
 International Journal of Scientific Research in Engineering and Management (IJSREM)
 Volume: 08 Issue: 12 | Dec - 2024 SJIF Rating: 8.448 ISSN: 2582-3930

© 2024, IJSREM | www.ijsrem.com DOI: 10.55041/IJSREM39948 | Page 1

FPGA Implementation of Antilogarithmic Computation using Fixed

Point Architecture at SoC Integration

DR Prashanth Bachanna, Assistant Professor

Electronics and Communication Engineering

Institute of Aeronautical Engineering

Hyderabad, Telangana, India

b.prashanth@iare.ac.in

Ramavath Bhanu Prasad

Electronics and Communication Engineering

Institute of Aeronautical Engineering

Hyderabad, Telangana, India

bhanuprasadramavath56@gmail.com

Sunkaraboina Aravind

Electronics and Communication Engineering

Institute of Aeronautical Engineering

Hyderabad, Telangana, India

sunkaraboinaaravind123@gmail.com

Praisy Moses

Electronics and Communication Engineering

Institute of Aeronautical Engineering

Hyderabad, Telangana, India

mosespraisy0001@gmail.com

Abstract—In recent studies works in device system-on-chip
(SoC) and Embedded structures applications need optimization of
electricity, latency, area, and improvement of throughput. all
these packages are complex in operations and to validate FPGA is
a high-quality appropriate device with minimal time. maximum of
operations in DSP packages uses constant factor and records
route are broadly used and attention of complicated arithmetic
operations using logarithmic variety systems. so one can improve
throughput and optimize electricity, region, and postpone, a novel
antilogarithmic architecture has been found on FPGA. The
proposed antilogarithmic function uses piecewise linear
approximation (PLA), main one detector (LoD), barrel shifter
(BS) and Reconfigurable residue variety system (RRNS), Parallel
Prefix Adder (PPA) is included in the design. The SoC stage layout
has been synthesized in Vivado Design Suite 2018.1 and tested on
Artix-7 FPGA. The device utilization demonstrates how little
FPGA aid the architecture uses. moreover, we have tested the
approximation result through mistake analysis. in line with the
mistake looked at, there may be a 2.4 percent. mistake for negative
numbers and a zero.24 percentage errors for tremendous values.
by the usage of greater bits for the fractional bit illustration, the
inaccuracy may be reduced even greater. tool. The tool utilization
demonstrates the greatest latency and minimum good judgment
sources, and the same design is tested at the FPGA. additionally,
we’ve got examined the approximation result via mistake, analysis.
The LOD designs and an approximation adder for summing
logarithms can be applied to beautify the Mitchell logarithmic
(ML) multiplier’s hardware performance. In contrast to the
authentic Mitchell multiplier, this layout lowers hardware
charges by way of 21 percent.eight, while in contrast to the
alternative present-day generation, it lowers fees using 17.5
percentage.

Index Terms—Antilogarithm; fixed-point architecture, leading
one detector, approximate adder, Mitchell logarithmic multiplier
and FPGA.

I. INTRODUCTION

It is known from the literature that binary arithmetic is useful

and accurate in the material [1], [2]. Digital designers can now

use logarithms instead of arithmetic for binary operations.

Compared to teaching arithmetic, it works equally well with

addition and saves a lot of mathematics [3], [4] [5]. In modern

times, logarithmic operations are popular because they are

better equipped than binary arithmetic, but they still lack the

precision of binary arithmetic [6]. The following main steps are

involved in the calculation in logarithmic systems (LNS): log

transformation, computation phase and iteration [7, 8]. The real-

time DSP implementation is the most important factor affecting

the hardware and performance of the LNS- based arithmetic

operation super-set. Common in arithmetic are logarithm and

anti-log transformations [9, 10]. Since the anti-log

transformation is the determining factor, converters are

necessary to speed up the arithmetic operation [11, 12]. In

many computer systems, partitioning is an active operation that

uses a lot of resources and energy. Approximate arithmetic can

reduce hardware costs and competition when used in ap-

plications where the probability is not accepted. Approximate

circuits are used in forensics, such as machine learning, digital

programming (DSP), and many other computer problems

[1]. In cases where speed is more important than accuracy,

logarithmic numbers can be a better choice than decimal

numbers because they do not produce partial multiplications.

