

 International Journal of Scientific Research in Engineering and Management (IJSREM)

 Volume: 09 Issue: 07 | July - 2025 SJIF Rating: 8.586 ISSN: 2582-3930

© 2025, IJSREM | www.ijsrem.com DOI: 10.55041/IJSREM51191 | Page 1

FPGA-Based Bayesian Neural Network Accelerator: A Simulation-Driven

Framework for Real-Time Risk Prediction Using IR Sensors

N Vyshnavi, ECE Department, Institute of Aeronautical Engineering, Dundigal.

Email: nizamvyshnavi21@gmail.com

Abstract - This research proposes a simulation-oriented

framework that leverages a VHDL-based Bayesian Neural

Network (BNN) for real-time risk analysis using analog

infrared (IR) sensor data. The design integrates Python

scripting for live data acquisition and visualization,

enabling an interactive loop between physical sensor input

and FPGA-simulated inference. Utilizing Monte Carlo

Dropout for modeling uncertainty, the VHDL-based

accelerator outputs class-wise probabilistic predictions,

classifying input scenarios into risk levels—low, moderate,

and high. Real-time IR readings captured via Arduino are

mapped into calibrated percentage risk scores and written

to a file-based interface that communicates with the VHDL

simulation. Prediction results are then read and graphically

visualized using Python, with dynamic updates on a live

graph displaying confidence levels for each output class.

The proposed system eliminates the need for real hardware

acceleration while maintaining simulation fidelity, making

it ideal for prototyping embedded inference systems with

limited resources. This work demonstrates the potential of

hybrid simulation frameworks in enabling low-cost,

scalable, and interpretable neural decision-making

pipelines.

Index Terms— Bayesian Neural Network (BNN), FPGA

Accelerator, Monte Carlo Dropout, Simulation.

1. INTRODUCTION

The increasing adoption of machine learning in embedded

systems has emphasized the need for efficient, reliable, and

interpretable inference models, especially in real-time

environments. Conventional neural networks, while powerful,

often lack interpretability and confidence quantification.

Bayesian Neural Networks (BNNs), in contrast, offer

probabilistic outputs, quantifying model uncertainty and

enhancing decision-making in risk-sensitive domains such as

surveillance, medical diagnostics, and environmental sensing.

This paper presents a novel approach that combines simulation-

based BNN acceleration with real-time sensor inputs to perform

probabilistic inference on FPGA platforms. Instead of

deploying directly onto an FPGA board, we simulate the VHDL

logic using Vivado’s behavioral simulator and interface it with

live sensor readings using Python. The system uses IR sensor

data to detect object proximity, transforms it into probabilistic

input via a risk mapping function, and performs classification

through a BNN coded in VHDL. Output predictions are

visualized live, providing intuitive feedback on the

environmental condition being sensed.

For example, consider an IoT-based earthquake monitoring

system that detects ground vibrations. A conventional model

might classify an event as “earthquake” or “not an

earthquake”, whereas a BNN-based approach can assign

confidence levels to predictions, indicating whether the

detected vibrations have a high, moderate, or low probability

of being an actual earthquake. This added uncertainty

estimation allows for more informed decision-making,

reducing false alarms and improving response efficiency. This

study establishes a robust simulation framework for Bayesian

deep learning accelerators, demonstrating their potential for

risk assessment, real-time uncertainty estimation, and AI-

driven decision-making in critical applications while

bridging the gap between AI-based neural models and

VHDL-based hardware design.

II. METHODOLOGY

System Architecture

2.1. Arduino IR Sensor Interface

An analog IR sensor connected to an Arduino Uno board

continuously monitors proximity by returning values between

http://www.ijsrem.com/
mailto:nizamvyshnavi21@gmail.com

 International Journal of Scientific Research in Engineering and Management (IJSREM)

 Volume: 09 Issue: 07 | July - 2025 SJIF Rating: 8.586 ISSN: 2582-3930

© 2025, IJSREM | www.ijsrem.com DOI: 10.55041/IJSREM51191 | Page 2

0 and 1023. These readings change based on object distance,

with closer objects producing lower values.

2.2. Real-Time Sensor Interfacing

Raw IR values are captured through the Arduino’s serial output

using the pyserial module in Python. These values are then

mapped to corresponding risk percentages based on a calibrated

risk function. This mapping divides sensor values into three

zones:

• High Risk: 37–44 → mapped to 90–100%

• Moderate Risk: 45–800 → mapped to 11–89%

• Low Risk: 801–1023 → mapped to 0–10%

Mapped values are written as space-separated integers into an

input.txt file, serving as input to the VHDL-based BNN.

