IJSREM19050 | Page 23

Fig .6.2 Activity diagram for forensic scanner identification using deep learning

6.3 SEQUENCE DIAGRAM

A sequence diagram is a Unified Modeling Language (UML) diagram that illustrates the sequence of

messages between objects in an interaction. A sequence diagram consists of a group of objects that are

represented by lifelines, and the messages that they exchange over time during the interaction.

A role played by an entity that interacts with the subject is called as an actor. It is out of the scope

of the system. It represents the role, which involves human users and external hardware or subjects. An

actor may or may not represent a physical entity, but it purely depicts the role of an entity. Several distinct

roles can be played by an actor or vice versa. It is represented by a thin rectangle on the lifeline.

It describes that time period in which an operation is performed by an element, such that the top and

the bottom of the rectangle is associated with the initiation and the completion time, each respectively. The

messages depict the interaction between the objects and are represented by arrows. They are in the

sequential order on the lifeline. The core of the sequence diagram is formed by messages and lifelines.

http://www.ijsrem.com/

 International Journal of Scientific Research in Engineering and Management (IJSREM)

 Volume: 07 Issue: 04 | April - 2023 Impact Factor: 8.176 ISSN: 2582-3930

© 2023, IJSREM | www.ijsrem.com DOI: 10.55041/IJSREM19050 | Page 24

Fig. 6.3 sequence diagram for forensic scanner identification using deep learning

6.4 USECASE DIAGRAM

Use-case diagrams describe the high-level functions and scope of a system. These diagrams also identify

the interactions between the system and its actors. The use cases and actors in use-case diagrams describe

what the system does and how the actors use it, but not how the system operates internally.

Use-case diagrams illustrate and define the context and requirements of either an entire system or

the important parts of the system. You can model a complex system with a single use-case diagram, or

create many use-case diagrams to model the components of the system. You would typically develop use-

case diagrams in the early phases of a project and refer to them throughout the development process.

Use-case diagrams are helpful in the following situations:

• Before starting a project, you can create use-case diagrams to model a business so that all participants in

the project share an understanding of the workers, customers, and activities of the business.

http://www.ijsrem.com/

 International Journal of Scientific Research in Engineering and Management (IJSREM)

 Volume: 07 Issue: 04 | April - 2023 Impact Factor: 8.176 ISSN: 2582-3930

© 2023, IJSREM | www.ijsrem.com DOI: 10.55041/IJSREM19050 | Page 25

• While gathering requirements, you can create use-case diagrams to capture the system requirements and to

present to others what the system should do.

• During the analysis and design phases, you can use the use cases and actors from your use-case diagrams

to identify the classes that the system requires.

• During the testing phase, you can use use-case diagrams to identify tests for the system.

• The following topics describe model elements in use-case diagrams:

Use cases

A use case describes a function that a system performs to achieve the user’s goal. A use case must yield an

observable result that is of value to the user of the system.

Actors

An actor represents a role of a user that interacts with the system that you are modeling. The user can be a

human user, an organization, a machine, or another external system.

Fig. 6.4 usecase diagram for forensic scanner identification using deep learning

http://www.ijsrem.com/

 International Journal of Scientific Research in Engineering and Management (IJSREM)

 Volume: 07 Issue: 04 | April - 2023 Impact Factor: 8.176 ISSN: 2582-3930

© 2023, IJSREM | www.ijsrem.com DOI: 10.55041/IJSREM19050 | Page 26

 CHAPTER-7

 IMPLEMENTATION

In detail design the algorithms of each modules which is used in this project and the detail description of

each module is explained.

7.1 Algorithm for Image Splitting

Step 1: Import the necessary modules import PIL from PIL import Image

Step 2: Enter the image file path by using input() function to take the input from the user and save it in a

variable.

Step 3: Create an instance of the Image class and open the image using the open() method on this instance.

Step 4: Define the size (height and width) of the sub-images that you would like to split your original image

into.

 Step 5: Loop through the original image and slice it into the sub-images. You can use the crop() method to

extract each sub-image from the original image.

For example, assuming that the sub-image width and height are 100 pixels each:

for i in range(0, img.width, 100):

for j in range(0, img.height, 100):

box = (i, j, i+100, j+100)

sub_img = img.crop(box)

sub_img.show()

 Step 6: Save each sub-image to a separate file. You can use the save() method on each sub-image object

to save it to a file.