The logarithmic technique has proven useful in many DSP

applications, but it incurs a slight loss of accuracy in arithmetic

operations [2]. Delays play an important role in image and

signal processing applications, especially in hardware devices

http://www.ijsrem.com/
mailto:b.prashanth@iare.ac.in
mailto:bhanuprasadramavath56@gmail.com
mailto:sunkaraboinaaravind123@gmail.com
mailto:mosespraisy0001@gmail.com

 International Journal of Scientific Research in Engineering and Management (IJSREM)
 Volume: 08 Issue: 12 | Dec - 2024 SJIF Rating: 8.448 ISSN: 2582-3930

© 2024, IJSREM | www.ijsrem.com DOI: 10.55041/IJSREM39948 | Page 2

such as FPGAs. The text [14] describes the delay using the

approximation method, which uses the encoding algorithm

to generate a logarithmic inverse algorithm; this can reduce the

delay and error due to the coefficients by up to 20. Multipliers

consume more slowly while summing a part of the product. To

avoid the use of multipliers, an additional method is added to

the design to optimize the area and power consumption. It is

already a project in [15], which generates data for DSP

applications. A new algorithm is developed and implemented

using hardware-free and low-power correction circuitry for the

correction of anti-log. These VLSI solutions are smaller

compared to other hardware solutions used in the literature. The

converter is designed and manufactured using 0.6/spl mu/m

CMOS process technology and the connection logic

architecture requires 1500/spl lambda//spl times/2800/spl

lambda/ dead space. The 32-bit anti-log converter consumes 81

mW, operates at 100 MHz, and determines the anti-log in just

one hour [15].

For real-time applications in today’s systems, especially for

multimedia, video/signature, music, DSP, and graphics, it is

difficult to adapt to space-saving codes [1-4]. Now, as the

popularity of the required number of applications increases,

hair roots, advanced filters, power of quadratic operations,

inversions, and exponential operations are needed [4]. VLSI

implementations of these complex arithmetic systems use

floating point cell (FP) bits, are complex, slow, power con-

suming, and require extensive semiconductor technology [3-

5]. In embedded systems where variable numbers need to

be represented by a suitable decimal number, some form of

measurement is important. Fixed arrays are suitable for the

construction of widely used arrays due to their simple data and

robust arithmetic. In addition, the information method of

security-based circuits is fast, space-saving, and energy-saving

[4-5]. FPGAs are widely used as solutions for all kinds of

complex applications with minimum design time. Advanced

FPGAs have many common devices including adders, mul-

tipliers, embedded memory, and embedded processors on a

single FPGA chip in addition to rich logic devices [5-8]. Fixed-

point arithmetic provides a numerical data method that can be

used with FPGA macro elements. The Logarithmic Number

System (LNS) can be used with the FP Number System to help

construct complex arithmetic operations.

II. PROPOSED BINARY ANTI-LOGARITHMIC

FUNCTION FOR DSP APPLICATIONS

The design concept of anti-logarithmicThe arithmetic is

simpler than point arithmetic because it only requires percent-

age data. As a result, fixed-point units use less power and

occupy less space. Also, small FPGA structures can be easily

implemented using fixed hardware. We can also take advantage

of FPGA macro elements that are readily available and can be

modified to meet the needs of arithmetic operations at higher

clock speeds. The data path of the proposed architecture is used

by the 2.6.12 fixed-point format, as shown in Figure 1. 2. The

piecewise linear approximation method is a space-saving

method that uses binary anti-log units. Let X [20] 1 If X =

Fig. 1. functional diagram of optimal latency MUX-based antilog computation
unit

Fig. 2. Proposed LoD for 4-bit for sign detection in antilog function

occurs, the input is negative; otherwise, X[20] 0 = means that

the input number is positive. The anti-numeric value can be

calculated using the PA number as shown in (1)

Here the value of f/k varies according to the sign bit.

