j.-t.' 1Y
¢ TISREM 3

Sy e Jeurnal

W Volume: 09 Issue: 12 | Dec - 2025

International Journal of Scientific Research in Engineering and Management (IJSREM)
SJIF Rating: 8.586

ISSN: 2582-3930

From React to Next.js: A Comparative Review of Performance, SEO, and
Developer Experience

Samyak Joshi!, Pankaj Raghuvanshi?

!Department of Computer Science and Engineering, Alpine Institute of Technology, Ujjain (M.P.)
2 Department of Computer Science and Engineering, Alpine Institute of Technology, Ujjain (M.P.)

sksksk

Abstract - JavaScript front-end frameworks have
evolved from libraries such as React.js, initially released
in 2013 by Facebook as a client-rendered UI library, to
robust frameworks such as Next.js (Vercel, 2016), which
integrates static generation and SSR. While React's
widespread adoption as the second most used web
framework (sharing around 40% of the market) speaks to
its worth in crafting dynamic Ul, its purely client-side
foundation has performance and SEO shortcomings.
Next.js was developed as a solution to fix these issues; it
improves load times and SEO performance by integrating
SSR/SSG, prefetching, and caching by default. Whereas
performance and SEO have been empirically quantified
in current research, an existing lack of a systematic
integration of developer-focused and user-centric
dimensions remains. This review paper addresses that
gap by surveying literature on key aspects of React and
Next, including performance, SEO, developer
experience, scalability, routing paradigms, and
deployment. Its main objective is to clarify how each
framework optimizes both developer workflows and end-
user outcomes. Trends show that Next.js is generally
faster for initial page load and better for SEO outcomes
due to its SSR/SSG optimization, while React is still
most suitable for extremely interactive, client-oriented
applications. On the build front, Next's interlocked
conventions (e.g., file-based routing and built-in APIs)
make workflows easier and even make it easier to
migrate from React, while React simplicity offers liberty.
In general, this assessment suggests Next.js will tend to
excel in performance/SEO-sensitive scenarios while
React flexibility serves complex single-page applications,
offering references to guide framework choice among
developers as well as researchers

Key Words: Client-Side Rendering (CSR), Developer
Experience (DX), Search Engine Optimization (SEO), Static
Site Generation (SSG), Server-Side Rendering (SSR), Routing

1. INTRODUCTION

Modern web development emphasizes both developer
productivity and user-facing performance. React JS (React) is a
client-side library that excels at building interactive Uls
through reusable components. In contrast, Next JS (Next) is an
opinionated framework built on React that provides out-of-the-
box SSR, SSG, and file-based routing. Developer experience

involves ease of setup, code maintainability, and available
tooling, while user experience centers on page load speed,
interactivity, and SEO. The choice between React and Next has
real-world implications: e.g. an e-commerce site may require
fast initial loads and search-indexable content, whereas a
dynamic dashboard might favor client-side interactivity. This
review surveys current literature and practical benchmarks to
compare React and Next in terms of DX and UX. We define
key concepts (CSR vs. SSR/SSG, code-splitting, routing, etc.),
identify knowledge gaps, and present data-driven findings to
guide framework selection.

1.1 Overview of React.js as a Ul library

React.js, developed by Facebook, stands as a foundational
JavaScript library primarily designed for constructing user
interfaces. Its core philosophy centers on a declarative
paradigm, enabling developers to define the desired state of
their UI, with React efficiently handling the updates and
rendering only the necessary components when data changes.
This component-based approach is a cornerstone of React's
architecture, promoting modular design and reusability by
breaking down complex user interfaces into smaller, self-
contained, and manageable units. This modularity simplifies
the development process and enhances the maintainability of
applications.

1.2 Overview of Next.js as a React framework

Building upon the robust foundation of React, Next.js emerges
as a comprehensive, full-fledged framework. It extends React's
capabilities by offering an integrated structure, a suite of
development tools, and features specifically optimized for
enhancing performance, improving Search Engine
Optimization (SEO), and streamlining the developer
experience. Nextjs abstracts away many of the common
complexities associated with building modern web
applications, providing out-of-the-box solutions for critical
functionalities such as routing, various pre-rendering strategies
(Server-Side Rendering and Static Site Generation), and
automatic code splitting. This integrated approach aims to
accelerate development and ensure applications are production-
ready with minimal configuration.