Note: You can modify the Step 5 as you desire according to your requirements in which equal-sized

rectangular sub-images or arbitrary sub-images having the same dimensions have to be produced from the

input image.

The Pil module is a python imaging library that provides extensive support for opening, manipulating, and

saving different image file formats. One of the most common use-cases of pil module is splitting an image

into multiple smaller sub-images, which can then be used for various purposes like creating image galleries,

image classification, image segmentation, etc. In this article, we will discuss how to split an image into sub-

images using pil module.

Loading the Image The first step in splitting an image is to load the image using the pil module.

Suppose that we have an image file "example.jpg" which we want to split into small sub-images. To load

this image, we can use the Image.open() method of pil module as shown below: from PIL import Image

http://www.ijsrem.com/

 International Journal of Scientific Research in Engineering and Management (IJSREM)

 Volume: 07 Issue: 04 | April - 2023 Impact Factor: 8.176 ISSN: 2582-3930

© 2023, IJSREM | www.ijsrem.com DOI: 10.55041/IJSREM19050 | Page 27

img = Image.open("example.jpg")

 Specifying the Size of Sub-images The next step is to specify the size of sub-images. It means that

we need to decide how many sub-images we want to create and what should be the size of each sub-image.

For example, if we want to create 4 sub-images of an image with dimensions 400x400, then each sub-image

should have dimensions 200x200.

Creating Sub-images After specifying the size of sub-images, we can create the sub-images

themselves. We can use the crop() method of pil module to extract sub-images from the original image.

The crop() method takes a tuple of four values (left, upper, right, lower) that specify the dimensions of the

sub-image. Here, left specifies the x-coordinate of the top-left corner of the sub-image, upper specifies the

y-coordinate of the top-left corner, right specifies the x-coordinate of the bottom-right corner, and lower

specifies the y-coordinate of the bottom-right corner.

The following code snippet shows how to create sub-images from the original image:

getting the dimensions of the original image

width, height = img.size

specifying the size of sub-images

sub_image_size = (200, 200)

calculating the number of rows and columns of sub-images

 num_cols = width // sub_image_size[0]

num_rows = height // sub_image_size[1]

creating a list to store sub-images

sub_images = []

iterating over each sub-image and creating it

for i in range(num_rows):

for j in range(num_cols):

left = j * sub_image_size[0]

 upper = i * sub_image_size[1]

right=left+sub_image_size[0]

lower = upper + sub_image_size[1]

sub_images.append(img.crop((left, upper, right, lower)))

The above code snippet creates sub-images of size 200x200 from the original image. We first calculate the

http://www.ijsrem.com/

 International Journal of Scientific Research in Engineering and Management (IJSREM)

 Volume: 07 Issue: 04 | April - 2023 Impact Factor: 8.176 ISSN: 2582-3930

© 2023, IJSREM | www.ijsrem.com DOI: 10.55041/IJSREM19050 | Page 28

number of rows and columns of sub-images based on the size we specified. Then we iterate over each sub-

image and extract it using the crop() method.

 Saving Sub-images

Finally, we can save the sub-images to disk using the save() method of Pil module. The following code

snippet shows how to save each sub-image with a unique name:

saving each sub-image with a unique name

for i, sub_image in enumerate(sub_images):

sub_image.save(f"sub_image_{i}.jpg")

 The above code snippet saves each sub-image with a unique name using the enumerate() function. In

conclusion, splitting an image into sub-images using Pil module is a straightforward process that involves

loading the image, specifying the size of sub-images, creating sub-images using the crop() method, and

saving the sub-images to disk using the save() method.

This process can be used for various purposes like creating image galleries, image classification, image

segmentation, etc.

7.2 Algorithm for patch extraction

For different reasons, someone might need to split an image into patches of the same size. Once, I had to do

it because my Machine Learning model couldn’t process high-resolution images, thus, I divided them into

multiple parts. In the beginning, I myself wrote the code for splitting, but then I discovered Patchify, which

is a great library made for this purpose. It provides two functions: patchify and unpatchify. The former is

used to split an image into patches and the latter to merge them.