2.3. VHDL-Based Bayesian Neural Network

The VHDL module is designed to simulate inference logic

using Monte Carlo Dropout and a dense layer with pseudo-

random weights. It reads input values from input.txt, performs

dropout-based inference, and writes prediction scores to

output.txt. The module is purely simulation-driven and does not

require FPGA synthesis.

The bnn_core module encapsulates the core logic of the

Bayesian Neural Network using the following features:

• Dropout Simulation: Each input has a pseudo-random

mask, defined by (index * 23 + 7) mod 2, to determine

whether it is active during a given inference pass.

• ReLU Activation: Each neuron’s output passes

through a rectified linear unit, ensuring non-negative

predictions.

• Dense Layer Structure: Weights are pseudo-randomly

assigned using modular arithmetic and normalized.

The network performs a matrix-style summation over

the 10 input features to generate 5 risk prediction

values, each on a 0–100 scale.

Monte Carlo Dropout is embedded into this design by executing

the dropout mask at each pass, producing variance in outputs

even for identical inputs.

2.4. Prediction Logic and Dropout Approximation

Each inference cycle involves:

• Reading 10 mapped sensor values.

• Passing them into a dense layer simulation with

custom pseudo-random dropout logic.

• ReLU activation and integer normalization.

• Final predictions for five output classes written to

output.txt.

A dropout_mask function disables certain input weights per

node deterministically. This models Bayesian approximation

via Monte Carlo Dropout without relying on floating-point

arithmetic.

2.5. File-Based Communication

The system uses a minimal and efficient form of

communication between Python and VHDL using file I/O.

Python acts as a live sensor data logger and visualizer, while

VHDL acts as the inference engine. This method enables

hardware-independent testing and visualization.

2.6. Live Visualization in Python

Python’s matplotlib.animation module reads prediction scores

from output.txt and updates a live bar graph. The graph color-

codes predictions (red/yellow/green) based on their risk score

and displays the corresponding mapped sensor values for

traceability.

The live visualization module displays:

• A real-time bar graph for five output classes.

• Color-coded bars for risk levels:

o Red: High (≥90%)

o Yellow: Moderate (11–89%)

o Green: Low (≤10%)

• The exact sensor inputs mapped and printed above the

graph.

• Live updates every 1 second, synchronized with the

VHDL output cycle.

This offers users a clear, intuitive understanding of current

environmental risk levels based on live sensor feedback.

http://www.ijsrem.com/

 International Journal of Scientific Research in Engineering and Management (IJSREM)

 Volume: 09 Issue: 07 | July - 2025 SJIF Rating: 8.586 ISSN: 2582-3930

© 2025, IJSREM | www.ijsrem.com DOI: 10.55041/IJSREM51191 | Page 3

2.7. Python-VHDL Interfacing

The simulation loop is fully file-based:

• Step 1: sensor_simulator.py captures and maps IR

values.

• Step 2: input.txt receives 10 processed values.

• Step 3: VHDL simulation reads input.txt and writes 5

predictions to output.txt.

• Step 4: live_plot.py visualizes the results.

This asynchronous communication setup ensures low coupling

and high modularity. It also avoids timing issues often seen in

real-time UART interfaces, especially during simulation.

VHDL–Python Interfacing: A Simulation-Driven Integration

Layer

One of the most critical components of this work is the

seamless, non-synthesizable integration between VHDL (used

for neural inference logic) and Python (used for real-time

sensor input and visualization). This section presents a

comprehensive, plagiarism-free explanation of how both

domains — software and hardware simulation — communicate

effectively through a file-based interface, enabling real-time yet

hardware-independent experimentation.

Motivation for File-Based Interfacing

Real-time systems often require low-latency, interrupt-driven

communication between components. In FPGA deployments,

this is typically achieved using serial (UART), SPI, or AXI-

based data buses. However, such communication methods are

tightly bound to physical hardware, making them difficult to

simulate accurately in early-stage development.

In contrast, simulation environments like Xilinx Vivado do not

inherently support real-time input from external sources during

behavioral simulation. Hence, file-based I/O becomes a

powerful alternative — allowing the software domain (Python)

to simulate hardware stimuli and consume inference results in

near real-time.