Here in PLA, the maximum information (f) is approximately

0 → 1 If the data is negative and outside the predefined

range, we reduce the fractional number by one and subtract
the fractional number by one. In this way, negative binary

integers can be approximated in the same way. Equation (1) is

an anti-log function and its binary code is Y. Anti-log

implementation is provided. Here, the desired value 2f in (1) is

found using fractional partial approximation (FPA) design

cells. After determining the part, use the barrel shifter (BS) to

change the calculated FPA output value to the left or right by

the value of the characteristic part according to (1). 1. Working

diagram of anti-log counting unit based on optimum delay

MUX LoD is the main subsystem module in this application

and optimizes the delay, area, and power consumption initially.

LoD is designed for 4-bit as shown in Figure 2 and then

continues with 16. .-bit and 32-bit. For 32-bit LoD, 8x LoD

is initialized and integrated. 4-bit LoD gives the result of 4- bit

binary output by setting the bits to the expected ”1” and

http://www.ijsrem.com/

 International Journal of Scientific Research in Engineering and Management (IJSREM)
 Volume: 08 Issue: 12 | Dec - 2024 SJIF Rating: 8.448 ISSN: 2582-3930

© 2024, IJSREM | www.ijsrem.com DOI: 10.55041/IJSREM39948 | Page 3

Fig. 3. Block diagram of the proposed anti-logarithmic circuit with Optimal
LoD

the other bits to ”0”. There are two main modules in the

approximate logarithmic function of the multiplier: LoD and

adder; the latter is the logarithm of the input to the adder. We

plan to use RRNS and PPA algorithms to process these models

to improve the area, power consumption, and delay. 32-bit LoD

is generated and implemented using 4-bit LoD, and with the

help of eight 4-bit LoD modules measured in parallel, 32 bits

are divided into 2 parts of 4 bits each. During the second step,

4-bit LoD counts the first bit in two 16-bit fields, bits 31 to

16 and bits 15 to 0. In the third step, 2-bit LoD (e.g. ”000”,

”01”, ”10” connection) enables the selection of two levels of 4-

bit MUX. 4-bit LoD of the second level If the result is logical -

1, it will be displayed in the selected row, otherwise, it will be

-0000 and the same result will be generated by the multiplexer.

The 8-bit output of MUX forms the input selection for eight sets

of 4-bit MUX in the final processing stage. One of the 8 bits

used to select the line will be a logical ”1” and MUS- will send

4 bits from the first level 4-bit LoD for the decision. Finally,

through simulation, Mitchell determined the maximum number

of objects that can be estimated in LOD without compromising

the accuracy of the final object. From the actual analysis given

in the next section, we see that the four key 4-bit LOD in Figure

3 will always be approximated by the constant hexadecimal

variable x”0400” as shown in Figure 4. Since we previously

estimated four minimum 4-bit LODs in the first stage, now

we can estimate the minimum 4-bit LOD in the second stage,

as shown in Figure 2 ”LODA A Initial, 16-bit LSB: false and

LoD input greater than 216 means there is no error in the

estimated product, otherwise less than 216 will cause sign error.