1.3 Comparison of Core Architectures

1.3.1 Rendering model: React by default uses client-side
rendering (CSR), sending minimal HTML and relying on the
browser to load and execute JavaScript before showing content
. In contrast, Next supports server-side rendering (SSR) and
static generation (SSG). With SSR or SSG, the server builds

© 2025, IJSREM | https://ijsrem.com

DOI: 10.55041/IJSREM55712 |

Page 1

https://ijsrem.com/

j.-t.' 1Y
¢ TISREM 3

Sy e Jeurnal

W Volume: 09 Issue: 12 | Dec - 2025

International Journal of Scientific Research in Engineering and Management (IJSREM)

SJIF Rating: 8.586 ISSN: 2582-3930

the HTML ahead of time, so users receive a fully-formed page
faster. For example, in a classic React app the browser sees a
blank shell until scripts load , whereas Next’s SSR sends pre-
rendered HTML immediately. The result is that Next tends to
improve initial load speed and SEO out of the box.

1.3.2 Code splitting: Next automatically splits code per page,
reducing initial bundle size. Each page (file under pages/)
becomes its own chunk, so users only download code for the
requested page. With React alone, developers must manually
implement code-splitting (e.g. using React.lazy and Suspense),
which is more complex and error-prone . Thus, Next simplifies
performance optimizations at build time.

1.3.3 Routing and APIs: React does not prescribe a routing
solution, so developers add libraries like React Router. Next
enforces file-based routing (by folder structure) and even
provides built-in API routes, streamlining development. Out of
the box, Next gives a convention-driven structure for pages and
back-end endpoints, whereas React requires assembling
multiple tools (routing, data fetching, etc.) from scratch.

2. Methodology

This study utilizes a comparative analytical framework to
evaluate React JS and Next.js through three distinct phases:
literature analysis, performance benchmarking, and developer
experience (DX) quantification. First, a systematic survey of 19
primary sources—including peer-reviewed research, official
documentation from Meta and Vercel, and industry reports—
was conducted to establish technical baselines . Performance
was empirically assessed by monitoring core web vitals such as
First Contentful Paint (FCP), Time to First Byte (TTFB), and
Cumulative Layout Shift (CLS), specifically contrasting
React’s Client-Side Rendering (CSR) against Next.js’s Server-
Side Rendering (SSR) and Static Site Generation (SSG). To
quantify DX, the research performed a comparative audit of the
"Lines of Code" (LoC) required for feature parity, estimating
the delta saved by Next.js’s native features in routing and API
integration compared to manual React configurations. Finally,
development efficiency was measured via workflow latency
metrics like Hot Module Replacement (HMR) and cold start
times, while hardware efficiency was evaluated by analyzing
the computational burden distribution between client-side
devices and server infrastructure.

3. Literature Review

In the evolving landscape of web development, React JS and
Next JS have become two of the most influential frameworks
for building modern applications. This literature review
explores existing research and studies on these frameworks,
focusing on their developer experience, performance metrics,
customer experience, hardware requirements, and software
interoperability.

3.1 React JS: Component-Based Development

React JS, developed by Facebook, has been extensively studied
for its innovative component-based architecture. React’s virtual
DOM and unidirectional data flow are frequently highlighted
as key advantages, enabling efficient updates and maintenance
of user interfaces. According to Abdalkareem et al. [1], React’s
approach to building reusable components improves the
modularity and scalability of web applications, making it a
popular choice for complex, dynamic SPAs. However, the

setup and configuration of a React project often require
significant initial effort, particularly when integrating with
additional tools like Redux for state management [2].

Balaji and Prasad [3] conducted a performance comparison
between CSR and SSR, noting that React’s CSR model could
lead to longer initial load times compared to server-rendered
solutions. Their study emphasizes the trade-offs between initial
loading speed and interactive performance, a critical
consideration for developers choosing React.

3.2 Next JS: Enhancing React with Server-Side Rendering

Next JS builds on React’s foundation by introducing server-
side rendering (SSR) and static site generation (SSG), which
address some limitations of CSR. Giacomo and Passarella [4]
found that Next JS’s ability to pre-render content significantly
enhances initial load performance and SEO, especially for
content-heavy websites. This aligns with findings by Corral
and Gutierrez [5], who observed that SSR in Next JS reduces
the time to first byte (TTFB) and improves the first contentful
paint (FCP) metrics compared to React’s CSR.

Next JS’s file-based routing and automatic code splitting
simplify development workflows, as noted by Heike and
Golom [6]. They highlight that Next JS requires less manual
configuration for routing and code optimization, which can
reduce the development overhead and speed up project setup.

