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Abstract - This research proposes a simulation-oriented 

framework that leverages a VHDL-based Bayesian Neural 

Network (BNN) for real-time risk analysis using analog 

infrared (IR) sensor data. The design integrates Python 

scripting for live data acquisition and visualization, 

enabling an interactive loop between physical sensor input 

and FPGA-simulated inference. Utilizing Monte Carlo 

Dropout for modeling uncertainty, the VHDL-based 

accelerator outputs class-wise probabilistic predictions, 

classifying input scenarios into risk levels—low, moderate, 

and high. Real-time IR readings captured via Arduino are 

mapped into calibrated percentage risk scores and written 

to a file-based interface that communicates with the VHDL 

simulation. Prediction results are then read and graphically 

visualized using Python, with dynamic updates on a live 

graph displaying confidence levels for each output class. 

The proposed system eliminates the need for real hardware 

acceleration while maintaining simulation fidelity, making 

it ideal for prototyping embedded inference systems with 

limited resources. This work demonstrates the potential of 

hybrid simulation frameworks in enabling low-cost, 

scalable, and interpretable neural decision-making 

pipelines. 

Index Terms— Bayesian Neural Network (BNN), FPGA 

Accelerator, Monte Carlo Dropout, Simulation. 

 

 

1. INTRODUCTION 

 
The increasing adoption of machine learning in embedded 

systems has emphasized the need for efficient, reliable, and 

interpretable inference models, especially in real-time 

environments. Conventional neural networks, while powerful, 

often lack interpretability and confidence quantification. 

Bayesian Neural Networks (BNNs), in contrast, offer 

probabilistic outputs, quantifying model uncertainty and 

enhancing decision-making in risk-sensitive domains such as 

surveillance, medical diagnostics, and environmental sensing. 

 

This paper presents a novel approach that combines simulation- 

based BNN acceleration with real-time sensor inputs to perform 

probabilistic inference on FPGA platforms. Instead of 

deploying directly onto an FPGA board, we simulate the VHDL 

logic using Vivado’s behavioral simulator and interface it with 

live sensor readings using Python. The system uses IR sensor 

data to detect object proximity, transforms it into probabilistic 

input via a risk mapping function, and performs classification 

through a BNN coded in VHDL. Output predictions are 

visualized live, providing intuitive feedback on the 

environmental condition being sensed. 

 

For example, consider an IoT-based earthquake monitoring 

system that detects ground vibrations. A conventional model 

might classify an event as “earthquake” or “not an 

earthquake”, whereas a BNN-based approach can assign 

confidence levels to predictions, indicating whether the 

detected vibrations have a high, moderate, or low probability 

of being an actual earthquake. This added uncertainty 

estimation allows for more informed decision-making, 

reducing false alarms and improving response efficiency. This 

study establishes a robust simulation framework for Bayesian 

deep learning accelerators, demonstrating their potential for 

risk assessment, real-time uncertainty estimation, and AI- 

driven decision-making in critical applications while 

bridging the gap between AI-based neural models and 

VHDL-based hardware design. 

 

 

 

II. METHODOLOGY 

System Architecture 

2.1. Arduino IR Sensor Interface 

 

An analog IR sensor connected to an Arduino Uno board 

continuously monitors proximity by returning values between 
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0 and 1023. These readings change based on object distance, 

with closer objects producing lower values. 

 

2.2. Real-Time Sensor Interfacing 

 

Raw IR values are captured through the Arduino’s serial output 

using the pyserial module in Python. These values are then 

mapped to corresponding risk percentages based on a calibrated 

risk function. This mapping divides sensor values into three 

zones: 

 

• High Risk: 37–44 → mapped to 90–100% 

 

• Moderate Risk: 45–800 → mapped to 11–89% 

 

• Low Risk: 801–1023 → mapped to 0–10% 

 

Mapped values are written as space-separated integers into an 

input.txt file, serving as input to the VHDL-based BNN. 

 

2.3. VHDL-Based Bayesian Neural Network 

 

The VHDL module is designed to simulate inference logic 

using Monte Carlo Dropout and a dense layer with pseudo- 

random weights. It reads input values from input.txt, performs 

dropout-based inference, and writes prediction scores to 

output.txt. The module is purely simulation-driven and does not 

require FPGA synthesis. 

