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Abstract—ODbject tracking is used in various day to day
applications such as face recognition devices, CCTV camera
applications, vehicle tracking systems. This paper presents the
implementation of Tiny-Yolo V3 algorithm on the PYNQ-Z2
FPGA board for achieving hardware accelerated detection
model for images and video inputs. Here we make use of the
both software and hardware components and integrate them
for optimal results. Initially the model was implemented and
tested on CPU only model, then integrated hardware-assisted
control modules on the FPGA fabric to support real-time
operation. The proposed work achieves effective object
detection with low power consumption. Future works will
include DPU based full-YOLO network deployment.

Keywords—FPGA, Tiny-Yolo V3, Object tracking, PYNQ-Z2,
Hardware Acceleration, DPU

I. INTRODUCTION

Image detection is one of the most essential processes in
computer vision, where the goal is to identify and classify
objects present within a static image. It forms the foundation
for many advanced applications such as medical diagnostics,
industrial automation, autonomous vehicles, and security
monitoring. Conventional image detection systems that rely
on central processing units (CPUs) or graphics processing
units (GPUs) often struggle to achieve real-time performance
due to their high computational demands and power
consumption. As a result, these systems are not always
suitable for embedded or low-power environments.

To address these limitations, Field Programmable Gate
Arrays (FPGAs) have gained significant attention as a
hardware acceleration platform for image detection. FPGAs
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feature a reconfigurable logic structure that supports parallel
data processing, allowing multiple operations to be executed
simultaneously. This architectural advantage enables faster
computation, reduced latency, and lower energy
consumption compared to traditional processors.

Implementing image detection algorithms such as YOLO
(You Only Look Once) on FPGA-based platforms like the
PYNQ-Z2 allows for efficient real-time image processing
without compromising accuracy. The combination of
hardware parallelism and algorithmic optimization makes
FPGA-based image detection systems a promising solution
for intelligent vision applications that demand both high
performance and energy efficiency.

II. RELATED WORKS

A. A Reconfigurable CNN-Based Accelerator
Design for Fast and Energy-Efficient Object
Detection System on Mobile FPGA.

This article presents a highly reconfigurable FPGA
hardware accelerator for CNNs, optimized for speed and
power efficiency. Techniques like minimized data transfer,
controlled pipeline design, and low-power RTL techniques
(clock gating, OR-based MAC architecture) were applied.
Implemented on a PYNQ-ZI mobile FPGA-SoC, the
accelerator showed 15% higher throughput, 16% lower
power consumption, and 58% better hardware utilization
compared to baseline. It achieved 9.17 FPS for object
detection, demonstrating feasibility for real-time processing
on mobile FPGAs.
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B.  Adaptive Subsampling for ROI-Based Visual
Tracking: Algorithms and FPGA Implementation

This work explores adaptive subsampling in image
sensors for energy-efficient embedded vision systems. The
approach combines object detection (using YOLO or ECO
tracker) with a Kalman filter for ROI prediction.
Implemented on an FPGA, the ECO tracker-based algorithm
achieves competitive accuracy and power efficiency (4W
power consumption, 19.23 FPS) compared to YOLO-based
approach (6W power consumption).

C. An FPGA Accelerator for High-Speed Moving
Objects Detection and Tracking With a Spike
Camera.

This paper proposes a neural-inspired scheme for ultra-high-
speed object detection and tracking using a spike camera. A
parallelized filtering module and divided detection module
are designed to accelerate the algorithm, with hardware
optimizations to reduce operations and resource
consumption. Implemented on a Xilinx ZCU-102 board, the
accelerator achieves 19x speedup and processes over 20,000
spike images per second.

D. Real-Time SSDLite Object Detection on FPGA.

This article proposes a novel hardware architecture and
system optimization techniques for real-time DNN-based
object detection. A Neural Processing Unit (NPU) with
heterogeneous units and a Task Control Unit (TCU) are
designed to accelerate neural networks, reduce memory
accesses, and increase utilization. Implemented on Intel
FPGAs, the system achieves higher throughput, lower
latency, and better energy efficiency while maintaining high
detection accuracy, outperforming previous state-of-the-
art works

E. A Low-Cost High-Speed Object Tracking VLSI
System Based on Unified Textural and Dynamic
Compressive Features.

This paper presents a low-cost, high-speed object tracking
VLSI system that utilizes unified textural and dynamic
compressive features and elliptic matching. The system
features a memory-centric architecture with multiple-level
pipelines and parallel processing circuits, enabling efficient
processing. Implemented on an FPGA, it achieves 600
frames/s for 320x240 resolution images at 100 MHz clock
frequency, making it suitable for high-speed, low-cost
embedded visual tracking applications.

III. BACKGROUND

In this section, we first explain the Tiny-Yolo V3
detection algorithm and then elaborate the other operations
and other postprocess.

A.  Tiny-Yolo V3 Overview

YOLOV3 (You Only Look Once, Version 3) is a real-
time object detection algorithm that identifies specific
objects in videos, live feeds, or images. The YOLO machine

learning algorithm uses features learned by a Deep. Tiny-
YOLOVS3 is a stripped-down version of YOLOvV3 with fewer
layers and a smaller network size, making it significantly
faster for real-time applications.