To install the latest version of Patchify from PyPI use:

pip install patchify

http://www.ijsrem.com/
https://github.com/dovahcrow/patchify.py

 International Journal of Scientific Research in Engineering and Management (IJSREM)

 Volume: 07 Issue: 04 | April - 2023 Impact Factor: 8.176 ISSN: 2582-3930

© 2023, IJSREM | www.ijsrem.com DOI: 10.55041/IJSREM19050 | Page 29

This function splits an image into multiple patches of the same size.

 Fig. 7.1 image splitting into patches

To call it use:

patchify(image, patch_shape, step)

Arguments:

• image is a NumPy array with shape (image_height, image_width) for grayscale images or (image_height,

image_width, N) for N-channels images (3 if RGB).

• patch_shape is the shape of each patch, (patch_height, patch_width) or (patch_height, patch_width, N). It’s

not required to define a square patch, even a rectangular patch can be defined.

• step defines the distance between one patch and the next one (vertically and horizontally). If step ≥

patch_height there is no overlap between patches in the same row. If step ≥ patch_width there is no

overlap between patches in the same column.

Return:

If image is N-channels, the function returns a NumPy array with shape (n_rows, n_cols, 1, H, W,

N), where n_rows is the number of patches for each column and n_cols is the number of patches for each

row.

http://www.ijsrem.com/

 International Journal of Scientific Research in Engineering and Management (IJSREM)

 Volume: 07 Issue: 04 | April - 2023 Impact Factor: 8.176 ISSN: 2582-3930

© 2023, IJSREM | www.ijsrem.com DOI: 10.55041/IJSREM19050 | Page 30

Otherwise, if image is grayscale, the function returns a NumPy array with shape (n_rows, n_cols, 1, H,

W).The code below splits an RGB image and saves each patch in a new file using an incrementing

filename.

import

numpy

as np
from patchify import patchify
from PIL import Image

image = Image.open("image.jpg") # for example (3456, 5184, 3)
image = np.asarray(image)
patches = patchify(image, (512, 512, 3), step=512)
print(patches.shape) # (6, 10, 1, 512, 512, 3)

for i in range(patches.shape[0]):
 for j in range(patches.shape[1]):
 patch = patches[i, j, 0]
 patch = Image.fromarray(patch)
 num = i * patches.shape[1] + j
 patch.save(f"patch_{num}.jpg")

7.3 Algorithm for Error Level Analysis

Step 1:Load the image into the program.

Step 2:Divide the image into blocks.

step 3:For each block, compress it to a predetermined quality level using a standard compression algorithm.

Step 4:Restore the compressed image back to its original quality level.

Step 5:Subtract the restored image from the original image.

Step 6:Calculate the pixel intensity differences between the original and compressed images in each block.

Step 7:Repeat steps 3 to 6 while varying the quality level.

Step 8:Create an error level grid by recording the intensity differences for each block at each quality level.

Step 9:Analyze the error level grid for discrepancies indicating potential areas of manipulation or forgery.

Step 10:Display the results of the analysis.

Note: Error level analysis is a technique used to detect alterations in digital images. The algorithm provided

http://www.ijsrem.com/

 International Journal of Scientific Research in Engineering and Management (IJSREM)

 Volume: 07 Issue: 04 | April - 2023 Impact Factor: 8.176 ISSN: 2582-3930

© 2023, IJSREM | www.ijsrem.com DOI: 10.55041/IJSREM19050 | Page 31

above is a simplified explanation of the process and may be modified for more advanced analysis.

Error Level Analysis (ELA) is a technique used for forensic purposes to detect digital image tampering or

manipulation in images. It is based on the fact that every time an image is saved or compressed, it undergoes

some changes in the binary data, which creates an error level difference in that image. The method relies

on the principle that the regions of compressed or modified images tend to have a significantly different

pixel error level than other regions.

According to this principle, ELA method detects the inconsistencies in the pixel brightness levels of an

image, which result from different compression levels in the different areas of that image. In other words,

ELA is a process to detect discrepancies and variations in the block of pixels within an image. To perform

an ELA on an image, the first step is to make a copy of the image and save it using a particular degree of

compression. Afterward, the original image and the compressed image are compared by subtracting the

pixel values of one image from another at each corresponding block of pixels.