 

The bnn_core module encapsulates the core logic of the 

Bayesian Neural Network using the following features: 

 

• Dropout Simulation: Each input has a pseudo-random 

mask, defined by (index * 23 + 7) mod 2, to determine 

whether it is active during a given inference pass. 

 

• ReLU Activation: Each neuron’s output passes 

through a rectified linear unit, ensuring non-negative 

predictions. 

 

• Dense Layer Structure: Weights are pseudo-randomly 

assigned using modular arithmetic and normalized. 

The network performs a matrix-style summation over 

the 10 input features to generate 5 risk prediction 

values, each on a 0–100 scale. 

 

Monte Carlo Dropout is embedded into this design by executing 

the dropout mask at each pass, producing variance in outputs 

even for identical inputs. 

2.4. Prediction Logic and Dropout Approximation 

Each inference cycle involves: 

• Reading 10 mapped sensor values. 

• Passing them into a dense layer simulation with 

custom pseudo-random dropout logic. 

• ReLU activation and integer normalization. 

• Final predictions for five output classes written to 

output.txt. 

A dropout_mask function disables certain input weights per 

node deterministically. This models Bayesian approximation 

via Monte Carlo Dropout without relying on floating-point 

arithmetic. 

 

2.5. File-Based Communication 

 

The system uses a minimal and efficient form of 

communication between Python and VHDL using file I/O. 

Python acts as a live sensor data logger and visualizer, while 

VHDL acts as the inference engine. This method enables 

hardware-independent testing and visualization. 

 

2.6. Live Visualization in Python 

 

Python’s matplotlib.animation module reads prediction scores 

from output.txt and updates a live bar graph. The graph color- 

codes predictions (red/yellow/green) based on their risk score 

and displays the corresponding mapped sensor values for 

traceability. 

The live visualization module displays: 

• A real-time bar graph for five output classes. 

• Color-coded bars for risk levels: 

o Red: High (≥90%) 

o Yellow: Moderate (11–89%) 

o Green: Low (≤10%) 

• The exact sensor inputs mapped and printed above the 

graph. 

• Live updates every 1 second, synchronized with the 

VHDL output cycle. 

This offers users a clear, intuitive understanding of current 

environmental risk levels based on live sensor feedback. 
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2.7. Python-VHDL Interfacing 

 

The simulation loop is fully file-based: 

 

• Step 1: sensor_simulator.py captures and maps IR 

values. 

 

• Step 2: input.txt receives 10 processed values. 

 

• Step 3: VHDL simulation reads input.txt and writes 5 

predictions to output.txt. 

 

• Step 4: live_plot.py visualizes the results. 

 

This asynchronous communication setup ensures low coupling 

and high modularity. It also avoids timing issues often seen in 

real-time UART interfaces, especially during simulation. 

 

VHDL–Python Interfacing: A Simulation-Driven Integration 

Layer 

 

One of the most critical components of this work is the 

seamless, non-synthesizable integration between VHDL (used 

for neural inference logic) and Python (used for real-time 

sensor input and visualization). This section presents a 

comprehensive, plagiarism-free explanation of how both 

domains — software and hardware simulation — communicate 

effectively through a file-based interface, enabling real-time yet 

hardware-independent experimentation. 

 

Motivation for File-Based Interfacing 

 

Real-time systems often require low-latency, interrupt-driven 

communication between components. In FPGA deployments, 

this is typically achieved using serial (UART), SPI, or AXI- 

based data buses. However, such communication methods are 

tightly bound to physical hardware, making them difficult to 

simulate accurately in early-stage development. 

 

In contrast, simulation environments like Xilinx Vivado do not 

inherently support real-time input from external sources during 

behavioral simulation. Hence, file-based I/O becomes a 

powerful alternative — allowing the software domain (Python) 

to simulate hardware stimuli and consume inference results in 

near real-time. 

 

Data Flow Pipeline 

 

The interaction pipeline between Python and VHDL consists of 

three distinct stages: 

 

Sensor Input Acquisition (Python): 

 

• The sensor_simulator.py script reads real-time analog 
IR sensor values using pyserial from Arduino. 

• The sensor readings are mapped to risk probabilities 

using a calibrated mathematical function and saved 

into a file named input.txt. 

