

# gb – Chromatic Number of a Bull Graph and Some Related Graphs

Mohan. B<sup>1</sup>, Shila. D<sup>2</sup>, Abarna.B<sup>3</sup>, Joseph Paul. R<sup>4</sup>

<sup>1,2,3,4</sup>Departnment of Mathematics, SNS College of Engineering, Coimbatore – 641 107, Tamil Nadu, India. Email : mohan.bellu@gmail.com

\*\*\*

**Abstract** -For a connected graph G, a set  $S_{bc}$  is referred to as the gb-chromatic set of a vertex in G since it is a geodetic and b-chromatic set. The smallest cardinality of a gb - chromatic set of G is known as the gb - chromatic number, and it is represented by  $\varphi_{gb}(G)$ . We have investigated the gb – chromatic number of a bull graph and for some related graphs.

*Key Words*:Geodetic number, chromatic number, b – chromatic number, gb – chromatic number

#### **1.INTRODUCTION**

All of the graphs used in this study are undirected, simple, and finite. The order and size of G are p and q for any graph G with edge set E(G) and vertex set V(G) [2]. The shortest distance between two vertices in V(G), x<sub>1</sub>, and x<sub>2</sub>, determines the minimum size of x<sub>1</sub>- x<sub>2</sub> pathways in G. The term "geodesic of G" refers to an x<sub>1</sub> - x<sub>2</sub> path of size d<sub>g</sub>(x<sub>1</sub>, x<sub>2</sub>). We defined I<sub>G</sub>(x<sub>1</sub>, x<sub>2</sub>) as the collection of geodesics of G's x<sub>1</sub>- x<sub>2</sub> vertices. The vertex is said to reside on the x<sub>1</sub>- x<sub>2</sub> geodesic if c is an inner vertex of P. The vertices of the limited interval I(x<sub>1</sub>, x<sub>2</sub>) are all situated on a geodesic of G between x<sub>1</sub> and x<sub>2</sub>. Consider a non - empty set  $I(S) = \bigcup_{x_1, x_2 \in S} I(x_1, x_2)$ . If G is connected graph, thus S is a geodetic get g(S) such that I(S) = V(G) [1].

The geodetic number g(G) defines the least cardinality S of G.

The graph's b-chromatic number  $\varphi_b(G)$  is the largest positive integer k such that G permits an appropriate k-coloring in which each color class has a representation adjacent to at least one vertex in each of the other color classes. A b – coloring is a sort of coloring. Irving and Manlove introduced the b – coloring number in [3] by considering proper coloring that is the minimum in terms of a partial order defined on the set of all V partitions (G). a set S<sub>bc</sub> is referred to as the gb-chromatic set of a vertex in G since it is a geodetic and b-chromatic set. The smallest cardinality of a gb - chromatic set of G is known as the gb - chromatic number, and it is represented by  $\varphi_{gb}(G)$  [4].

E.W.Weisstein introduced the Bull Graph [7]. In this paper, we have investigated gb – chromatic number for bull graph and its related graph [5, 6].

## 2. Main Result

**Theorem 2.1.** For a bull graph G, then the gb – chromatic number of G is 5., i.e.,  $\varphi_{gb}(G) = 5$ .

Proof: Consider G be the bull graph, where G is a planer graph with the vertex set  $\{v_i\}$   $1 \le i \le 5$ . Here S =  $\{v_1, v_3, v_5\}$  be

the minimum geodic set and also b – colorable. Here since G is 3 – colorable. Here S =  $S_{bc}(G)$ . Therefore  $\varphi_{ab}(G) = 5$ .

**Corollary 2.2:** For a bull graph G then  $\varphi_{ab}(\overline{G}) = 3$ .

**Theorem 2.3.** For a graph G then the middle graph of gb - chromatic number is V(G)+2 ie.,  $\varphi_{gb}(G) = V(G) + 2$ .

Proof: Consider the graph G be the bull graph, whereas middle graph M(G) of a graph G. Let the vertices of a M(G) be  $\{v_1, v_2, v_3, v_4, v_5\}$  and edge set is  $\{e_1, e_2, e_3, e_4, e_5\}$ . Hence the geodetic number of the M(G) is vertex set V(G). S =  $\{v_1, v_2, v_3, v_4, v_5\}$  is the minimum but not a b – chromatic coloring. Since S receives same b – color class. Then by adding different b – color class to the set S which is not in S. Here  $\varphi_{eb}(G) = V(G) + 2$ .

**Theorem 2.4.** For a graph G then the total graph of gb – chromatic number is 5

Proof: Let G be the bull graph, where  $\{v_i\}$   $1 \le i \le 5$  and  $\{e_j\}$  $1 \le j \le 5$  be the vertices set of the total graph T(G), S =  $\{v_1, e_3, v_5\}$  in the minimum geodic number of T(G), but which is not b – colorable. Since S receives same b – colorable. Thus we add the remaining color which is not in S. Then the total graph of gb – chromatic number in 5.

**Theorem 2.5.** For the Splitting graph of bull graph, then the gb – chromatic number is  $\{v'_i\}$  for  $1 \le i \le 5$ .

Proof: The Bull graph S(G) of a graph G in obtained by adding a new vertex  $v'_i$  for  $1 \le i \le 5$  corresponding to each vertex V(G) such that N(V) = N(v') when N(V) and N(v') are neighbourhood set of V and V' respectively. For the graph S(G), S =  $v'_i$   $1 \le i \le 5$  be the minimum geodic set and b – colorable, which satisfies the condition of gb – chromatic number. Hence  $\varphi_{gb}(S(G)) = v'_i$  for  $1 \le i \le 5$ .

**Theorem 2.6.** For the graph G then the shadow graph  $\varphi_{gb}(D_2(G)) = 5$ .

Proof : The graph  $D_2(G)$  in constructed by taking 2 copies of G say G' and G'', joining each vertex V' in G' to all the adjacent vertices of the corresponding vertex V'' in G''. Let  $V'_i$  and  $V''_i$ ,  $1 \le i \le 5$  be the vertex set of  $D_2(G)$ . Therefore S = $\{v'_1, v''_1, v'_4, v''_4\}$  be the minimum geodetic set but not b – colorable. Hence, we adding remaining color to the set S, we get  $\varphi_{eb}(D_2(G)) = 5$ .



#### **3. CONCLUSIONS**

In this paper, we obtain the gb – chromatic number  $\varphi_{ab}(G)$ 

has been derived for bull graph and for some related graph. This concept can be extended to several other graphs and also for the products of graphs.

### ACKNOWLEDGEMENT

The authors would like to thank the referees for their helpful suggestions and valuable comments.

#### REFERENCES

- 1. Buckley, F., Harary, F.: Distance in Graphs , Addison Wesly Publishing company, Redwood city, CA, (1990)
- 2. Gary Chatrand., Zhang, P.: Introduction to Graph Theory, MacGraw Hill (2005)
- Irving, R.W., Manlove, D.F.: The b chromatic number of a graph. Disc. Appl. Math. 91 (1999) 127 – 141
- 4. Joseph Paul, R., Mary, U.: gb Chromatic Number of Graph. J. of Xidian Uni. 16 (2022) 401 410
- Joseph Paul, R., Mary, U.: Geodetic, Edge Geodetic and Geo Chromatic Number of Bull graph for Some Related Graphs. Indian J. of Natural Science. 14 (2023) 55409 – 55413
- 6. Preethi K Pillai., Suresh Kumar, J.: Coloring of Bull Graphs and related graphs. Int. J. Crea. Res. Thou. 8 (2020) 1597-1601.
- 7. Weisstein, Eric W., Bull Graph, Math World.