

From Coders to Innovators: The Creative Skill Gap in Hyderabad's IT Startup Companies

Swapna Rodda, Assistant Professor, Siva Sivani Degree College, Kompally, swapna@ssdc.ac.in

Kesava giri.P.HOD Department of Management, Siva Sivani Degree College, Kompally, kesavagiri@ssdc.ac.in.

Paturi maruthi sharath,HOD Department of Commerce, Sivasivani Degree College, Kompally, sharath@ssdc.ac.in

Abstract:

Hyderabad has become a major IT hub and startup growth in India. The city has a strong supply of technically skilled professionals. A significant creative skill gap persists within its startup sector; many employees possess coding skills and analytical skills but lack of innovation and problem-solving. This gap limits startup capacity to transform ideas into marketable innovations and compete globally. This study investigates the factors contributing to this imbalance, including industry-academic collaboration and preferences among skilled professionals for employment in large MNCs. Using mixed method approach surveying 50 employees and interviewing 10 founders across technology-based startups-the research identifies deficits in creative problem solving, design thinking, and strategic innovation literacy. The paper also proposed strategic interventions such as industry aligned training problems, innovation learning environments and creative skill development to bridge the gap and foster a holistic talent ecosystem in Hyderabad IT startup sectors.

Keywords: creative skills, innovation, skill gap, IT startups, Hyderabad, design thinking, workforce development

Introduction

Hyderabad has emerged as one of India's most dynamic tech corridors; it is home to growing IT startups. Over the last decade the government has initiated T-hub, T-Ask and We-hub, which, along with the city's robust engineering education infrastructure, have fostered and richness in tech talent. Hyderabad based software startups have excelled in software development and services delivery, but there is a limitation of creative skill gaps. This gap reflects expertise in coding and a shortage of creative problem solvers capable of transforming technical ideas into innovative products and disruptive business models. In the contemporary startup landscape, innovation is no longer a luxury; it is life. This study explores the continuous of the creative skill gap within Hyderabad's IT startup ecosystem, examining how it manifests, what drives it, and what interventions may bridge it. By integrating perspectives from startup founders HRs, and software professionals, the research seeks to uncover how creativity is perceived and cultivated in these organizations. Most importantly it investigates how startups can reimagine the talent development shift from code-centric training models to creative thinking. This finding aims to provide actionable insights for educators, entrepreneurs, and policymakers striving to position Hyderabad not just as a tech capital but as a global hub for creative innovation.

Literature Review:

1. Lohith, C. P., Srinivasan, R., Kadadevaramath, R. S., Shrisha, S-2017- Innovation the Key to Success: A Literature Review on Indian MSME's. Indian Journal of Science and Technology, 10(11), 1-6- focused on MSMEs, emphasizes innovation and creativity as success factors.
2. Paul, S.-2018, An Analysis of the Skill Shortage Problems in Indian IT Companies. Social Sciences, 7(9), 159.-Investigates skill-shortages in Indian IT firms — gives evidence of a gap between what IT companies expect and what employees bring theoretical evidences.
3. Padmini, H. A., Bharadwaj, A. K., Gopalakrishnan Nair, T. R-2010- Approaches to Curriculum and Teaching Materials to Bring Out Better Skilled Software Engineers – An Indian Perspective- Addresses how software engineering education in India is misaligned with industry needs.

4. Sarkar, P-2022- Education. International Journal of Recent Advances in Multidisciplinary Topics, 3(6), 116-118.- Focuses on employability/skill gap in higher education in India
5. Khatik, S. K., & Shrivastava, G-2023- Government's Role in Creating a Start-Up Ecosystem: The Indian Youth's Perception. Prabandhan: Indian Journal of Management, 16(4)- Explores youth perceptions in India about startup ecosystem support.
6. Rajvanshi, D., & Tyagi, A. K-2024- An Inclusive Analytical Study of Employability Skill Gaps and their Assessment Across India. International Journal of Innovative Science and Research Technology, 9(12)- Provides broad evidence of employability/skill gaps across India
7. Pratap, S., & Biragoni, P-2025- Skill Development in India: Policies, Challenges, and the Road Ahead. International Journal of Research and Scientific Innovation, 12, 1018-1024- Focuses on the policy side of skill development in India (and Hyderabad-adjacent region).
8. Nagaria, S., & Mysa, M-2025- Understanding start-ups ecosystem in Hyderabad: Challenges, and Issues. International Journal of Research in Management, 7(2), 654-658- Discussed about Hyderabad startup ecosystem and its challenges.