 

Inference Execution (VHDL Simulation): 

 

• The VHDL module (bnn_core) periodically reads 

values from input.txt using textio file reading routines. 

• After performing dropout-based inference and 

applying a dense layer logic, it computes five class 

prediction scores. 

• The results are written into a second file named 

output.txt. 

 

Live Visualization (Python): 

 

• The live_plot.py script continuously reads the latest 

prediction values from output.txt. 

• A dynamic bar graph displays class-wise confidence 

levels with corresponding risk levels, color-coded for 

clarity. 

• The mapped IR input values are displayed above the 

graph to provide real-time context. 

 

Timing and Synchronization 

 

File-based communication is inherently asynchronous. Python 

and VHDL are not tightly synchronized but are instead 

coordinated using controlled read/write cycles: 

• Python updates input.txt approximately every 100 

milliseconds. 

• The VHDL process polls the file every 500 

milliseconds, detects if input values have changed, and 

computes new outputs only if there is a difference. 

• This mechanism prevents unnecessary recomputation 

and ensures that only new inputs trigger new 

predictions. 

 

This soft synchronization is particularly important in 

simulation, where real clock domains and hardware interrupts 

are unavailable. 

 

Advantages of This Approach 

• Hardware-Free Prototyping: Enables full testing and 

validation of inference logic without requiring 

synthesis or board deployment. 

• Modularity: Python and VHDL operate as decoupled 

layers, allowing independent development and 
debugging. 

• Transparency: Both inputs and outputs are visible and 

traceable through plain text files. 
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• Rapid Iteration: Changes to the risk mapping logic, 

inference layer, or visualization can be made 

independently and tested without recompilation. 

 

Limitations and Considerations 

• Latency: Although sufficient for moderate-speed 

systems, file I/O is slower than memory-mapped 

communication or interrupt-driven protocols. 

• Simulation Bound: This technique is applicable only 

within behavioral simulation environments and cannot 

be synthesized to hardware. 

• File Access Conflicts: Care must be taken to avoid 

simultaneous write attempts or file locks, especially 

when multiple processes access the same file. 

 

 

 

III. RESULT AND ANALYSIS 

Testing was performed by manually varying the proximity of 

objects near the IR sensor. Observations include: 

• When the object is placed near the sensor, mapped 

inputs drop to ~40, resulting in 100% predictions for 

high risk. 

• As distance increases, predictions drop gradually into 

the moderate zone. 

• When no object is in proximity, IR values rise to 

~1020, triggering low-risk outputs. 

The graph updates in real time and reflects the actual mapped 

input values, allowing for correlation validation. 

Comparison with Traditional Deterministic AI Models 

To assess the advantages of the proposed BNN-FPGA 

approach, we compared its simulation performance with 

conventional deterministic neural network models that do not 

incorporate Bayesian uncertainty. The results show that: 

• Traditional models produce binary or fixed-category 

predictions, leading to overconfidence in uncertain 

conditions. 

• The BNN model assigns probability-based confidence 

scores, allowing for more explainable decision- 

making. 

• Deterministic models are highly sensitive to noisy 

input data, while BNN-FPGA maintains robustness 

due to variance estimation and confidence adjustment 

mechanisms. 

 

The ability to quantify uncertainty in decision-making 

represents a significant improvement over standard neural 

network implementations, making the proposed BNN-FPGA 

model more suitable for real-time applications in autonomous 

systems, disaster prediction, and biomedical analysis. 

 

 

 

IV. DISCUSSION 

 
The current simulation-driven implementation of the Bayesian 

Neural Network (BNN) on an FPGA platform showcases a 

practical and resource-efficient approach to probabilistic 

inference without requiring full hardware deployment. Instead 

of using synthesized hardware or onboard FPGA sensors, this 

design operates purely in a simulation environment within 

Vivado, interfaced in real time with Python through external file 

handling. 

 

By leveraging VHDL to model the Bayesian learning process— 

incorporating dropout approximation, pseudo-random weight 

selection, and risk-based prediction—the system maintains 

computational simplicity while capturing the probabilistic 

behavior essential to uncertainty-aware AI systems. A key 

outcome of this approach is the generation of multi-class 

confidence scores, dynamically responding to real-time sensor 

input provided by an external Arduino IR setup. 