Synthesis and simulations have been performed to estimate the

maximum number of objects in LoD without affecting the

accuracy of the end of the RRNS multiplier, 4 LSB

A. PROPOSED FPA FOR ANTILOG FUNCTION

The fraction of antilog 2 is derived with the help of a

piecewise approach, where for every 19 bits 8 predefined

values are stored in ROM and defined as 2 Here I am different

from 0 and 7. The design is being worked on. In ROM,

the first 8 bits of the values stored in MSB represents and

the remaining 11 bits represent 4. In 2 The first 3 bits are used

for ROM address and are added to the time of. Use

Fig. 4. Proposed RRNS and PPA for FPA along with LUT-based ROM

Parallel Prefix Appenders (PPAs). PPA also uses the sum

of all partial components of the equation. Prime integers serve

as the moduli in the predefined moduli set used by the RNS to

carry out arithmetic calculations. Using moduli set values and

total elements used as moduli, the range of input operands that

the RNS can withstand devoid of truncating the results is

statistically generated. Additionally, each module and related

computations are performed as independent networks in L

equivalent routes during RNS computation, significantly

reducing path propagation latency. Furthermore, the RNS

system employs modified PPA topology-based accumulation to

reduce the path latency.

III. SOFTWARE REQUIREMENTS

1. The software environment must: FPGA development

tools: Xilinx Vivado, Intel Quartus Prime, or other FPGA

synthesis tools for coding, simulation, and hardware imple-

mentation. for verifying the behavior of VHDL code before

synthesis. Manage tools to manage policies and changes. Fixed-

point architecture considerations: Fixed-point represen- tation:

Define a bit width between the input and output code as

required. ¿ Range and Precision: Ensure that fixed points

provide sufficient range and precision for anti-log operation.

and underflow handling: Overflow and underflow handling

logic in fixed-point arithmetic. Functional design:

Mathematical functions: The main function is to calculate

the anti-log (inverse of the logarithm), for x= e y (natural

logarithm) orx=10 y (logarithm to base 10) To use poly- nomial

approximations, the approximation method can be used

(Taylor series, etc.), the function of the table to find the

exponential value, or the CORDIC (Coordinate Rota- tion

Digital Computer) algorithm. Output: Fixed-point anti-

numerical value. Data Path Design: Piping and Parallelism:

If performance is important, use pipelines and parallelism to

optimize logarithmic returns to increase and decrease latency.

The machine or controller needs to manage the computation

phase, especially when dealing with back-end algorithms or

lookup tables. LUS) index. SoC Integration: Interfacing with

http://www.ijsrem.com/

 International Journal of Scientific Research in Engineering and Management (IJSREM)
 Volume: 08 Issue: 12 | Dec - 2024 SJIF Rating: 8.448 ISSN: 2582-3930

© 2024, IJSREM | www.ijsrem.com DOI: 10.55041/IJSREM39948 | Page 4

SoC: Enable AXI (Advanced Extensible Interface) protocol or

other SoC transport to communicate with ARM core or other

components. Interrupt management between FPGA and SoC

for efficient data transfer: Create an interrupt line to signal the

SoC processor when processing is completed. FPGA and SoC

subsystems are required. Experimental and practical:

Simulation: According to the design of the FPGA board.

Optimization: Resource Usage: Reduce the usage of logic

devices (LUTs, flip-flops) by optimizing algorithms and data

paths. (in LUT).

IV. DESIGN AND IMPLEMENTATION

1. Understanding fixed-point notation Fixed-point format: In

fixed-point notation, numbers are stored as a fixed number

divided into numerators and fractions. For example, a 16-bit

number can contain 8 bits for digits and 8 bits for decimals

(type Q8.8). Select the appropriate fixed-point format for input

and output. Anti-log Function Anti-log is the inverse of the

logarithm. For base-10 logarithms, the anti-log is given by:

¡ In hardware, computing the anti-log can be done with a lookup

table (LUT) or expansion (such as the Taylor series or CORDIC

algorithm). 3. FPGA Algorithm Design There are several ways

to implement the anti-log function:

a. Lookup Table (LUT) Precomputed Values: A simple

approach is to precompute the value of the anti-log function and

store it in a lookup table. For example, if the input is a

fixed-point number in the range [0, 1], you can compute the

inverse value in discrete steps (e.g., every 0.01) and store it in

memory. using linear interpolation of the LUT values.

