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Abstract -Recent advances in deep learning have led to 
significant improvements in single image super-resolution 
(SR) research. However, due to the amplification of noise 
during the upsampling steps, state-ofthe-art methods often fail 
at reconstructing high-resolution images from noisy versions 
of their low-resolution counterparts. However, this is 
especially important for images from unknown cameras with 
unseen types of image degradation. In this work, we propose to 
jointly perform denoising and super-resolution. To this end, we 
investigate two architectural designs: "in-network" combines 
both tasks at feature level, while "pre-network" first performs 
denoising and then super-resolution. Our experiments show 
that both variants have specific advantages: The in-network 
design obtains the strongest results when the type of image 
corruption is aligned in the training and testing dataset, for 
any choice of denoiser. The prenetwork design exhibits 
superior performance on unseen types of image corruption, 
which is a pathological failure case of existing super-
resolution models. We hope that these findings help to enable 
super-resolution also in less constrained scenarios where 
source camera or imaging conditions are not well controlled. 
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1.INTRODUCTION  
Single image super-resolution (SR) aims at 

recovering a highresolution (HR) image from its low-
resolution (LR) counterpart, in which high-frequency details 
have been lost due to degrading factors such as blur, 
hardware limitations, or decimation. 
 

Early SR approaches were based on upsampling and 
interpolation techniques [1, 2]. However, these methods are 
limited in their representational power, and hence also 
limited in their ability to predict realistic high-resolution 
images. More complex methods construct mapping functions 
between low- and high-resolution images. Such a mapping 
function can be obtained from a variety of different 
techniques, including sparse coding [3, 4], random forests 
[5] 6] or embedding approaches [7 8]. Recently, deep 
learning methods for super-resolution lead to considerable 
performance improvements 19. 10]. ResNet-like 
architectures [11] obtain state-of-the-art results for SR tasks 
while maintaining low computational complexity [12, 13, 
14]. Despite these successes, it is still challenging to prevent 

the amplification of noise during the upsampling steps, 
which often leads to loss of information and the emergence 
of artifacts. 
 

Several approaches have been considered to jointly 
perform super-resolution and denoising. Image restoration 
can be formulated as an inverse problem. In this approach, 
the data term for the respective objectives is specific to the 
respective task. For the prior, a more generic function can be 
chosen that applies to multiple tasks. For example, using 
deep learning models [15], employing a denoiser as 
regularizer [16, 17] or a so-called plug-and-play prior [18]. 
Furthermore, deep learning approaches have also been 
considered to combine denoising with a SR model [19]. The 
authors in [20] propose cascading a denoiser with a SR 
model so that the output of the denoiser is fed to the SR 
network.  

 
The pre-network architectural design in our 

experiments is similar in spirit, but instead of using a fixed 
convolutional neural network (CNN) denoiser, our design 
allows for further flexibility regarding the choice of the 
integrated denoiser. In contrast to previous works, we 
compare two architectures that allow for further flexibility 
regarding the choice of the integrated denoiser. This 
flexibility can be used to incorporate domain knowledge into 
the network by selecting a denoising technique optimized for 
the particular type of degradation. For scenarios where 
domain knowledge is missing, we investigate the 
generalization capability of different denoisers and the 
proposed architectural designs. Especially for low-resolution 
images from cameras in-the-wild, image degradation, such as 
unseen noise distributions, can lead to artifacts in the 
reconstructed high-resolution images. 
 

2.  DATASET 
The experiments use the DIV2K dataset. In our 

experiments, we consider lowresolution images which have 
been downsampled by a factor of two. We use the 800 images 
from the training set for training or fine-tuning the models, 
and the 100 validation images for evaluation. Closely 
following [13], we feed to the model 96× 96 RGB image 
patches extracted from HR images, along with their noisy 
bicubic downsampled counterparts. We train our models 
using downsampled image patches corrupted with additive 
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Gaussian noise. The testing data is corrupted using additive 
Gaussian noise with the same distribution as during training.  
 