The resulting values give the error level in that block, which helps to identify if the image has been

manipulated or not. The areas of the image that are most likely to have been edited or compressed will

appear with higher error level values.

The accuracy of the ELA technique is affected by the level and type of compression applied to the

image, as well as the amount of noise in the original image. A higher compression level may result in the

loss of a considerable amount of data, which can make it harder to detect modifications in the block of

pixels. Moreover, images with a low signal-to-noise ratio may also create noise artifacts that may be

difficult to differentiate from errors that appear due to image editing.

The versatility of the ELA method can support many forensic applications. For instance, this technique can

help identify the original images used in a manipulated image. ELA can also help detect the areas and

degree of alteration in an image, which can be useful to understand the extent of image manipulation or

tampering. Moreover, ELA can help verify the authenticity of the digital images used as evidence in

criminal investigations.

In summary, ELA method is a useful technique to detect digital image manipulations, especially in

cases where the images have been compressed or altered. The results obtained from the ELA process

provide valuable insights into the method and extent of image tampering, which can be used to support

forensic investigations. The limitations of ELA are mainly related to the level and type of compression

http://www.ijsrem.com/

 International Journal of Scientific Research in Engineering and Management (IJSREM)

 Volume: 07 Issue: 04 | April - 2023 Impact Factor: 8.176 ISSN: 2582-3930

© 2023, IJSREM | www.ijsrem.com DOI: 10.55041/IJSREM19050 | Page 32

applied to an image, which may affect the accuracy of the analysis.

7.4 Algorithm for CNN

Step 1:Collect a large dataset of images produced by different forensic scanners. Step 2:Preprocess the

images to standardize the color, size, and format for use in the CNN algorithm.

Step 3:Develop a neural network architecture that is optimized for image recognition tasks, such as a deep

convolutional neural network.

Step 4:Train the neural network on the preprocessed dataset, using backpropagation to adjust the weights

and biases of the network to improve its accuracy.

Step 5:Validate the trained network on a separate test dataset to evaluate its performance and refine the

model if necessary.

Step 6:Use the trained CNN model to analyze new images and identify their source by matching their

distinctive patterns and features to those learned during the training process.

A convolutional neural network is a feed-forward neural network that is generally used to analyze visual

images by processing data with grid-like topology. It’s also known as a ConvNet. A convolutional neural

network is used to detect and classify objects in an image.

In CNN, every image is represented in the form of an array of pixel values.

CNN is a type of deep learning model for processing data that has a grid pattern, such as images, which is

inspired by the organization of animal visual cortex and designed to automatically and adaptively learn

spatial hierarchies of features, from low- to high-level patterns. CNN is a mathematical construct that is

typically composed of three types of layers (or building blocks): convolution, pooling, and fully connected

layers.

 The first two, convolution and pooling layers, perform feature extraction, whereas the third, a fully

connected layer, maps the extracted features into final output, such as classification.

A convolution layer plays a key role in CNN, which is composed of a stack of mathematical

operations, such as convolution, a specialized type of linear operation. In digital images, pixel values are

stored in a two-dimensional (2D) grid, i.e., an array of and a small grid of parameters called kernel, an

optimizable feature extractor, is applied at each image position, which makes CNNs highly efficient for

image processing, since a feature may occur anywhere in the image.

http://www.ijsrem.com/

 International Journal of Scientific Research in Engineering and Management (IJSREM)

 Volume: 07 Issue: 04 | April - 2023 Impact Factor: 8.176 ISSN: 2582-3930

© 2023, IJSREM | www.ijsrem.com DOI: 10.55041/IJSREM19050 | Page 33

As one layer feeds its output into the next layer, extracted features can hierarchically and

progressively become more complex. The process of optimizing parameters such as kernels is called

training, which is performed so as to minimize the difference between outputs and ground truth labels

through an optimization algorithm called backpropagation and gradient descent, among others.

In any Neural Network, first layer will be input layer and last will be the output layer. Input layer

contains all the inputs, here images is inputs. These images are given as input to the first convolutional

layer. The output of 1st layer will be given as input to the 2nd layer, so on & so forth. This process will

continue till the last layer.

While defining Neural Network, first convolutional layer requires the shape of image that is passed to it as

input. After passing the image, through all convolutional layers and pooling layers, output will be passed

to dense layer.