CORDIC algorithm Iterative algorithm: The CORDIC (Co-

ordinate Rotation Digital Computer) algorithm can compute

trigonometric functions, hyperbolic functions, and exponential

functions. It is particularly suitable for FPGAs because it

uses only switches, adders, and LUTs. It moves and adds values

through 2 x iterations. Taylor Series Expansion Another method

is to use the Taylor series approximation for anti- log

functions. For example, the series can be converted to constant

integers, but this method can be more computationally intensive

than LUT-based methods. 4. Fixed-Point Arithmetic Fixed-

Point Arithmetic Addition/subtraction: Easy because it uses the

same bit width. bit width (twice the operand width), so

appropriate scaling and truncation are required. FPGA Using

HDL Design: Use Verilog or VHDL to define the behavior

of anti-log functions. Create memory or allocate RAM on

the FPGA if you are using a LUT-based design. For the

CORDIC system, recalculations are implemented using shift-

add logic. Design accuracy and performance. SoC Integration

Processor Integration: If the FPGA is part of the SoC (such

as Xilinx or Intel SoC FPGA), the code protection device

can be integrated as an accelerator device connected to the

processor operation (such as ARM core). Interface: Use AXI

(Advanced Extensible Interface) to connect the FPGA fabric to

the processor. The processor can send the input value to the

FPGA via the AXI bus, and the FPGA returns the anti- log

value. You may need to perform tasks such as sending data,

performing calculations, and reading back the results. ¿

7. Optimization Latency and throughput: optimize the design

for specific applications. For urgent applications, ensure that

the delay numbers meet the time requirements of the system.

The balance of resources depends on the complexity of the

FPGA device and the back-end processing. Verification and

Validation Design by Analogy: Use HDL simulation tools to

verify that an inverse function behaves correctly when given

various inputs. Check the embedded hardware. If necessary,

adjust the correctness to ensure the result is acceptable. Final

integration and implementation After analyzing the counter-

measures together with other components in the SoC, such

as memory, I/O interfaces, and other computations. Platform:

Use Xilinx (Vivado, Zynq SoC) or Intel (Quartus, Intel SoC)

platform for implementation. Direct the library to work.

V. RESULT

1. Performance measurement Speed: FPGA implementa-

tions can be very similar, allowing for faster development

compared to software solutions running on traditional CPUs.

Especially when using pipelines or components, you should see

an improvement in the speed of the anti-log operation.) or

efficient use of resources. Point-to-point representation of

precision Precision: Point-to-point computation is often chosen

for FPGAs due to its lower resources compared to floating

point. However, this comes at the expense of accuracy. Careful

scaling and selection of the number of components in integer

and fractional values is important to reduce quantization error.

The results should include an analysis of how well the FPGA

computes the true variable count, possibly measured as mean

squared error (MSE) or maximum error (MAE). Resource

Usage Logic elements and scratchpads: FPGA resources such

as LUTs (lookup tables), FFs (flip-flops), and DSP slices (for

arithmetic operations) will be heavily utilized, and the results

should include information on how the FPGA resources were

utilized. The power efficiency of FPGAs compared to other

platforms such as CPUs is particularly important in the SoC

environment, where power consumption is often limited. Com-

parison with other architectures Fixed-point vs. floating-point:

The results should compare the resource utilization, speed, and

accuracy of fixed-point and floating-point. Floating-point

implementation of FPGAs. FPGA results are compared to the

equivalent implementation on a CPU or GPU, particularly in

terms of speed, processing power, and accuracy. Integration

and Integration in SoC Interfaces: Since the anti-log function is

part of the SoC, the results should indicate the degree of

integration of the FPGA module with other objects (e.g.,

memory interfaces, communication buses). Delays or conflicts

due to communication overhead or interference should be min-

imized. Discussion: In a SoC, multiple IP cores may compete

for resources (such as memory bandwidth). It is useful to

examine how the anti-log computation unit fits into the SoC

environment and how it affects the overall performance of

the system. Scalability and Flexibility Design scalability: The

results should show how the design scales with large input or

anti-log operations. The implementation can be easily modified

or extended to compute other mathematical functions (e.g.