Moreover, Poisson, speckle, and salt-and-pepper 
noise are used to degrade the testing data for the robustness 
analysis. As a baseline, we consider two versions of WDSR. 
First, the publicly available version of WDSR, pretrained on 
the DIV2K dataset, denoted as "No tuning". Second, WDSR 
fine-tuned on DIV2K images with added noise, denoted as 
"No denoiser". The model weights are initialized with the 
pretrained WDSR weights. Each model is fine-tuned using the 
mean absolute error (MAE) loss function and the ADAM 
update rule [27] with an initial learning rate of 10−4 . To 
avoid overfitting, the fine-tuning procedure is stopped after 
100 epochs. Regarding the median and Wiener filter, we use 
square kernel sizes with side length of five pixels. For the 
denoising autoencoders, we construct a fully convolutional 
DAE composed of three convolutional layers with 64, 128, 
and 256 kernels of size 5×5 respectively. Each layer is 
followed by a ReLU activation function and max-pooling. 
DAEs are trained for 80 epochs using the MSE loss function 
and the ADAM update rule with an initial learning rate of 
10−4 . For the integration into the WDSR model, the 
autoencoder parameters are fixed during the finetuning of 
the network. 
 

2. METHOD 
 
In this work, we employ the Wide Activation Super-
Resolution (WDSR) model [13] as a building block to 
investigate architectures for joint denoising and 
superresolution. The original WDSR architecture is shown on 
top of Fig - 1 It consists of two paths. The main path is on top, 
consisting of a user-defined number B of residual blocks. 
Each block consists of two convolutional layers followed by  
weight normalization [22] and ReLU activation. The lower 
path is a residual connection. It provides low-level features 
from the input to the output, which is critically important for 
SR tasks [14]. Both paths contain a pixelshuffle layer [23], 
which performs the upsampling for image superresolution. 
WDSR is sensitive to input images that are corrupted by 
additive noise. However, we show in this work that it can be 
paired with a denoiser in two different ways, denoted as 
"pre-network" and "in-network", which both considerably 
improve the results.  
 

Fig - 1 shows both architectures. Pre-network 
(abbreviated pre-net) is shown in the middle. It first passes 
the image through the denoiser prior to branching into main 
path and skip connection. This is conceptually similar to the 
denoiser and SR concatenation by Bei et al. [20]. One 
potential limitation of this approach is error propagation: if 
the denoiser removes information that is relevant to super-
resolution, it cannot be recovered afterwards. In-network 
(abbreviated in-net) is shown on the bottom of Fig.1 Here, 
the denoiser integrates into the residual connection. Hence, 
the SR model can jointly combine low-level features from the 
denoised input and high-level features from the noisy input. 

Both designs are open for the choice of denoiser, which 
allows to choose a task-specific denoiser, i.e., that performs 
best on an expected noise distribution. In our experiments, 
we evaluate three popular denoisers of varying complexity: 
median filter [24], Wiener filter [25], and denoising 
autoencoders (DAE) [26]. 
 

 
 
Fig -1:: Original WDSR architecture (top) in comparison to 
the prenetwork architectural design (center) and the in-
network architectural design (bottom). 
 
The U-Net network structure is a commonly used image 
classification network in the processing of medical images. 
U-network Net's structure is broken into three sections: 
down-sampling, up-sampling, and skip connection. U-Net is 
an Encoder-Decoder structure, with the left structure 
representing the down-sampling process, and the right 
representing the up-sampling method, which is the Decoder 
structure. The encoder is in charge of feature extraction, 
which means that the picture size is decreased by 
downsampling and convolution to extract some features in 
shallow layers. Using upsampling and convolution, the 
decoder receives certain global characteristics in deep 
layers. The shallow feature map has more specific 
information (local features), whereas the deep feature map 
contains more additional context (global features). 
 