What is creative skill gap:

Creative skill gap refers to the difference between the skills people currently have and the innovative skills the organizations actually need to solve real-world problems and create a new world. It includes problem solving and task execution, idea generation, design & Critical thinking.

Concept of the Creative Skill Gap

The creative skill gap refers to the deficiency in skills related to ideation, user-centric thinking, innovation, and interdisciplinary collaboration among technically qualified professionals. Although employees may excel in programming languages, frameworks, and tools, they often struggle with identifying problems, proposing novel solutions, and aligning technology with business and user needs. Innovation, unlike coding, demands creativity, experimentation, and strategic thinking.

Causes of the Creative Skill Gap

One of the primary causes of the creative skill gap is the education system, which focuses on theoretical knowledge, standardized curriculum and examination-based assessment. Limited exposure to real-world problem-solving, startup environments, and innovation labs restricts creative development.

Additionally, many professionals transitioning from large IT service firms to startups carry a process-driven and instruction-based work culture. This mindset reduces initiative-taking and creative risk. The lack of formal training in design thinking, product development, and user experience further widens the gap. Cultural factors such as fear of failure and job insecurity also discourage experimentation and innovation.

Theoretical Evidence:

Human Capital Theory

Human capital theory suggests that organizational performance depends not only on the quantity of skills but also on their composition. Start-ups with employees who possess strong coding skills but limited creative abilities face a constrained innovation capacity. In other words, technical human capital alone is insufficient for generating novel products; creative human capital is equally critical for sustaining competitive advantage.

Absorptive Capacity Theory

Absorptive capacity refers to a firm's ability to recognize, assimilate, and exploit new knowledge. Employees lacking creativity struggle to interpret emerging trends, reframe problems, or generate novel solutions. Thus, a workforce focused solely on coding limits the start-up's ability to transform external knowledge into innovative offerings.

Organizational Learning Theory

Organizational learning theory emphasizes that firms innovate by continuously exploring and experimenting with new ideas. Creative competencies enable divergent thinking, collaborative problem-solving, and iterative development—key processes in organizational learning. A deficiency in these competencies hinders learning and prevents start-ups from evolving beyond incremental improvements.

Dynamic Capabilities Theory

Dynamic capabilities involve sensing opportunities, seizing them, and reconfiguring resources to respond to market changes. While technical skills support operational execution, creativity enables opportunity recognition and resource recombination. Start-ups without creative talent struggle to adapt, innovate, and maintain competitive agility in fast-moving technology markets.

Innovation Capability Theory

Innovation capability theory emphasizes the need for firms to integrate and implement novel ideas. Employees trained primarily in coding often lack the cognitive flexibility to ideate, prototype, and develop innovative solutions. Consequently, the start-up ecosystem becomes execution-focused rather than innovation-driven.

Socio-Technical Systems Theory

This theory suggests that organizational outcomes depend on the alignment between technical and social subsystems. In IT start-ups, technical systems (coding, software development) must be complemented by social systems (creativity, collaboration, knowledge sharing). Imbalance between these systems creates bottlenecks that reduce overall innovation performance.

Cognitive Theories of Creativity

Cognitive theories highlight that creativity relies on processes such as divergent thinking, associative reasoning, and problem reframing. Traditional engineering education emphasizes algorithmic problem-solving and structured thinking, leaving employees underprepared for tasks requiring innovation, ideation, and user-centric design.