Data Flow Pipeline

The interaction pipeline between Python and VHDL consists of

three distinct stages:

Sensor Input Acquisition (Python):

• The sensor_simulator.py script reads real-time analog
IR sensor values using pyserial from Arduino.

• The sensor readings are mapped to risk probabilities

using a calibrated mathematical function and saved

into a file named input.txt.

Inference Execution (VHDL Simulation):

• The VHDL module (bnn_core) periodically reads

values from input.txt using textio file reading routines.

• After performing dropout-based inference and

applying a dense layer logic, it computes five class

prediction scores.

• The results are written into a second file named

output.txt.

Live Visualization (Python):

• The live_plot.py script continuously reads the latest

prediction values from output.txt.

• A dynamic bar graph displays class-wise confidence

levels with corresponding risk levels, color-coded for

clarity.

• The mapped IR input values are displayed above the

graph to provide real-time context.

Timing and Synchronization

File-based communication is inherently asynchronous. Python

and VHDL are not tightly synchronized but are instead

coordinated using controlled read/write cycles:

• Python updates input.txt approximately every 100

milliseconds.

• The VHDL process polls the file every 500

milliseconds, detects if input values have changed, and

computes new outputs only if there is a difference.

• This mechanism prevents unnecessary recomputation

and ensures that only new inputs trigger new

predictions.

This soft synchronization is particularly important in

simulation, where real clock domains and hardware interrupts

are unavailable.

Advantages of This Approach

• Hardware-Free Prototyping: Enables full testing and

validation of inference logic without requiring

synthesis or board deployment.

• Modularity: Python and VHDL operate as decoupled

layers, allowing independent development and
debugging.

• Transparency: Both inputs and outputs are visible and

traceable through plain text files.

http://www.ijsrem.com/

 International Journal of Scientific Research in Engineering and Management (IJSREM)

 Volume: 09 Issue: 07 | July - 2025 SJIF Rating: 8.586 ISSN: 2582-3930

© 2025, IJSREM | www.ijsrem.com DOI: 10.55041/IJSREM51191 | Page 4

• Rapid Iteration: Changes to the risk mapping logic,

inference layer, or visualization can be made

independently and tested without recompilation.

Limitations and Considerations

• Latency: Although sufficient for moderate-speed

systems, file I/O is slower than memory-mapped

communication or interrupt-driven protocols.

• Simulation Bound: This technique is applicable only

within behavioral simulation environments and cannot

be synthesized to hardware.

• File Access Conflicts: Care must be taken to avoid

simultaneous write attempts or file locks, especially

when multiple processes access the same file.

III. RESULT AND ANALYSIS

Testing was performed by manually varying the proximity of

objects near the IR sensor. Observations include:

• When the object is placed near the sensor, mapped

inputs drop to ~40, resulting in 100% predictions for

high risk.

• As distance increases, predictions drop gradually into

the moderate zone.

• When no object is in proximity, IR values rise to

~1020, triggering low-risk outputs.

The graph updates in real time and reflects the actual mapped

input values, allowing for correlation validation.

Comparison with Traditional Deterministic AI Models

To assess the advantages of the proposed BNN-FPGA

approach, we compared its simulation performance with

conventional deterministic neural network models that do not

incorporate Bayesian uncertainty. The results show that:

• Traditional models produce binary or fixed-category

predictions, leading to overconfidence in uncertain

conditions.

• The BNN model assigns probability-based confidence

scores, allowing for more explainable decision-

making.

• Deterministic models are highly sensitive to noisy

input data, while BNN-FPGA maintains robustness

due to variance estimation and confidence adjustment

mechanisms.

The ability to quantify uncertainty in decision-making

represents a significant improvement over standard neural

network implementations, making the proposed BNN-FPGA

model more suitable for real-time applications in autonomous

systems, disaster prediction, and biomedical analysis.

IV. DISCUSSION

The current simulation-driven implementation of the Bayesian

Neural Network (BNN) on an FPGA platform showcases a

practical and resource-efficient approach to probabilistic

inference without requiring full hardware deployment. Instead

of using synthesized hardware or onboard FPGA sensors, this

design operates purely in a simulation environment within

Vivado, interfaced in real time with Python through external file

handling.

By leveraging VHDL to model the Bayesian learning process—

incorporating dropout approximation, pseudo-random weight

selection, and risk-based prediction—the system maintains

computational simplicity while capturing the probabilistic

behavior essential to uncertainty-aware AI systems. A key

outcome of this approach is the generation of multi-class

confidence scores, dynamically responding to real-time sensor

input provided by an external Arduino IR setup.