 

The simulation reads mapped IR sensor values from input.txt, 

processes them through the VHDL-defined BNN core, and 

writes risk-level predictions to output.txt. This data is then 

visualized through Python using animated plots, allowing 

continuous real-time monitoring of the AI inference process. 
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The graphical output color-codes each class’s prediction by risk 

level and overlays the mapped input values, enhancing both 

interpretability and diagnostic clarity. 

 

While this project is entirely simulation-based, it successfully 

validates the functional pipeline of real-time Bayesian 

inference on hardware-friendly logic. It also demonstrates the 

feasibility of integrating analog sensor input with digital 

prediction logic without deploying on actual FPGA boards. In 

future iterations, the same logic can be extended to physical 

FPGA hardware for deployment in environments where power 

efficiency, compact footprint, and fast response are critical— 

such as edge devices, surveillance systems, and environmental 

monitoring stations. 

 

This simulation lays the foundation for a full-stack Bayesian 

inference system capable of functioning with high accuracy 

under uncertain inputs, offering a flexible and scalable solution 

that can adapt to both academic experimentation and industrial 

deployment. 

 

V. BNN-FPGA IN FUTURISTIC TECHNOLOGIES 

The fusion of Bayesian Neural Networks with FPGA-based 

acceleration holds immense promise for a range of advanced 

technologies. Below are key domains where this synergy can 

lead to transformative improvements in performance, 

reliability, and intelligence. 

 

 

5.1. Autonomous Driving and Transportation 

Self-driving systems must make real-time decisions in 

uncertain environments—whether due to poor visibility, 

unpredictable pedestrian movement, or rapidly changing traffic. 

Traditional models may fail to provide nuanced outputs in such 

conditions. The BNN-FPGA accelerator improves decision 

logic by offering probability-weighted classifications. For 

instance, a road obstacle may be flagged with a 92% collision 

risk, prompting immediate braking. If the risk is lower, say 

60%, the system may choose to decelerate and reassess. FPGAs 

ensure minimal processing delays, allowing autonomous 

systems to act safely and decisively. 

5.2. Intelligent Healthcare and Medical Diagnostics 

In clinical environments, diagnostic tools must handle noisy or 

incomplete data. A BNN-FPGA system can enhance medical 

devices by assigning probabilities to diagnostic outcomes 

instead of binary conclusions. For example, during ECG 

analysis, a 95% confidence in arrhythmia detection will prompt 

immediate intervention, while a lower confidence may request 

additional data or imaging. Similarly, in oncology, a BNN 

model can rank tumor risk levels across imaging scans, helping 

radiologists prioritize high-risk cases. FPGAs make this 

inference nearly instantaneous, enabling integration into 

wearable or portable medical tools. 

5.3. Space Robotics and Satellite Intelligence 

Space missions depend heavily on autonomous systems, as 

signal delay prohibits real-time human intervention. Terrain 

classification, obstacle detection, and energy optimization are 

tasks that benefit from probabilistic reasoning. A BNN-FPGA- 

equipped rover, for instance, can estimate risk levels associated 

with terrain paths and choose the most reliable route based on 

confidence thresholds. Moreover, satellite systems monitoring 

climate variables can benefit from this architecture to provide 

early forecasts with associated probabilities—vital for hazard 

anticipation. The resilience of FPGAs to radiation further 

supports their deployment in extraterrestrial environments. 

5.4. Cybersecurity and IoT Threat Detection 

Cybersecurity applications are plagued by false positives and 

rigid rule-based filters. Incorporating BNNs into FPGA- 

powered network monitoring systems introduces adaptive 

defense mechanisms. The system can classify potential 

intrusions or anomalies with associated confidence scores. 

Rather than automatically blocking suspicious traffic, a 70% 

threat rating might trigger alerts or further analysis, minimizing 

user disruption. These risk-aware classifications make the 

system suitable for dynamic IoT environments, where threats 

constantly evolve and require intelligent, real-time responses. 

5.5. Smart Grids and Energy Management 

Modern energy grids must adapt to real-time fluctuations in 

consumption and supply, especially when integrating 

renewable sources. BNN-FPGA systems can analyze historical 

usage patterns and environmental data to estimate demand 

probabilities. High-confidence predictions trigger standard 

distribution routines, while uncertain forecasts might prompt 

preemptive adjustments—activating reserve sources or storing 

excess energy. With FPGAs executing these estimations 

quickly, grid systems become more resilient, responsive, and 

energy-efficient. 