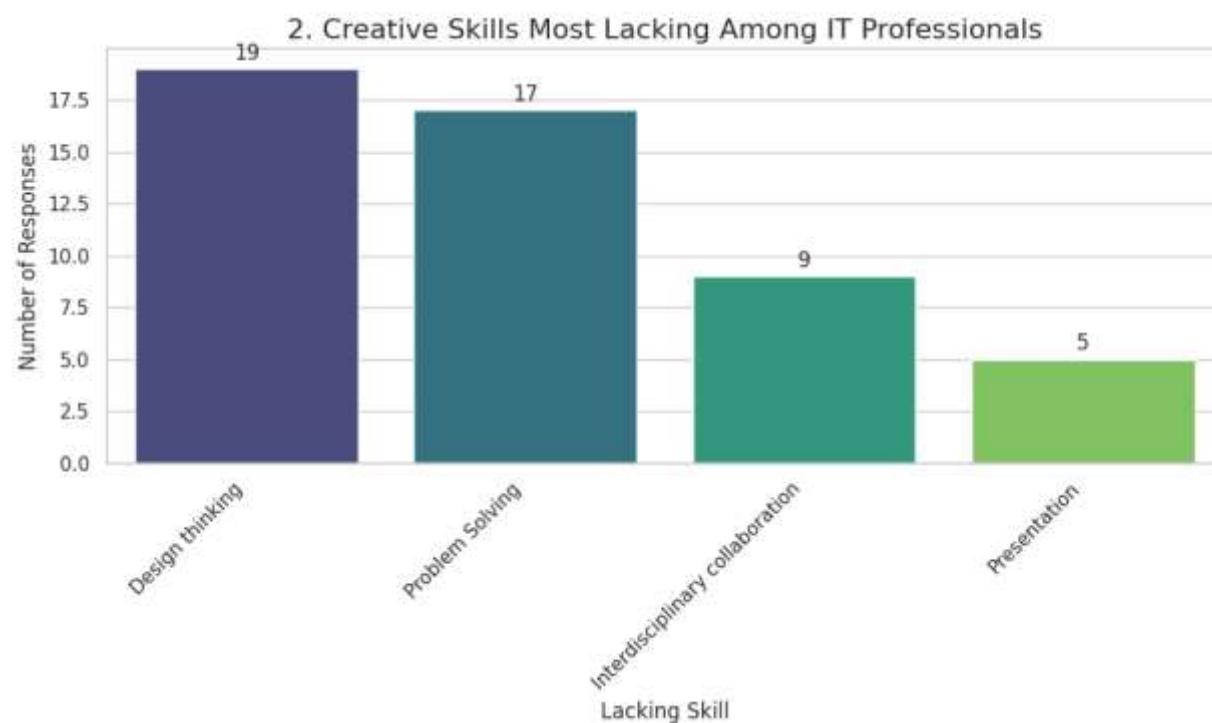
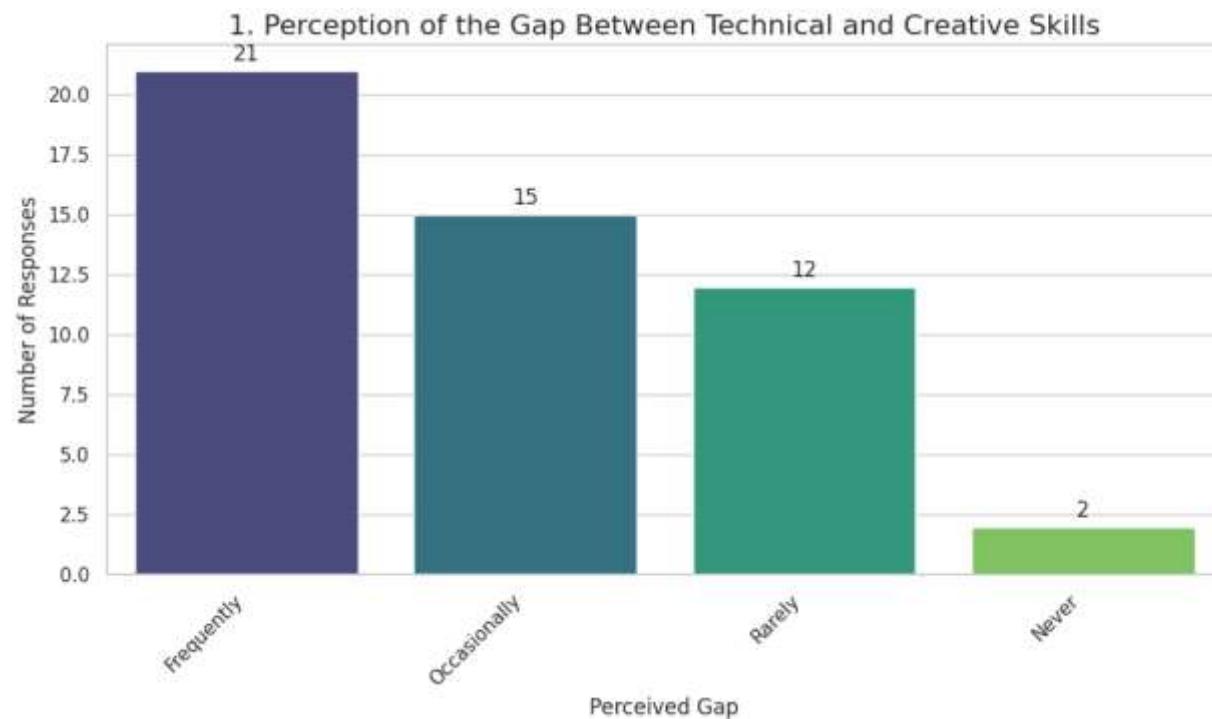
Impact of Creative Skill Gap on Startup Performance:

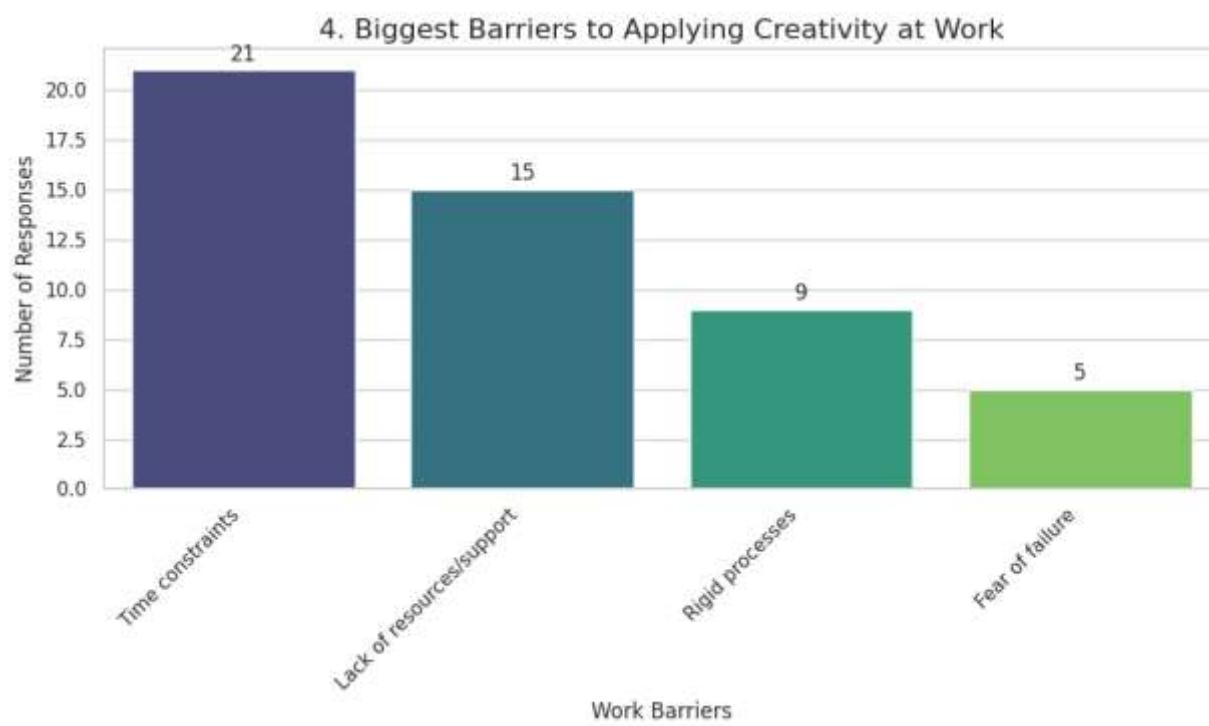
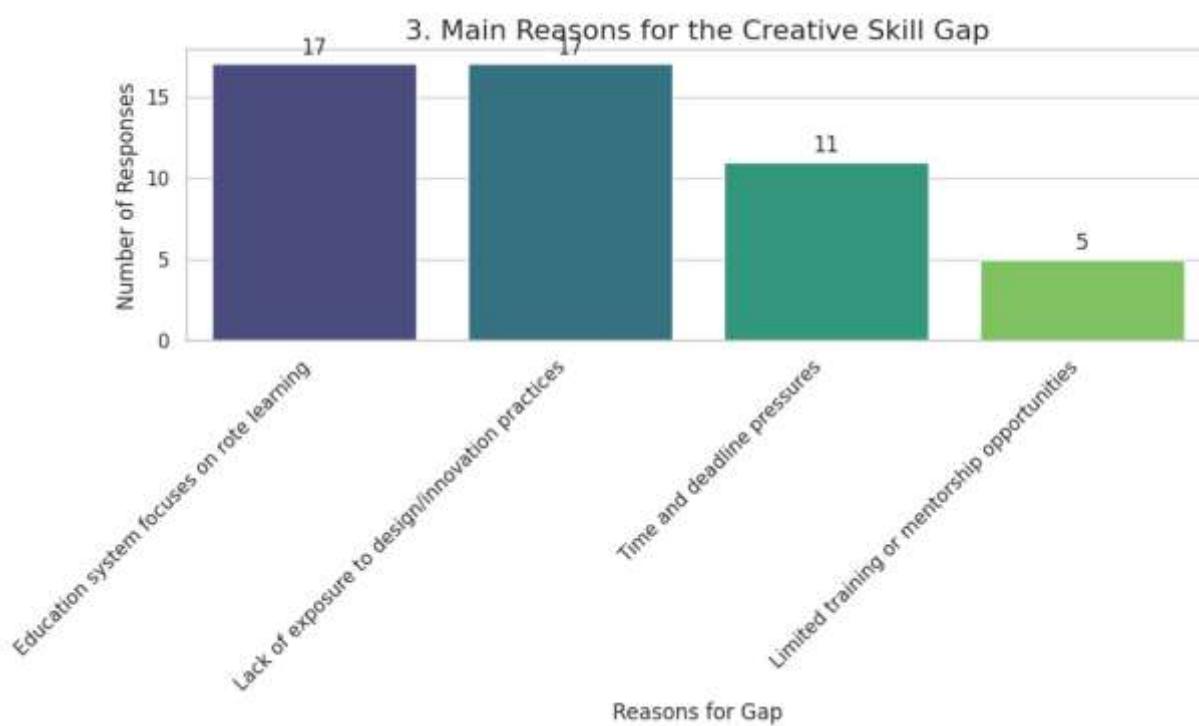
The creative skill gap has adverse effect on startup performance, as it limits innovation and reduces a startup's ability to develop unique and competitive products. When employees focus only on executing tasks rather than thinking creatively, startups struggle to identify real market problems and design user-centric solutions, leading to poor product quality and weak customer satisfaction. This gap also slows business growth, as teams lack strategic thinking and fail to align technology with business goals. Additionally, the absence of creative skills lowers employee engagement and problem-solving ability, making startups less agile in handling challenges and changes in the market. Overall, the creative skill gap restricts productivity, competitiveness, and long-term sustainability of startups.