http://www.ijsrem.com/

 International Journal of Scientific Research in Engineering and Management (IJSREM)
 Volume: 08 Issue: 12 | Dec - 2024 SJIF Rating: 8.448 ISSN: 2582-3930

© 2024, IJSREM | www.ijsrem.com DOI: 10.55041/IJSREM39948 | Page 5

Fig. 5. simulation

logarithms, exponential functions) or to accommodate different

levels of precision in the fixed representation. Using the

Optimization Process Pipelines: Designers can use pipelines to

increase the depth of the pipeline, and the impact on

performance will be significant. degree and its impact on

utilization and employment. Synthesis and Implementation

Results Synthesis Reports: These typically include time spent,

details of resource usage, and downtime. These results will

show that the design meets performance goals. Case Study or

Practical Application Case Study: If FPGA anti-log computing

is used for a specific application (such as configuration, audio

processing, or financial computing), the results should show the

improvements and advantages of this FPGA solution compared

to software. .use Make a comparison.

VI. CONCLUSION

Using logarithmic, complex arithmetic can be handled more

easily. This research proposed a new model for FPGA to

implement anti-log evaluation method . The proposed antilog

circuit uses the PLA technique. The same generator can process

both positive and negative binary numbers. Create a special BS

that moves the input data to the left or right by the appropriate

amount. Xilinx Artix-7 xc7ALX100t device im- plementation

Proposed architecture. Device utilization shows how much of

the FPGA resources are used by the device. We also analyzed

the estimated values through error analysis. The inaccuracy can

be further reduced by using more objects to represent the

decimal number. The application of the higher FPA resolution

to RNS units is the subject of this paper. The results of the

integrated equipment presented in this work show that the

hardware design speed, durability and performance are directly

affected by all the processing levels that need to be improved

during the computation of the return logarithm. Both RAM-

based FPA functions are used to reduce DSP implementation,

which can reduce the performance penalty in the gap in the FPA

design. Complex arithmetic can be handled more easily by

using logarithmic. This study suggested a novel model for the

FPGA that uses the anti-log evaluation

Fig. 6. schematic Diagram

technique. The PLA approach is employed in the suggested

antilog circuit. Binary numbers that are positive or negative can

be processed by the same generator. Make a unique BS that

shifts the input data by the necessary amount to the left or

right. Proposed architecture for the Xilinx Artix-7 xc7ALX100t

device implementation. The device’s utilization indicates the

percentage of FPGA resources that it is using. We also used

error analysis to examine the estimated values. By representing

the decimal number with more items, the error can be further

decreased. This research focuses on applying the greater FPA

resolution to RNS units. The outcomes of the

VII. REFERENCES

[1]. Nandan, D. (2020). An efficient antilogarithmic con- verter

by means of the use of correction scheme for DSP processor.

Traitement du sign, 37(1): seventy seven-eighty three.

https://doi.org/10.18280/ts.370110

[2]. B. Xiong, Y. Li, S. Li, S. Fan and Y. Chang, ”half-

Precision Logarithmic mathematics Unit primarily based on the

Fused Logarithmic and Antilogarithmic Converter,” in IEEE

Transactions on Very huge Scale Integration (VLSI) systems,

vol. 30, no. 2, pp. 243-247, Feb. 2022, doi:

10.1109/TVLSI.2021.3136229.

[3]. C. -T. Kuo and T. -B. Juang, ”A decrease error

antilogarithmic converter using novel four-place piecewise-

linear approximation,” 2012 IEEE Asia Pacific convention on

Circuits and systems, Kaohsiung, Taiwan, 2012, pp. 507-510,

doi: 10.1109/APCCAS.2012.6419083.