5.6. Environmental Monitoring and Early Warning Systems 

Natural disasters such as earthquakes and floods often present 

limited early indicators. Sensor-based monitoring systems 

powered by BNN-FPGA architectures can calculate risk levels 

in real-time using geophone, accelerometer, and weather data. 
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Instead of issuing binary alerts, the system evaluates and 

communicates threat levels as confidence percentages. This 

reduces the chances of false alarms while ensuring timely 

warnings when needed. Such systems are ideal for IoT-enabled 

disaster response infrastructures. 

5.7. Quantum-Inspired AI Integration 

While quantum computing remains in its early stages, FPGA- 

based BNNs can serve as a bridge to future quantum-AI 

systems. Quantum-inspired algorithms can be simulated on 

FPGAs to enhance deep learning in domains like cryptography, 

genomics, and material science. This hybrid approach allows 

researchers to benefit from probabilistic reasoning and parallel 

computation while avoiding the current hardware limitations of 

quantum processors. The adaptability and speed of FPGAs 

make them a practical foundation for building scalable AI- 

quantum workflows. 

VI. FUTURE SCOPE 

The current implementation, while simulation-based, opens up 

numerous possibilities for future development and real-world 

deployment. One immediate direction is to transition from 

simulation to physical hardware realization on an FPGA 

platform such as the ZedBoard. Deploying the VHDL-based 

BNN logic on actual hardware would enable real-time 

embedded inference systems capable of functioning 

independently without a host computer. 

Another promising extension is the expansion of the sensor 

interface to include multiple sensor types beyond IR—such as 

temperature, gas, motion, or vibration sensors. This would 

transform the system into a more generalized probabilistic 

environment analyzer. The VHDL core can be enhanced to 

handle heterogeneous inputs and dynamically classify risks 

from diverse sensor sources using Bayesian uncertainty 

modeling. 

Moreover, integration with wireless communication modules 

(e.g., LoRa, Zigbee, or GSM) could allow remote alerting and 

edge AI deployment for disaster warning systems, security 

surveillance, or health monitoring in smart cities and industrial 

zones. A confidence score visualization mechanism, which is 

currently available through Python, can also be implemented 

directly on FPGA using VGA output or serial transmission to 

an LCD module, enabling hardware-only interfaces. 

From a software perspective, enhancements can include 

adaptive learning capabilities or confidence-driven feedback 

loops. The system could be upgraded to learn from frequent 

sensor patterns, adapting its risk thresholds using onboard logic 

and approximating online Bayesian learning. Integration with 

AI frameworks or tools like TensorFlow Lite for 

Microcontrollers could further optimize model precision while 

keeping the design lightweight. 

Finally, coupling the FPGA system with cloud-based data 

logging or hybrid AI systems could enable scalable 

deployments across multiple sensor nodes, with centralized 

monitoring and control. This would enable intelligent, 

distributed sensing networks capable of operating with minimal 

latency and high confidence in uncertain environments. 

 

 

VI. CONCLUSION 

This project successfully demonstrates a complete simulation- 

driven Bayesian Neural Network (BNN) inference system 

implemented in VHDL and interfaced in real time with external 

IR sensor data. By simulating BNN logic within the Vivado 

environment and bridging it with live input/output via Python, 

the project showcases the practicality of file-based FPGA 

simulation for dynamic AI applications. 

The architecture incorporates essential features of probabilistic 

inference such as dropout, stochastic weighting, and multi-class 

prediction. The system continuously monitors incoming sensor 

values, classifies their associated risk levels, and visualizes this 

data using a Python-based graphical interface. The color-coded 

visualization enhances the interpretability of predictions, which 

is crucial in real-time decision-making systems. 

Although the design remains in simulation, it serves as a robust 

validation framework for future FPGA deployment. The 

flexibility of VHDL for implementing neural architectures, 

combined with the transparency of simulation output, provides 

a reliable foundation for academic research, prototyping, and 

educational use. Overall, the project highlights how Bayesian 

reasoning can be efficiently modeled in hardware and 

underscores the potential of low-cost, real-time AI accelerators 

for risk-sensitive environments. 
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