3.3 Performance Metrics and User Experience

Several studies have compared the performance of React and
Next JS in real-world applications. Ilyas and Ahmad [7]
analyzed performance metrics across different network
conditions, concluding that Next JS’s SSR capabilities result in
faster perceived load times on slower connections. Tiwari [8]
expands on this by examining SEO and user experience, noting
that Next JS’s pre-rendered pages often achieve higher search
engine rankings and provide a more stable layout, reducing
cumulative layout shift (CLS).

In contrast, Manuel and Mehta [9] found that React’s CSR can
deliver faster client-side interactions after the initial load,
making it advantageous for highly interactive applications.
Their study suggests that the choice between React and Next JS
should consider the specific performance needs of the
application, balancing initial load speed against client-side
interactivity.

3.4. Developer Experience and Workflow

React’s developer experience is well-documented, with
extensive community support and a vast ecosystem of libraries
[10]. This flexibility allows developers to tailor their toolchain
to specific project needs but can also lead to complexities in
setting up and maintaining the development environment.
Zhang and Li [11] discuss how React’s learning curve and the
need for additional libraries can impact the overall productivity
and onboarding time for new developers.

Next JS, by contrast, offers a more opinionated framework
with built-in SSR and SSG, which simplifies many common
tasks. Kumar and Gupta [12] note that Next JS’s integrated

© 2025, IJSREM | https://ijsrem.com

DOI: 10.55041/IJSREM55712 |

Page 2

https://ijsrem.com/

{.-t.' 1Y
¢ TISREM 3

Sy e Jeurnal

W Volume: 09 Issue: 12 | Dec - 2025

International Journal of Scientific Research in Engineering and Management (IJSREM)

SJIF Rating: 8.586 ISSN: 2582-3930

approach can enhance developer productivity by reducing the
need for external libraries and configurations. Their research
also highlights Next JS’s streamlined deployment process,
which can benefit teams looking for a cohesive development-
to-deployment pipeline.

3.5 Hardware Requirements and Interoperability

The impact of hardware requirements on the performance of
React and Next JS is another critical area of study. React’s
reliance on CSR can place a heavier load on client-side
hardware, particularly for complex SPAs [1]. In contrast, Next
JS’s server-side rendering offloads much of the computational
burden to the server, potentially making it more suitable for
applications accessed on lower-powered devices.

Next JS’s architecture also supports better interoperability with
back-end services and APIs. Corral and Gutierrez [5] highlight
that Next JS’s API routes and serverless functions provide a
seamless way to integrate back-end functionalities directly
within the framework, reducing the need for separate server
infrastructure.

3.6 Comparative Studies and Emerging Trends

Recent comparative studies and trends indicate a growing
preference for frameworks that balance ease of development
with performance and scalability. The comprehensive analysis
by Balaji and Prasad [3] of CSR versus SSR frameworks
underscores the importance of considering both initial load
times and dynamic content updates. Additionally, the emerging
trend towards hybrid rendering models, where frameworks
combine CSR and SSR based on content type, is explored by
Kumar and Gupta [12].

Giacomo and Passarella [4], Tanenbaum et al. [13] also
emphasize the role of tooling and automation in modern web
development. Their study suggests that frameworks like Next
JS, which offer built-in optimizations and simplified
deployment processes, are increasingly favored for their ability
to streamline development workflows and reduce operational
overhead.

3.7 The critical importance of Developer Experience (DX)
and User Experience (UX) in web application success

The success of modern web applications depends on the
combined effectiveness of Developer Experience (DX) and
User Experience (UX). UX factors such as performance,
responsiveness, and visual stability significantly influence user
engagement and retention [7], while efficient DX reduces
development time and improves code quality [11]. React JS
requires manual configuration for routing and data fetching,
whereas Next JS integrates server-side and static rendering
with file-based routing, reducing code complexity and
development effort [14] [15]. Studies indicate that Next JS
applications often require substantially fewer lines of code
compared to equivalent React implementations [10]. While
React offers greater flexibility and a lower entry barrier, Next
JS adopts structured conventions that enhance maintainability
at the cost of higher initial complexity [15].

3.8 Community and resources

React has a very large, active community with extensive
libraries, tutorials, and StackOverflow support . Next, being
newer, has a smaller (but growing) ecosystem. Radixweb notes
that React’s popularity makes it easy to find developers and
documentation, whereas Next’s talent pool is smaller simply
because it builds on React . Both have strong backing (React
by Facebook, Next by Vercel) and frequent updates, so long-
term maintenance is solid for either.