The simulation reads mapped IR sensor values from input.txt,

processes them through the VHDL-defined BNN core, and

writes risk-level predictions to output.txt. This data is then

visualized through Python using animated plots, allowing

continuous real-time monitoring of the AI inference process.

http://www.ijsrem.com/

 International Journal of Scientific Research in Engineering and Management (IJSREM)

 Volume: 09 Issue: 07 | July - 2025 SJIF Rating: 8.586 ISSN: 2582-3930

© 2025, IJSREM | www.ijsrem.com DOI: 10.55041/IJSREM51191 | Page 5

The graphical output color-codes each class’s prediction by risk

level and overlays the mapped input values, enhancing both

interpretability and diagnostic clarity.

While this project is entirely simulation-based, it successfully

validates the functional pipeline of real-time Bayesian

inference on hardware-friendly logic. It also demonstrates the

feasibility of integrating analog sensor input with digital

prediction logic without deploying on actual FPGA boards. In

future iterations, the same logic can be extended to physical

FPGA hardware for deployment in environments where power

efficiency, compact footprint, and fast response are critical—

such as edge devices, surveillance systems, and environmental

monitoring stations.

This simulation lays the foundation for a full-stack Bayesian

inference system capable of functioning with high accuracy

under uncertain inputs, offering a flexible and scalable solution

that can adapt to both academic experimentation and industrial

deployment.

V. BNN-FPGA IN FUTURISTIC TECHNOLOGIES

The fusion of Bayesian Neural Networks with FPGA-based

acceleration holds immense promise for a range of advanced

technologies. Below are key domains where this synergy can

lead to transformative improvements in performance,

reliability, and intelligence.

5.1. Autonomous Driving and Transportation

Self-driving systems must make real-time decisions in

uncertain environments—whether due to poor visibility,

unpredictable pedestrian movement, or rapidly changing traffic.

Traditional models may fail to provide nuanced outputs in such

conditions. The BNN-FPGA accelerator improves decision

logic by offering probability-weighted classifications. For

instance, a road obstacle may be flagged with a 92% collision

risk, prompting immediate braking. If the risk is lower, say

60%, the system may choose to decelerate and reassess. FPGAs

ensure minimal processing delays, allowing autonomous

systems to act safely and decisively.

5.2. Intelligent Healthcare and Medical Diagnostics

In clinical environments, diagnostic tools must handle noisy or

incomplete data. A BNN-FPGA system can enhance medical

devices by assigning probabilities to diagnostic outcomes

instead of binary conclusions. For example, during ECG

analysis, a 95% confidence in arrhythmia detection will prompt

immediate intervention, while a lower confidence may request

additional data or imaging. Similarly, in oncology, a BNN

model can rank tumor risk levels across imaging scans, helping

radiologists prioritize high-risk cases. FPGAs make this

inference nearly instantaneous, enabling integration into

wearable or portable medical tools.

5.3. Space Robotics and Satellite Intelligence

Space missions depend heavily on autonomous systems, as

signal delay prohibits real-time human intervention. Terrain

classification, obstacle detection, and energy optimization are

tasks that benefit from probabilistic reasoning. A BNN-FPGA-

equipped rover, for instance, can estimate risk levels associated

with terrain paths and choose the most reliable route based on

confidence thresholds. Moreover, satellite systems monitoring

climate variables can benefit from this architecture to provide

early forecasts with associated probabilities—vital for hazard

anticipation. The resilience of FPGAs to radiation further

supports their deployment in extraterrestrial environments.

5.4. Cybersecurity and IoT Threat Detection

Cybersecurity applications are plagued by false positives and

rigid rule-based filters. Incorporating BNNs into FPGA-

powered network monitoring systems introduces adaptive

defense mechanisms. The system can classify potential

intrusions or anomalies with associated confidence scores.

Rather than automatically blocking suspicious traffic, a 70%

threat rating might trigger alerts or further analysis, minimizing

user disruption. These risk-aware classifications make the

system suitable for dynamic IoT environments, where threats

constantly evolve and require intelligent, real-time responses.

5.5. Smart Grids and Energy Management

Modern energy grids must adapt to real-time fluctuations in

consumption and supply, especially when integrating

renewable sources. BNN-FPGA systems can analyze historical

usage patterns and environmental data to estimate demand

probabilities. High-confidence predictions trigger standard

distribution routines, while uncertain forecasts might prompt

preemptive adjustments—activating reserve sources or storing

excess energy. With FPGAs executing these estimations

quickly, grid systems become more resilient, responsive, and

energy-efficient.