3. EVALUATION 
The noise in real images can often be approximated as 
additive Gaussian noise, which we model in this experiment 
as a fixed power σ 2 for training and testing. This evaluation 
assumes that noise distribution and strength are known 
during training. This is a strong assumption for practical 
cases, but this setup shows the fundamental capability of the 
models to capture non-ideal images. Table 1 shows the 
numerical performances for the peak signalto-noise ratio 
(PSNR). The experiment is performed for additive Gaussian 
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noise with 0.00 ≤ σ^ 2 ≤ 0.30. For low noise levels, the fine-
tuned WDSR ("No denoiser") and in-network with Median 
filter perform best. In-network with the denoising 
autoencoder outperforms the competing methods for higher 
noise levels. A consistent decrease in PSNR can be observed 
with increasing strength of the noise. This is expected, since 
image restoration becomes increasingly difficult with 
increasing noise strength.  

 
Pre-net and in-net are both affected by increasing 

noise, since the denoiser increasingly removes useful 
information from the image. In comparison, the original 
WDSR model ("No tuning") is unable to accurately recover 
the HR image from its noisy LR counterpart. However, fine-
tuning WDSR ("No denoiser") considerably improves the 
PSNR, for example by about 10 dB for σ ^2 = 0.1. Thus, the 
fine-tuned WDSR without any integrated denoiser learns to 
suppress noise and is on par with the best denoiser methods 
(i.e., in-net with autoencoder and median filter). Hence, 
WDSR’s 16 residual blocks and 32 convolutional filters 
apparently possess sufficient representational power to 
jointly learn denoising and SR. However, we will show in the 
next section that these findings do not generalize to 
distortions that were not seen during training.  

Figure 2 shows a qualitative comparison of the 
reconstructions of an image patch for a noise strength of σ^2 
= 0.1. The in-network architecture yields very similar results 
for all denoisers. It exhibits comparable results to the fine-
tuned WDSR and overall outperforms pre-network. Upon 
closer examination, prenet suffers from the de- Table 1. 
Average peak signal-to-noise ratio (PSNR) for varying levels 
of additive Gaussian noise σ^2 on the low-resolution testing 
images. Baseline WDSR fine-tuned on the noisy data ("No 
denoiser") performs best at low noise powers, while the in-
net with an autoencoder denoiser achieves best the PSNR 
values for σ ^ 2 ≥ 0.20. Baseline WDSR without fine-tuning 
("No tuning") performs worst. The Average Classification 
Accuracy of the proposed model with the existing techniques 
is presented in Fig. 2. 
 

 

Fig -2:: The comparison of the ACA of proposed model with 
the existing techniques 

 
For training the Convolution Neural Networks (CNNs), large 
number of training images are needed to achieve reliable 

learning. The annotated images for training are highly 
expensive. Alternatively, data augmentation is used to 
increase the examples in training dataset using appearance 
and geometric transformation. Five kinds of augmentation 
techniques: shift, zoom, rotation, flip and shear are used and 
applied twice on 9432 cancerous images and 10234 non-
cancerous images of 224 × 224 pixels. 
 

3. CONCLUSION 
 
 In this paper, we compare two architectures to jointly 

perform image denoising and single-image super-resolution. 

We combine the well-known WDSR model [13] with three 

denoisers that can be chosen depending on the type of 

degradation. Both networks have specific benefits. The "pre-

network" architecture sequentially removes the noise first, 

and then recovers the high-resolution image. With a suitable 

denoiser, pre-network generalizes well to unseen noise 

distributions. However, details in the image are removed and 

the reconstructions appear slightly over-smoothed. The "in-

network" architecture reconstructs the high-resolution 

image by combining lowlevel features from the denoiser 

with high-level features from the noisy input. This enables 

better structure preservation and sharper reconstructed 

images, but is more sensitive to unseen noise distributions 

and strength, independent of the chosen denoiser. We hope 

that these findings are useful toward enabling super-

resolution inthe-wild, when camera and image conditions 

are not fully controlled.  

This shows that the proposed network achieves 

note making results when compared with the existing 

models. The slice-based test is also performed to evaluate 

the model. The data of 224 cancerous slice images and 234 

non-cancerous slices were taken with the same SCU. The 

proposed network has achieved the benchmarking results 

and attained 98.79% classification accuracy. The AUCROC 

score of the proposed model in comparison with the existing 

works. AUC scores are computed using the 10-cross 

validation technique and the graph. 
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