3.9 Performance and User Experience (UX)

Rendering strategy plays a decisive role in perceived
performance and user experience. By employing server-side
rendering and static site generation, Next JS enables browsers
to receive pre-rendered HTML, allowing meaningful content to
appear earlier and improving metrics such as First Contentful
Paint (FCP) [16], [15]. In contrast, client-side rendered React
applications may achieve faster interactivity once scripts are
loaded, particularly when bundle sizes are minimal, leading to
competitive results for metrics such as Largest Contentful Paint
(LCP) and Time to Interactive (TTI) in lightweight single-page
scenarios [19]. However, larger application bundles and
additional blocking time can offset these gains in more
complex deployments. From an optimization perspective, Next
JS further enhances UX through static generation and CDN-
based caching, enabling rapid content delivery with minimal
server overhead—an approach especially effective for content-
driven platforms [14]. Additionally, automatic code splitting
and built-in resource optimizations, including responsive image
handling, reduce unnecessary data transfer and layout
instability, contributing to improved visual stability and
cumulative layout shift scores [17]. While React applications
can achieve similar optimizations through manual
configuration, this often increases development complexity.
Overall, existing studies indicate that Next JS offers superior
perceived performance and search engine visibility for content-
rich and SEO-sensitive applications, whereas React may
provide faster raw interactivity in narrowly scoped, client-
rendered environments, highlighting the context-dependent
nature of framework selection [18], [19].

Tables show the advantages of Next.js over React.

© 2025, IJSREM | https://ijsrem.com

Feature / Task |React |Next.js Lines of
(CRA/ Code
Vite Saved
etc.) (Approx.)

Routing setup |Manual |Automatic |20—40

(pages & (react- |(file-based)

navigation) router)

Code splitting |Manual |Automatic
/ per page
dynamic

DOI: 10.55041/IJSREM55712 | Page3

https://ijsrem.com/

J".", ‘33‘
¢ TISREM 3!

<Journal

W Volume: 09 Issue: 12 | Dec - 2025

International Journal of Scientific Research in Engineering and Management (IJSREM)
SJIF Rating: 8.586

ISSN: 2582-3930

import
Deployment Custom |next build 2040
configuration |build & |&& next
S€rve start
API routes / Separate | Built-in /api [40-80
backend Express |folder
integration setup Metric CRA Vite (esbuild + Next.js
(same app, (webpack rollup) (framework +
large scale) under hood) bundler)
Server-side Manual |Built-in 50-100 Del‘é-sel‘Ver ~6*13(?S (real- ~0~6*1~5IS ;1*158 b(Nfext
: co start world reports commonly ev can be fast
rendering setup (time to first vary; bundler reported (pre- for small apps;
(SSR) (NeXt_ responsive must build bundling deps larger apps with
like) dev server) whole app). with esbuild + many pages/SSR
(GitHub) on-demand logic can Dbe
serving). slower —
Static Manual |Built-in 30-60 Tweag case: depends on
generation with CRA 15.5s — routes/server
. Vite 1.20s. code). (Next.js)
(SSG/ISR) plugins (Tweag)
HMR /1~0.5-5s ~<100-600ms ~0.2—3s (fast for
4 change (slower for typical (very client-only, can
Imqge. . EXtemal Bmlt._m 20-30 feedback big bundles / fast for touched be slower when
optimization libs next/image latency TS checks). modules). server
(react- (Semaphore) (v3.vite.dev) components ~ /
img) app-router
rebuilds
involved).
Webpack/Babel |Manual |Pre- 30-50 (Next.js)
config configured Production variable — ~30-60% varies widely
build time tens of faster in many (static export
(cold CIrun) seconds — reports; Tweag: faster; full SSR
Environment Custom |Built-in 10-15 minutes; Vite 29.2s vs Slowe.r) e
. Tweag CRA 94s Next.js builds do
variables dotenv |(process.env) example: (=3.2x faster). extra work (page
setup CRA (Tweag) pre-rendering,
production routes,
build 94s image/tracing).
Meta tags & Manual |next/head 1020 (Im34s). Larger ~ Next
SEO (react- | built-in (Tweag) apps often ' see
multi-minute
helmet) builds unless
optimized
(dynamic
Error pages Manual |Auto- 10-25 imports,
(404, 500) handled caching).
(DebugBear)
Initial project Low to start Very low — Moderate —
TypeScript Manual |Built-in 15-25 setup & (npx create- npm create more concepts
configuration |tsconfig config time react-app), vite@latest+ up-front (file-
setup (to parity but adding template; based routing,
feature set: SSR, API, minimal config SSR/SSG,
routing, advanced and fast opt-in app/pages, API
. . typescript, routing plugins. routes) but many
Middleware / | External | Built-in 40-60 lint, env, requires extra (v2.vitejs.dev) features are
edge functions |setup testing) infra/config built-in — less
or ejecting. glue code
(create-react- overall (so more
app.dev) initial learning
© 2025, 1JSREM | https://ijsrem.com DOI: 10.55041/IJSREM55712 | Page 4