Convolutional Neural Network to detect objects located
in an image. Joseph Redmon and Ali Farhadi created the
first version of YOLO algorithms in 2016. The two later
released Version 3 two years later, in 2018. YOLOV3 is an
improved version of YOLO and YOLOvV2. YOLO is
implemented using the Keras or OpenCV deep learning
libraries.

YOLO is a Convolutional Neural Network (CNN) , a
type of deep neural network, for performing object detection
in real-time. CNNs are classifier-based systems that process
input images as structured arrays of data and recognize
patterns between them. YOLO has the advantage of being
much faster than other networks and still maintains accuracy.

It allows the object detection model to look at the whole
image at test time. This means that the global context in the
image informs the predictions. YOLO and other CNN
algorithms “score” regions based on their similarities to
predefined classes.

High-scoring regions are noted as positive detections of
whatever class they most closely identify with. For example,
in self-driving car footage, YOLO can be used to detect
different kinds of vehicles depending on which regions of the
video score highly in comparison to pre-defined classes of
vehicles. This scoring mechanism, involving regional
proposals, enables precise and efficient object detection
across various scenes.

B. Yolo V3 Architecture

The YOLOV3 algorithm first separates an image into a grid.
Each grid cell predicts some number of bounding boxes
(sometimes referred to as anchor boxes) around objects that
score highly with the aforementioned predefined classes.

Each bounding box has a respective confidence score of how
accurate it assumes that prediction should be. Only one
object is identified per bounding box. The bounding boxes
are generated by clustering the dimensions of the ground
truth boxes from the original dataset to find the most
common shapes and sizes.
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Fig 1. - How YOLO v3 works

Other comparable algorithms that can carry out the same
objective are R-CNN (Region-based Convolutional Neural
Networks made in 2015), Fast R-CNN (R-CNN
improvement developed in 2017), and MASK R-CNN.

desired digital function. When a design is implemented, it is
first described using a Hardware Description Language
(HDL) such as VHDL or Verilog. This HDL code defines
how data should flow through the hardware. The design is

However, unlike systems like R-CNN and Fast R-CNN,
YOLO can perform classification and bounding box
regression at the same time.

then synthesized and programmed onto the FPGA using a
configuration file known as a bitstream.
Once programmed, the FPGA acts as a custom digital circuit
capable of executing multiple operations in parallel. This
allows FPGAs to deliver high-speed performance while
maintaining flexibility to reprogram the device for new

C. Field Programmable Gate Array (FPGA): applications.

Overview

Field Programmable Gate Array (FPGA) is an integrated
circuit designed to be configured by the user after
manufacturing. Unlike traditional processors such as CPUs
and GPUs, which have fixed hardware structures, an FPGA
offers reconfigurable hardware that allows developers to
define and modify the internal circuit behavior according to
specific application requirements. This flexibility makes CLBs
FPGAs highly suitable for tasks that demand parallel 110 oo
processing, low latency, and energy-efficient computation.

E. FPGA Architecture

Field Programmable Gate Array (FPGA) Architecture
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Fig 3. - FPGA Architecture

The internal structure of an FPGA consists of several
key components:

1. Configurable logic Blocks (CLBs): These are the
primary building units of an FPGA. Each CLB
contains look-up tables (LUTs), flip-flops, and
multiplexers that can be configured to implement
logical and arithmetic operations.

Fig 2.-FPGA Board circuit

D. How FPGA Works

The operation of an FPGA is based on configuring its

internal logic blocks and interconnections to perform a 2. Input/Output Blocks (IOBs): These blocks manage
communication between the FPGA and external
devices or peripherals. They control the direction,
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voltage levels, and timing of input and output
signals.

3. Interconnect Network: A flexible routing system
that connects the various logic blocks, memory
units, and I/O blocks. The interconnect allows for
customizable data paths based on the user’s design.

4. Digital Signal Processing (DSP) Slices: These
dedicated blocks handle high-speed arithmetic
operations such as multiplication and accumulation,
making them ideal for signal and image processing
applications.

5. On-chip Memory (BRAM): Block RAM modules
provide fast and temporary data storage that
supports parallel data access during computation.

6. Clock Management Units: These circuits generate
and distribute clock signals to synchronize
operations across the FPGA.

IV. METHODOLOGY

The system implements a hybrid hardware—software
approach for real-time object detection and tracking on an
FPGA-based platform. Video frames captured from a USB
camera are processed by the processing system, where
object detection and classification are performed using a
lightweight YOLO-based model. A custom hardware IP
developed using Vitis HLS is integrated into the
programmable logic to assist control and improve system
stability. The final output with bounding boxes and labels is
displayed through other display interfaces.

A. USB Camera (Input)

The USB camera acts as the primary input source for the
system and is responsible for capturing visual data from the
surrounding environment. It continuously acquires video
frames in real time and forwards them to the processing
system. The camera operates at a fixed resolution suitable for
real-time processing, ensuring a balance between image
quality and computational requirements. The captured
frames serve as the raw input for subsequent processing and
analysis stages.