Research Gap:

1. Existing studies focus on technical skill than creative skills.
2. There is significant imbalance between technical proficiencies and creative capabilities.
3. There is lack of studies on creative skill gap among IT professionals in Hyderabad startup companies.

Research Objective:



1. To Examine the impact of the creative skill gap.
2. To identify the factors contributing to the creative skill gap.
3. To propose strategies and policy recommendations for bridging the creative skill gap.
4. To analyses the current state of creativity and innovation skills among the IT professionals in Hyderabad startup.



Methodology:

A Mixed-method approach was adopted to obtain both qualitative and quantitative insights.

Data Collection:

A total of 50 employees and 10 founders from Hyderabad-based IT startups were surveyed to assess creative competencies and innovation practices.

Discussion:

Discussion: The analysis reveals a widespread and critical Creative Skill Gap in the IT sector, confirmed by 84% of professionals who perceive a deficiency. This gap is most acute in structured innovation skills, with the top lacking abilities being Problem Solving (cited by 46%) and Design Thinking (32%). Professionals overwhelmingly trace the root cause back to systemic failures, citing the Education system focusing on rote learning and Lack of exposure to design/innovation practices (both around 34% of responses). Furthermore, even existing creativity is stifled by

organizational hurdles, as the biggest workplace barriers are identified as Time constraints (34%) and a lack of resources/support (32%), underscoring a need for both foundational training and cultural change.

Recommendations

Integrate project-based learning with industry co-designed modules, design thinking, and customer discovery. Foster interdisciplinary coursework that pairs engineering with humanities or business perspectives. Adopt structured practices time-boxed innovation sprints, internal mentorship, paired programming between engineers and designers, and regular user-testing cycles. Offer subsidized, cohort-based upskilling programs that combine practical prototyping, mentorship, and placements within startups. Facilitate industry-academia hackathons centered on real product problems.

References:

1. Araújo, G., Kalinowski, M., & Baldassarre, M. T. (2025). Embracing experiential learning: Hackathons as an educational strategy for shaping soft skills in software engineering. *IEEE Transactions on Education*, 68(1), 42–51.
2. Groeneveld, M., Luyten, K., Vennekens, J., & Aerts, J. (2023). Students' and professionals' perceived creativity in software engineering: A comparative study. *Empirical Software Engineering*, 28(6), 1–22.
3. All India Council for Technical Education (AICTE). (2020). Employability enhancement training programmes evaluation report. New Delhi: AICTE.
4. Startup Genome. (2023). Global startup ecosystem report 2023: Telangana & Hyderabad ecosystem profile. San Francisco: Startup Genome.
5. Government of Telangana. (2023). Telangana innovation & startup ecosystem annual report. Hyderabad: Innovation Cell, IT & Industries Department.
6. Telangana Academy for Skill and Knowledge (TASK). (2023). Industry skill requirements report for IT startups in Hyderabad. Hyderabad: TASK.
7. Padmini, I., Bharadwaj, P., & Nair, S. (2010). Approaches to curriculum and teaching materials to bring out better skilled software engineers – An Indian perspective. *ACM SIGSOFT Software Engineering Notes*, 35(2), 1–6.
8. Robles, M. M. (2012). Executive perceptions of the top 10 soft skills needed in today's workplace. *Business Communication Quarterly*, 75(4), 453–465.
9. Lakhani, K. R., & Panetta, J. A. (2007). The principles of distributed innovation. *Innovations: Technology, Governance, Globalization*, 2(3), 97–112.
10. Drucker, P. F. (2014). *Innovation and entrepreneurship*. London: Routledge.
11. National Skill Development Corporation (NSDC). (2019). National skill gap study: State-wise report. New Delhi: Government of India.
12. Basant, R., & Sen, G. (2020). Skill development and employability in India's IT sector. *Economic & Political Weekly*, 55(3), 45–52.
13. Sharma, R., & Kaur, S. (2021). Employability skills among engineering graduates in India. *International Journal of Educational Development*, 82, 102380.
14. NASSCOM. (2023). India tech industry digital talent demand and supply 2023. New Delhi: NASSCOM.