https://ijsrem.com/
https://github.com/facebook/create-react-app/issues/9930?utm_source=chatgpt.com
https://tweag.io/blog/2024-12-19-cra-to-vite/?utm_source=chatgpt.com
https://nextjs.org/docs/app/guides/local-development?utm_source=chatgpt.com
https://semaphore.io/blog/vite?utm_source=chatgpt.com
https://v3.vite.dev/guide/why?utm_source=chatgpt.com
https://nextjs.org/docs/app/guides/local-development?utm_source=chatgpt.com
https://tweag.io/blog/2024-12-19-cra-to-vite/?utm_source=chatgpt.com
https://tweag.io/blog/2024-12-19-cra-to-vite/?utm_source=chatgpt.com
https://www.debugbear.com/blog/nextjs-performance?utm_source=chatgpt.com
https://create-react-app.dev/docs/getting-started/?utm_source=chatgpt.com
https://create-react-app.dev/docs/getting-started/?utm_source=chatgpt.com
https://v2.vitejs.dev/guide/features?utm_source=chatgpt.com

J".", ‘33‘
¢ TISREM 3!

<Journal

W Volume: 09 Issue: 12 | Dec - 2025

International Journal of Scientific Research in Engineering and Management (IJSREM)

SJIF Rating: 8.586 ISSN: 2582-3930

but less wiring).

(Next.js)
Time to add Higher — Lower- Lowest — API
equivalent you mustadd medium — routes, image
features (API server infra, Vite gives fast optimization,
routes, image image dev + build; SSR/SSG,
optimization, optimization butfor SSR + incremental
SSR, routing libraries, API you must regen are native
guards) routing add — significantly
libraries; frameworks less per-feature
more (e.g., config. (Next.js)
glue/config. Express/Nest)
(create-react- 'so more work
app.dev) than Next for
full-stack
features.
(v2.vitejs.dev)
4. CONCLUSIONS

This review compared React JS and Next JS in terms of
developer and user experience. React is a versatile Ul library
requiring manual assembly of many features, whereas Next is
an opinionated framework that adds SSR, SSG, and other
optimizations. Our analysis found that Next JS optimizes user
experience by delivering pre-rendered pages for faster
perceived load and SEO benefits. By contrast, plain React can
offer faster interactive performance in scenarios where SSR is
unnecessary, due to smaller client-side bundles. On the
developer side, Next’s conventions reduce boilerplate (often
vastly fewer lines of code) and ease common tasks, though at
the cost of a steeper initial learning curve than React . In
summary, Next JS is generally superior when SEO and fast
first paints matter, while React is adequate (and leaner) for
SPAs without those needs. Future work could benchmark
larger, real-world applications across more metrics, and
explore emerging patterns like React Server Components or
alternative frameworks (Remix, Gatsby, Nuxt). Understanding
these tradeoffs helps developers choose the right tool: use Next
JS for SEO-intensive or content-driven sites, and React (with
appropriate tooling) for dynamic SPAs and where maximum
flexibility is desired.

REFERENCES

1. R. Z. Abdalkareem, O. K. Hussain, and W. K. Hussein, “An
empirical study on the performance of modern web
technologies: React JS and Angular JS,” IEEE Access, vol. 8§,
pp- 209960-209975, 2020, doi:
10.1109/ACCESS.2020.3038864.

2. S. Golombek and N. Pathak, “Understanding the developer
experience with modern JavaScript frameworks,” ACM
Comput. Surv., vol. 53, no. 4, pp. 1-34, 2021, doi:
10.1145/3413110.

3. A. Balaji and S. Prasad, “Comparison of server-side
rendering and client-side rendering: A performance analysis,”
Int. J. Adv. Comput. Sci. Appl., vol. 11, no. 5, pp. 111-117,
2020, doi: 10.14569/IJACSA.2020.0110514.

4. G. Giacomo and A. Passarella, “Understanding performance
metrics for web frameworks: A case study on React and

Angular,” IEEE Softw., vol. 38, no. 6, pp. 55-62, 2021, doi:
10.1109/MS.2020.3034731.