 Fig. 7.2 CNN recognizes an image the form of a matrix

Layers in a Convolutional Neural Network

Convolution Layer

This is the first step in the process of extracting valuable features from an image. A convolution layer has

several filters that perform the convolution operation. Every image is considered as a matrix of pixel values.

http://www.ijsrem.com/

 International Journal of Scientific Research in Engineering and Management (IJSREM)

 Volume: 07 Issue: 04 | April - 2023 Impact Factor: 8.176 ISSN: 2582-3930

© 2023, IJSREM | www.ijsrem.com DOI: 10.55041/IJSREM19050 | Page 34

Consider the following 5x5 image whose pixel values are either 0 or 1. There’s also a filter matrix with a

dimension of 3x3. Slide the filter matrix over the image and compute the dot product to get the convolved

feature matrix.

Fig. 7.3 convolved feature matrix

Pooling Layer

Pooling is a down-sampling operation that reduces the dimensionality of the feature map. The rectified

feature map now goes through a pooling layer to generate a pooled feature map.

Fig. 7.4 rectified feature map to pooled feature map

http://www.ijsrem.com/

 International Journal of Scientific Research in Engineering and Management (IJSREM)

 Volume: 07 Issue: 04 | April - 2023 Impact Factor: 8.176 ISSN: 2582-3930

© 2023, IJSREM | www.ijsrem.com DOI: 10.55041/IJSREM19050 | Page 35

The pooling layer uses various filters to identify different parts of the image like edges, corners, body,

feathers, eyes, and beak.

Fig. 7.5 pooling layer using various filters to identify parts of the image

Here’s how the structure of the convolution neural network looks so far.

Flattening Layer:

The next step in the process is called flattening. Flattening is used to convert all the resultant 2-Dimensional

arrays from pooled feature maps into a single long continuous linear vector.

Fig.7.6 pooled feature map to Flattening

The flattened matrix is fed as input to the fully connected layer to classify the image.

http://www.ijsrem.com/

 International Journal of Scientific Research in Engineering and Management (IJSREM)

 Volume: 07 Issue: 04 | April - 2023 Impact Factor: 8.176 ISSN: 2582-3930

© 2023, IJSREM | www.ijsrem.com DOI: 10.55041/IJSREM19050 | Page 36

Fig. 7.7 fully connected layer to classify the image.

http://www.ijsrem.com/

 International Journal of Scientific Research in Engineering and Management (IJSREM)

 Volume: 07 Issue: 04 | April - 2023 Impact Factor: 8.176 ISSN: 2582-3930

© 2023, IJSREM | www.ijsrem.com DOI: 10.55041/IJSREM19050 | Page 37

7.5 Confusion Matrix for CNN Model

A confusion matrix, as the name suggests, is a matrix of numbers that tell us where a model gets confused. It is a

class-wise distribution of the predictive performance of a classification model—that is, the confusion matrix is an

organized way of mapping the predictions to the original classes to which the data belong.

This also implies that confusion matrices can only be used when the output distribution is known, i.e.,

in supervised learning frameworks.

The confusion matrix not only allows the calculation of the accuracy of a classifier, be it the global or the class-

wise accuracy, but also helps compute other important metrics that developers often use to evaluate their models.

A confusion matrix computed for the same test set of a dataset, but using different classifiers, can also help

compare their relative strengths and weaknesses and draw an inference about how they can be combined (ensemble

learning) to obtain the optimal performance.

Although the concepts for confusion matrices are similar regardless of the number of classes in the dataset,

it is helpful to first understand the confusion matrix for a binary class dataset and then interpolate those ideas to

datasets with three or more classes. Let us dive into that next.

Confusion Matrix for Binary Classes

http://www.ijsrem.com/
https://www.v7labs.com/blog/supervised-vs-unsupervised-learning
https://www.v7labs.com/blog/ensemble-learning-guide
https://www.v7labs.com/blog/ensemble-learning-guide

 International Journal of Scientific Research in Engineering and Management (IJSREM)

 Volume: 07 Issue: 04 | April - 2023 Impact Factor: 8.176 ISSN: 2582-3930

© 2023, IJSREM | www.ijsrem.com DOI: 10.55041/IJSREM19050 | Page 38

A binary class dataset is one that consists of just two distinct categories of data. These two categories can be named

the “positive” and “negative” for the sake of simplicity. Suppose we have a binary class imbalanced dataset

consisting of 60 samples in the positive class and 40 samples in the negative class of the test set, which we use to

evaluate a machine learning model.