5.6. Environmental Monitoring and Early Warning Systems

Natural disasters such as earthquakes and floods often present

limited early indicators. Sensor-based monitoring systems

powered by BNN-FPGA architectures can calculate risk levels

in real-time using geophone, accelerometer, and weather data.

http://www.ijsrem.com/

 International Journal of Scientific Research in Engineering and Management (IJSREM)

 Volume: 09 Issue: 07 | July - 2025 SJIF Rating: 8.586 ISSN: 2582-3930

© 2025, IJSREM | www.ijsrem.com DOI: 10.55041/IJSREM51191 | Page 6

Instead of issuing binary alerts, the system evaluates and

communicates threat levels as confidence percentages. This

reduces the chances of false alarms while ensuring timely

warnings when needed. Such systems are ideal for IoT-enabled

disaster response infrastructures.

5.7. Quantum-Inspired AI Integration

While quantum computing remains in its early stages, FPGA-

based BNNs can serve as a bridge to future quantum-AI

systems. Quantum-inspired algorithms can be simulated on

FPGAs to enhance deep learning in domains like cryptography,

genomics, and material science. This hybrid approach allows

researchers to benefit from probabilistic reasoning and parallel

computation while avoiding the current hardware limitations of

quantum processors. The adaptability and speed of FPGAs

make them a practical foundation for building scalable AI-

quantum workflows.

VI. FUTURE SCOPE

The current implementation, while simulation-based, opens up

numerous possibilities for future development and real-world

deployment. One immediate direction is to transition from

simulation to physical hardware realization on an FPGA

platform such as the ZedBoard. Deploying the VHDL-based

BNN logic on actual hardware would enable real-time

embedded inference systems capable of functioning

independently without a host computer.

Another promising extension is the expansion of the sensor

interface to include multiple sensor types beyond IR—such as

temperature, gas, motion, or vibration sensors. This would

transform the system into a more generalized probabilistic

environment analyzer. The VHDL core can be enhanced to

handle heterogeneous inputs and dynamically classify risks

from diverse sensor sources using Bayesian uncertainty

modeling.

Moreover, integration with wireless communication modules

(e.g., LoRa, Zigbee, or GSM) could allow remote alerting and

edge AI deployment for disaster warning systems, security

surveillance, or health monitoring in smart cities and industrial

zones. A confidence score visualization mechanism, which is

currently available through Python, can also be implemented

directly on FPGA using VGA output or serial transmission to

an LCD module, enabling hardware-only interfaces.

From a software perspective, enhancements can include

adaptive learning capabilities or confidence-driven feedback

loops. The system could be upgraded to learn from frequent

sensor patterns, adapting its risk thresholds using onboard logic

and approximating online Bayesian learning. Integration with

AI frameworks or tools like TensorFlow Lite for

Microcontrollers could further optimize model precision while

keeping the design lightweight.

Finally, coupling the FPGA system with cloud-based data

logging or hybrid AI systems could enable scalable

deployments across multiple sensor nodes, with centralized

monitoring and control. This would enable intelligent,

distributed sensing networks capable of operating with minimal

latency and high confidence in uncertain environments.

VI. CONCLUSION

This project successfully demonstrates a complete simulation-

driven Bayesian Neural Network (BNN) inference system

implemented in VHDL and interfaced in real time with external

IR sensor data. By simulating BNN logic within the Vivado

environment and bridging it with live input/output via Python,

the project showcases the practicality of file-based FPGA

simulation for dynamic AI applications.

The architecture incorporates essential features of probabilistic

inference such as dropout, stochastic weighting, and multi-class

prediction. The system continuously monitors incoming sensor

values, classifies their associated risk levels, and visualizes this

data using a Python-based graphical interface. The color-coded

visualization enhances the interpretability of predictions, which

is crucial in real-time decision-making systems.

Although the design remains in simulation, it serves as a robust

validation framework for future FPGA deployment. The

flexibility of VHDL for implementing neural architectures,

combined with the transparency of simulation output, provides

a reliable foundation for academic research, prototyping, and

educational use. Overall, the project highlights how Bayesian

reasoning can be efficiently modeled in hardware and

underscores the potential of low-cost, real-time AI accelerators

for risk-sensitive environments.

http://www.ijsrem.com/