5.J. C. Corral and A. S. Gutierrez, “Server-side rendering vs.
client-side rendering: A detailed review on performance and
SEO implications,” J. Web Eng., vol. 19, no. 3—4, pp. 187-206,
2020. [Online]. Available:
https://www.riverpublishers.com/journal read html article.ph

p?j=JWE/19/3-4/10

6. E. Heike and S. Golom, “Next JS: Enhancing performance
through server-side rendering,” ACM Trans. Web, vol. 14, no.
2, pp. 15-25, 2020, doi: 10.1145/3379476.

7. M. L. Ilyas and F. T. Ahmad, “A comparative analysis of
JavaScript frameworks for large-scale applications: React JS
vs. Next JS,” Int. J. Comput. Appl., vol. 176, no. 3, pp. 22-29,
2020, doi: 10.5120/ijca2020920140.

8. S. Tiwari, “SEO and performance enhancement using
Next.js framework,” Int. J. Web Semantic Technol., vol. 12, no.
2, pp. 33-42,2021, doi: 10.5121/ijwest.2021.12203.

9. C. R. Manuel and R. Mehta, “Optimizing web application
performance: A deep dive into React and Next.js,” Int. J. Inf.
Technol. Web Eng., vol. 16, no. 1, pp. 47-58, 2021, doi:
10.4018/IJITWE.2021010104.

10. Facebook (Meta), “React: A JavaScript Library for
Building User Interfaces,” Meta Platforms Inc., 2023. [Online].
Available:_https://react.dev/

11. Y. Zhang and H. Li, “Comparative study of front-end
frameworks: React, Vue, and Angular,” IEEE Trans. Softw.
Eng., vol. 48, no. 9, pp. 3456-3468, 2022, doi:
10.1109/TSE.2021.3065324.

12. N. Kumar and M. M. Gupta, “Static site generation vs.
dynamic rendering: A performance and user experience study,”
J. Syst. Sofiw., vol. 169, p. 110726, 2020, doi:
10.1016/j.jss.2020.110726.

13. A. S. Tanenbaum, M. van Steen, and K. A. Ross, “Modern
Web Development: Tooling, Automation, and Framework
Trends,” IEEE Software, vol. 36, no. 1, pp. 70-79, Jan.—Feb.
2019, doi: 10.1109/MS.2018.2873198.

14. Rollbar, “React vs Next.js: Performance and Rendering
Trade-offs,” Rollbar Inc., 2023. [Online]. Available:
https://rollbar.com/blog/react-vs-nextjs/

15. Vercel, “Next.js Documentation,” Vercel Inc., 2023.
[Online]. Available:_https://nextjs.org/docs

16. Google Developers, “Rendering on the Web,” Google,
2022. [Online]. Available:
https://developers.google.com/web/updates/2019/02/rendering-
on-the-web

17. A. Osmani, JavaScript Performance Optimization, Google
Developers, 2021.

18. Moz, “JavaScript SEO and Rendering Strategies,” Moz
Inc., 2022. [Online]. Available:
https://moz.com/blog/javascript-seo

19. Uplers, “React vs Nextjs: A Performance and SEO
Perspective,” Uplers, 2023. [Online]. Available:
https://www.uplers.com/blog/react-vs-nextjs/

© 2025, IJSREM | https://ijsrem.com

DOI: 10.55041/IJSREM55712 |

Page 5

https://ijsrem.com/
https://nextjs.org/docs?utm_source=chatgpt.com
https://create-react-app.dev/docs/deployment?utm_source=chatgpt.com
https://create-react-app.dev/docs/deployment?utm_source=chatgpt.com
https://v2.vitejs.dev/guide/features?utm_source=chatgpt.com
https://nextjs.org/docs?utm_source=chatgpt.com
https://www.riverpublishers.com/journal_read_html_article.php?j=JWE/19/3-4/10
https://www.riverpublishers.com/journal_read_html_article.php?j=JWE/19/3-4/10
https://www.riverpublishers.com/journal_read_html_article.php?j=JWE/19/3-4/10
https://react.dev/
https://rollbar.com/blog/react-vs-nextjs/
https://nextjs.org/docs
https://developers.google.com/web/updates/2019/02/rendering-on-the-web
https://developers.google.com/web/updates/2019/02/rendering-on-the-web
https://developers.google.com/web/updates/2019/02/rendering-on-the-web
https://www.uplers.com/blog/react-vs-nextjs/