Now, to fully understand the confusion matrix for this binary class classification problem, we first need to get

familiar with the following terms:

• True Positive (TP) refers to a sample belonging to the positive class being classified correctly.

• True Negative (TN) refers to a sample belonging to the negative class being classified correctly.

• False Positive (FP) refers to a sample belonging to the negative class but being classified wrongly as belonging to

the positive class.

• False Negative (FN) refers to a sample belonging to the positive class but being classified wrongly as belonging

to the negative class.

Fig. 7.8 Confusion Matrix

the confusion matrix we may obtain with the trained model is shown above for this dataset. This gives us a lot

more information than just the accuracy of the model.

Adding the numbers in the first column, we see that the total samples in the positive class are 304+68=372.

Similarly, adding the numbers in the second column gives us the number of samples in the negative class, which

is 268 in this case.

http://www.ijsrem.com/

 International Journal of Scientific Research in Engineering and Management (IJSREM)

 Volume: 07 Issue: 04 | April - 2023 Impact Factor: 8.176 ISSN: 2582-3930

© 2023, IJSREM | www.ijsrem.com DOI: 10.55041/IJSREM19050 | Page 39

The sum of the numbers in all the boxes gives the total number of samples evaluated. Further, the correct

classifications are the diagonal elements of the matrix—344 for the positive class and 188 for the negative class.

Now, 68 samples (bottom-left box) that were expected to be of the positive class were classified as the

negative class by the model. So it is called “False Negatives” because the model predicted “negative,” which was

wrong. Similarly, 80 samples (top-right box) were expected to be of negative class but were classified as “positive”

by the model.

They are thus called “False Positives.” We can evaluate the model more closely using these four different

numbers from the matrix.

In general, we can get the following quantitative evaluation metrics from this binary class confusion

matrix:

Precision (for the positive class). The number of samples actually belonging to the positive class out of all the

samples that were predicted to be of the positive class by the model, for the above model the precision is

0.7709195955705345

Recall (for the positive class). The number of samples predicted correctly to be belonging to the positive class

out of all the samples that actually belong to the positive class. for the above model the recall is

0.76875

F1-Score (for the positive class). The harmonic mean of the precision and recall scores obtained for the positive

class. for the above model the f1 score is 0.7695625833030414

http://www.ijsrem.com/

 International Journal of Scientific Research in Engineering and Management (IJSREM)

 Volume: 07 Issue: 04 | April - 2023 Impact Factor: 8.176 ISSN: 2582-3930

© 2023, IJSREM | www.ijsrem.com DOI: 10.55041/IJSREM19050 | Page 40

Accuracy. The number of samples correctly classified out of all the samples present in the test set. for the above

model the accuracy is 76.8%

7.6 Sample Code

http://www.ijsrem.com/

 International Journal of Scientific Research in Engineering and Management (IJSREM)

 Volume: 07 Issue: 04 | April - 2023 Impact Factor: 8.176 ISSN: 2582-3930

© 2023, IJSREM | www.ijsrem.com DOI: 10.55041/IJSREM19050 | Page 41

 CHAPTER-8

 TESTING

The actual purpose of testing is to discover errors. Testing is the process of trying to discover every

conceivable fault or weakness in a work product. It is the process of exercising software with the intent of

ensuring that the Software system meets its requirements and user expectations and does not fail in an

unacceptable manner.

8.1 TYPES OF TESTING

There are many types of testing methods are available in that mainly used testing methods are as follows

8.1.1 Unit Testing

Unit testing involves the design of test cases that validate that the internal program logic is functioning

properly, and that program produces valid outputs. All decision branches and internal code flow should be

validated. It is the testing of individual software units of the application. It is done after the completion of

individual unit before integration.