B.  Processing System (Frame Processing)

The processing system receives the raw video frames
from the USB camera and performs initial frame-level
operations. These operations include frame acquisition,
resizing, format conversion, and basic preprocessing required
to prepare the frames for further analysis. This stage ensures
that the input data is in a consistent and optimized format,
enabling efficient interaction between software components
and hardware-assisted modules.

C. Object Detection & Tracking

In this stage, the processed frames are analyzed to identify
and track objects of interest across consecutive frames. The
system determines the presence and movement of objects

within the scene and maintains continuity of detected
objects over time. This stage plays a crucial role in reducing
redundant computations by ensuring that only relevant
frames and regions are forwarded for detailed classification,
thereby improving overall system efficiency.

D. Hardware-Assisted Control (FPGA)

The hardware-assisted control module, implemented on the
FPGA, accelerates selected control and decision-making
operations that are computationally intensive when executed
purely in software. By offloading these operations to
dedicated hardware logic, the system achieves improved
processing speed and reduced load on the processing system.
The FPGA operates in coordination with the processor
through a control interface, enabling efficient hardware—
software co-operation.

E. YOLO-Based Classification

The YOLO-based classification stage performs object
recognition and labeling on selected frames. Using a
lightweight object detection model, the system classifies
detected objects into predefined categories such as persons
and vehicles. Bounding boxes and class labels are generated
based on the classification results. This stage provides
semantic understanding of the scene while maintaining
acceptable performance for near real-time operation.

F. Output Display

The final stage presents the detection and tracking results to
the user. The output includes video frames annotated with
bounding boxes, object labels, and relevant visual
indicators. The processed output is displayed through a
browser-based or software interface, allowing real-time
observation of system performance. This stage enables
validation of detection accuracy and overall system
functionality.

G. Block diagram

The block diagram illustrates the overall architecture of the
proposed real-time object detection and tracking system.
Video input is captured using a USB camera and forwarded
to the processing system for initial frame handling and
preprocessing. The processed frames are then analyzed for
object detection and tracking, after which selected,
operations are accelerated using hardware-assisted control
implemented on the FPGA. YOLO-based classification is
applied to identify and label detected objects, and the final
annotated output is displayed to the user. This structured
flow enables efficient cooperation between software and
hardware components, improving processing performance
while maintaining detection accuracy.
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H. Vivado Block Diagram
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The hardware-assisted control module is developed using
Vitis High-Level Synthesis (HLS) and integrated into the
system using the Vivado Design Suite. Vitis HLS is used
to describe the required control functionality using a
high-level C/C++ based approach. The design is
synthesized to generate a custom hardware intellectual

property (IP) core.

The generated IP core is imported into Vivado, where a
block design is created that includes the Processing
System and the custom hardware IP. Necessary clock,
reset, and control connections are established to ensure
proper operation. After validation of the block design, a
bitstream is generated and programmed onto the FPGA

I. Results

The proposed real-time object tracking system was
implemented and evaluated on an FPGA-based platform
using both image datasets and live video input captured
through a USB camera. The system was tested under
different scenarios to analyze its detection capability,
tracking stability, and real-time performance. During
testing, the system successfully detected and tracked
multiple objects within a single frame. Common object
classes such as persons, cars, bicycles, and two-wheelers
were correctly identified and highlighted using bounding
boxes along with corresponding class labels. The
detection results obtained from static images demonstrate
that the system can identify objects of varying sizes and
orientations with reasonable accuracy

Fig.6.-Output image

The CPU-based image detection experiments demonstrated
accurate identification of objects such as persons and
vehicles; however, the average processing time for a single
image was approximately 10 seconds, indicating a low
inference speed. In contrast, the real-time implementation
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using the hybrid hardware—software approach achieved a
stable frame rate in the range of 10—12 frames per second
under live camera input. The system was observed to
operate reliably without frame drops during continuous
execution, demonstrating  improved  responsiveness
compared to the CPU-only approach. These results highlight
the effectiveness of hardware-assisted processing in
supporting real-time object detection and tracking

V. CONCLUSION AND FUTURE WORK

The implementation of an FPGA-based hardware-
accelerated object tracking system using the Tiny-YOLO
algorithm demonstrates the feasibility of deploying deep
learning models on low-power embedded platforms. The
proposed design efficiently combines software control on
the ARM processor with hardware acceleration on the
FPGA fabric to achieve faster inference and reduced energy
consumption compared to CPU-only systems. Experimental
results verify that the developed framework provides
reliable person and object detection performance suitable for
intelligent surveillance and real-time vision applications.

Future work will focus on enhancing the system by
implementing full model quantization and integrating a
Deep Processing Unit (DPU) for complete YOLO inference
on the FPGA. Further optimization using pruning and
pipelined hardware architectures can improve throughput
and resource utilization. Extending the design to support
multi-object tracking, real-time video analytics, and cloud-
edge interoperability will strengthen its applicability in
advanced embedded Al and smart surveillance domains.
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