[4]. J. Lee, J. Lee, D. Han, J. Lee, G. Park and H.-J. Yoo, ”7.7

LNPU: A 25.3TFLOPS/W sparse deep-neural-community

getting to know processor with fine-grained mixed precision of

FP8-FP16”, IEEE Int. strong-state Circuits Conf. (ISSCC) Dig.

Tech. Papers, pp. 142-144, Feb. 2019.

[5]. A. Haidar, S. Tomov, J. Dongarra and N. J. Higham,

”Harnessing GPU tensor cores for instant FP16 mathematics to

hurry up combined-precision iterative refinement solvers”,

Proc. SC Int. Conf. high carry out. Comput. Netw. storage

Anal., pp. 603-613, Nov. 2018.

http://www.ijsrem.com/

 International Journal of Scientific Research in Engineering and Management (IJSREM)
 Volume: 08 Issue: 12 | Dec - 2024 SJIF Rating: 8.448 ISSN: 2582-3930

© 2024, IJSREM | www.ijsrem.com DOI: 10.55041/IJSREM39948 | Page 6

[6]. J. Wei, A. Kuwana, H. Kobayashi, ok. Kubo and Y. Tanaka,

”Floating-factor inverse square root algorithm based on Taylor-

series enlargement”, IEEE Trans. Circuits Syst. II Exp. Briefs,

vol. 68, no. 7, pp. 2640-2644, Jul. 2021.

[7]. ok. Dan, ”Evolution of conventional antilogarithmic method

and implementation in FPGA via VHDL,” 2014 Worldwide

Conference on Advances in Computing, Communications and

Informatics (ICACCI), Delhi, India, 2014, pp. 1839-1844, doi:

10.1109/ICACCI.2014.6968267.

[8]. S. Paul, N. Jayakumar and S. P. Khatri, ”a fast hardware

approach for approximate green logarithm and antilogarithm

computations”, IEEE Transactions on Very Huge Scale

Integration (VLSI) systems, vol. 17, no. 2, pp. 269-277, Feb.

2009.

[9]. S. Paul, N. Jayakumar, and S. P. Khatri, ” A fast

hardware approach for Approximate, green Logarithm and

Antilogarithm Computations,” in IEEE Transactions on Very

Big Scale Integration (VLSI) structures, vol. 17, no. 2, pp.

269-277, Feb. 2009, doi: 10.1109/TVLSI.2008.2003481.

[10]. Al-Tamimi, okay.; Thiyagarajan, P.; El-Sankary, okay.:

continuous-time four-quadrant modulator with inherent PVT

cancellation. Electron. Lett. 52(10), 807–808 (2016)

[11]. Maryan, M.M.; Azhari, S.J.: A MOS translinear cellular-

based configurable block for modern-day-mode analog sign

processing. Analog Integr. Circuits signal process. ninety-

two (1), 1–13 (2017)

[12]. Maryan, M.M., Ghanaatian, A., Azhari, S.J. et al. Low-

electricity high-speed Analog Multiplier/Divider based on a

brand new current Squarer Circuit. Arab J Sci Eng forty three,

2909–2918 (2018). https://doi.org/10.1007/s13369-017-2968-

2.

[13]. R. R. Selina, ”VLSI implementation of Piecewise

Approximated antilogarithmic converter,” 2013 worldwide

convention on communique and signal Processing,

Melmaruvathur, India, 2013, pp. 763-766, doi:

10.1109/iccsp.2013.6577159.

[14]. k. H. Abed and R. E. Siferd, ”VLSI implementation of a

low-power antilogarithmic converter,” in IEEE Transactions on

computer systems, vol. 52, no. 9, pp. 1221-1228, Sept. 2003, doi:

10.1109/TC.2003.1228517.

http://www.ijsrem.com/