8.1.2 Integration Testing

Software integration testing is the incremental integration testing of two or more integrated software

http://www.ijsrem.com/

 International Journal of Scientific Research in Engineering and Management (IJSREM)

 Volume: 07 Issue: 04 | April - 2023 Impact Factor: 8.176 ISSN: 2582-3930

© 2023, IJSREM | www.ijsrem.com DOI: 10.55041/IJSREM19050 | Page 42

components on a single platform to produce failures caused by interface defects. The task of the integration

test is to check that components or software applications e.g components in the software system or one step

up software applications at the company level interact without error.

8.1.3 Regression Testing

Every time a new module is added leads to changes in the program. This type of testing makes sure that the

whole component works properly even after adding components to the complete program.

8.1.4 Smoke Testing

This test is done to make sure that the software under testing is ready or stable for further testing

It is called a smoke test as the testing of an initial pass is done to check if it did not catch the fire or smoke

in the initial switch on.

8.2 Error Level Analysis of Dataset

 By using it, it’s possible to rapidly discover image manipulation. The web tool is based on the Python

Image Library and the libjpeg library (v6.2.0-822.2). The verification process consists of successive resaves

of the image at a predefined quality. The resulting picture is compared with the original one.

If an image hasn’t been manipulated, all its parts have been saved the same number of times, images are

composed by a portion of other sources, or have been simply been manipulated, will show different level

of errors visible in the ELA representation with different colors.

With the ELA method, it’s possible to discover image modification by establishing a chronological

order of changes of various parts of the image. The lighter parts have been edited most recently, the most

opaque have been saved several times.

Fig. 8.1 Original image

Then modify it by introducing a stack of coins and changing the aspect of the toad:

http://www.ijsrem.com/

 International Journal of Scientific Research in Engineering and Management (IJSREM)

 Volume: 07 Issue: 04 | April - 2023 Impact Factor: 8.176 ISSN: 2582-3930

© 2023, IJSREM | www.ijsrem.com DOI: 10.55041/IJSREM19050 | Page 43

Fig. 8.2 Tampered image

At this point, let’s upload the image to generate the following ELA representation.

Fig. 8.3 ELA representation

The sections that are black correspond to the parts that usually aren’t manipulated. Solid white blocks

usually represent the same. Solid colors present a good level of compression with minimal error levels,

displayed as darker areas in the image. ELA highlights the altered portions of the image that represent

higher ELA values, and a bright white color. Note that in the outline of objects in high frequency areas,

they usually have higher ELA values than the rest of the image. In the following image, the text of the

books stands out because the contrast creates a high frequency edge.

After the ela process the oupt shows the only part which was tampered.

http://www.ijsrem.com/

 International Journal of Scientific Research in Engineering and Management (IJSREM)

 Volume: 07 Issue: 04 | April - 2023 Impact Factor: 8.176 ISSN: 2582-3930

© 2023, IJSREM | www.ijsrem.com DOI: 10.55041/IJSREM19050 | Page 44

8.3 Test Cases

Fig. 8.4 set of tampered image and its detected image as output

 CHAPTER-9

 RESULT ANALYSIS

 Figure 9.1: Tampered Image

input output

http://www.ijsrem.com/

 International Journal of Scientific Research in Engineering and Management (IJSREM)

 Volume: 07 Issue: 04 | April - 2023 Impact Factor: 8.176 ISSN: 2582-3930

© 2023, IJSREM | www.ijsrem.com DOI: 10.55041/IJSREM19050 | Page 45

The first step is to input the tampered image to the forensic scanner identification system and there several

pre processing techniques will be performed ,at very first the input image is splitted into sub images which

is of nXn pixels, the value of each n should not be less than 64 pixels. From each sub-image, a patch of

size 64 × 64 is extracted from a random location. We denote this extracted patches Ip. These extracted

patches Ip along with their corresponding labels S are inputs into the network. This pre-processing enables

the proposed system to work with small-size images and use a smaller network architecture to save training

time and memory usage.

 Fig:9.2 Detection of tampered image as output

The final output of the forensic scanner identification system is a reliability map which indicates the

tampered image. Since our system is aimed at extracting intrinsic features of scanner models, it should also

be able to identify manipulated region irrespective of image content. In this task, we investigate to generate

a reliability map (i.e. a heat map) that can indicate suspicious forged areas in the images. The reliability

map is generated based on the predicted label obtained by majority vote.

Figure 9.2 shows an example of the reliability map. In the reliability map, the colour of the pixel represents

the probability that it is generated by the predicted scanner model.

http://www.ijsrem.com/

 International Journal of Scientific Research in Engineering and Management (IJSREM)

 Volume: 07 Issue: 04 | April - 2023 Impact Factor: 8.176 ISSN: 2582-3930

© 2023, IJSREM | www.ijsrem.com DOI: 10.55041/IJSREM19050 | Page 46

 CHAPTER-10

 CONCLUSION AND FUTURE SCOPE

In this project we investigate the use of deep-learning methods to address scanner model classification

and localization. Compared with classical methods, our proposed system can: a) learn intrinsic scanner

features automatically; b) have no restrictions on data collection; c) associate small image patches (64 × 64

pixels) to scanner models with high accuracy; and d) detect image forgery and localization on small image

size. the proposed system can automatically learn the inherit features to differentiate scanner models and is

robust to JPEG compression. the ability of the proposed system to identify suspected forged regions in

scanned images. These experimental results indicate that our reliability map provides a way to detect

forgeries in scanned images. Further work will be devoted to: a) improve the neural network architecture

in the proposed system, and b) evaluate the performance of the proposed system on scanned documents.

http://www.ijsrem.com/

 International Journal of Scientific Research in Engineering and Management (IJSREM)

 Volume: 07 Issue: 04 | April - 2023 Impact Factor: 8.176 ISSN: 2582-3930

© 2023, IJSREM | www.ijsrem.com DOI: 10.55041/IJSREM19050 | Page 47

CHAPTER-11

REFERENCES

• J. Lukas, J. Fridrich, and M. Goljan, “Digital camera identification from sensor pattern noise,” IEEE

Transactions on Information Forensics and Security, vol. 1, no. 2, pp. 205–214, June 2006.

• C. Szegedy, W. Liu, Y. Jia, P. Sermanet, S. Reed, D. Anguelov, D. Erhan, V. Vanhoucke, and A.

Rabinovich, “Going deeper with convolutions,” Proceedings of the IEEE Conference on Computer Vision

and Pattern Recognition, pp. 1–9, June 2015, Boston, MA..

• F. Chollet, “Xception: Deep learning with depthwise separable convolutions,” Proceedings of the IEEE

Conference on Computer Vision and Pattern Recognition, pp. 1800–1807, July 2017, Honolulu, HI.

• B. Bayar and M. C. Stamm, “A deep learning approach to universal image manipulation detection using a

new convolutional layer,” Proceedings of the 4th ACM Workshop on Information Hiding and Multimedia

Security, pp. 5– 10, June 2016, Vigo, Galicia, Spain. [Online]. Available:

http://dx.doi.org/10.1145/2909827.2930786

• J. Lukas, J. Fridrich, and M. Goljan, “Digital camera identification from sensor pattern noise,” IEEE

Transactions on Information Forensics and Security, vol. 1, no. 2, pp. 205–214, June 2006. [Online].

Available: http://dx.doi.org/10.1109/TIFS.2006.873602

• S. Bayram, H. Sencar, N. Memon, and I. Avcibas, “Source camera identification based on cfa

interpolation,” Proceedings of the IEEE International Conference on Image Processing, pp. 69–72,

September 2005, Genova, Italy. [Online]. Available: http://dx.doi.org/10.1109/ICIP.2005.1530330

• A. Tuama, F. Comb, and M. Chaumont, “Camera model identification with the use of deep convolutional

neural networks,” Proceedings of the IEEE International Workshop on Information Forensics and Security

(WIFS), pp. 1–6, December 2016, Abu Dhabi, United Arab Emirates. [Online]. Available:

http://dx.doi.org/10.1109/WIFS.2016.7823908

• N. Khanna, A. K. Mikkilineni, and E. J. Delp, “Scanner identification using feature-based processing and

analysis,” IEEE Transactions on Information Forensics and Security, vol. 4, no. 1, pp. 123–139, March

2009. [Online]. Available: http://dx.doi.org/10.1109/TIFS.2008.2009604

http://www.ijsrem.com/
http://dx.doi.org/10.1145/2909827.2930786
http://dx.doi.org/10.1109/TIFS.2006.873602
http://dx.doi.org/10.1109/ICIP.2005.1530330
http://dx.doi.org/10.1109/WIFS.2016.7823908

