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Abstract: This paper presents Metropolis to search the space of possible configurations, by exploring possible 

transitions between configurations. The way the Metropolis algorithm decides about moving from the current 

state to a state in the neighborhood can be seen as a two-stage process.  a probability that depends upon the 

relative costs of the solutions associated with two states. The Metropolis algorithm as the proposal stage will 

choose a neighbor uniformly at random. the Hasting Algorithm chain has the same stationary distribution as the 

usual Metropolis algorithm. 
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Metropolis Algorithm (MA) 

The Metropolis Algorithm (MA) is based on the notion of complete balance that describes equilibrium for 

systems whose configurations have probability proportional to the Boltzmann factor. The Boltzmann factor, e-

m, is proportional to the probability that the system will be found in a particular configuration at energy E when 

the temperature of the environment is T. That is, 

 

Our objective is to search the space of possible configuration, by exploring possible transitions between 

configurations. We consider two configurations A and B where each of which occurs with probabilities 

propositional to Boltzmann factor. A comparative probability P = P(A)/P(B) is used to decide which 

configuration to accept according to the following algorithm; 

1. Starting from a configuration A, with known energy EA, make a small change in the A to obtain a new 

configuration B. 
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2. Compute Ea for a configuration B. 

3. If Ea < EA, accept the new configuration, since it has lower energy (a desirable thing, according to the 

Boltzmann factor). 

4. If EB> EA , accept the new configuration with probability p where. 

 

This means that when the temperature is high, we don't mind taking steps in the "wrong direction, but as the 

temperature is lowered, we are bound to settle into the lowest configuration. If we follow these rules, then we 

will sample points in the space of all possible configurations with probability proportional to the Boltzmann 

factor, consistent with the theory of equilibrium statistical mechanics. 

In statistics and statistical physics, the Metropolis–Hastings algorithm is a Markov chain Monte 

Carlo (MCMC) method for obtaining a sequence of random samples from a probability distribution from which 

direct sampling is difficult. This sequence can be used to approximate the distribution (e.g. to generate 

a histogram) or to compute an integral (e.g. an expected value). Metropolis–Hastings and other MCMC 

algorithms are generally used for sampling from multi-dimensional distributions, especially when the number 

of dimensions is high. For single-dimensional distributions, there are usually other methods (e.g. adaptive 

rejection sampling) that can directly return independent samples from the distribution, and these are free from 

the problem of autocorrelated samples that is inherent in MCMC methods. 

 

The Metropolis–Hastings (MH) algorithm (Metropolis et al., 1953; Hastings, 1970) is the most popular 

technique to build Markov Chains with a given invariant distribution (see, e.g., Gillespie, 1992; Tierney, 1994; 

Gilks et al., 1995; Gamerman, 1997; Robert and Casella, 1999). 

The general MH algorithm considers two distributions, namely the target distribution σ and the proposal 

conditional distribution q(x*|x) from which a candidate sample x* for the new Markov chain state is drawn. If 
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the current state of the chain is x, then, according to the MH algorithm, the chain moves to its new state x* with 

the probability 

 

or remains at x. 

The pseudo-code for the MH algorithm is shows three sets of samples generated by the MH algorithm for 1D 

multimodal distribution σ(x) assuming that x* are generated from the uniform distribution q(x*|x) = const. 

 

 

 

 

 

         Fig.  Histograms of samples generated by the Metropolis–Hastings algorithm from the target distribution   

 

Note that the MH algorithm does not require knowledge of the absolute values of σ(x) but only its ratio for the 

current and the proposed states. Thus, σ(x) can be defined up to a constant factor. In particular, it does not need 

to be normalizable. 

http://www.ijsrem.com/
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The transition kernel for the MH algorithm reads 

 

Where the second term takes into account that the chain can reject a proposed x → x* movement and stay in the 

same state with the probability 

 

It is easy to check that by construction of KMH, the equilibrium condition of Eq. (140) is fulfilled for σ(xi): 

 

which allows σ(x) to be an invariant distribution. However, to show that the MH algorithm converges to π ≡ σ, 

it is necessary to show that the chain generated according to the algorithm is an ergodic one. The aperiodicity 

of the chain follows from the fact that it always allows the proposal of the move to be rejected. To ensure 

irreducibility, we need to make sure that the support of q(x) includes support of σ(x). Tierney (1994) has shown 

that in such a case σ(x) is the invariant distribution of the chain. 

Depending on the choice of the auxiliary distribution q(x), the MH algorithms can be classified into a few 

categories. Let us consider two, the most popular classes of MH algorithms. 

 

The Algorithm 

Let f(x) be the probability density (or probability mass) function of the distribution from which we wish to 

extract a sample of draws. We call f(x) the target distribution. 

Denote by q(x|x’) a family of conditional distributions of our choice, from which it is easy to generate draws. 

The vectors x,x’ the argument of f(x) all have the same dimension. 

The Metropolis-Hastings algorithm starts from any value x1 belonging to the support of the target distribution. 

The value x1 can be user-defined or extracted from a given distribution. 

Then, the subsequent values x2,x3…………….xt are generated recursively. 

In particular, the value f(x) at time step x1 is generated as follows: 

1. draw yt from the distribution with density  

2. set 

http://www.ijsrem.com/
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3. draw ut from a uniform distribution on [0,1]; 

 

 

Since ut is Uniform 

 

that is, the probability of accepting the proposal yt as the new draw xt is equal to pt. 

 

Hasting’s Generalization of Metropolis Algorithm: 

 The way the Metropolis algorithm decides about moving from the current state si to a state in the neighborhood 

can be seen as a two-stage process: first, choose a neighbor sj uniformly at random (the proposal stage), and 

then, with a probability α which depends upon the relative costs of the solutions associated with sj and si, move 

to sj or remain at si (the acceptance stage).  

In our case, the neighbors of a state [A|I] are [A’ |I]’s where A’ is obtained by performing an elementary 

operation using the vectors in A and I. Some of the elementary operations represent what we call long jumps 

because a vector v is replaced by another u where there is a large difference in the norms of v and u. This 

happens when v is replaced by v ± cw when the constant c is large. It is desirable to have a control on how 

extensively our algorithm will make use of such long jumps. This is not possible in the  

 

Algorithm Metropolis Algorithm 

1. Input: B ← Basis for the lattice L and a rational number K 

2.  Output: Matrix R’ such that B ∗ R’ contains a vector v with ||v|| ≤ K. 

3.  Let I ← n × n Identity matrix. Let R’ = [R|I] be the starting state in the search space as in Definition and 

C (R’) denote cost of R’ as defined in the beginning of this section.  

4.  Set BestNorm = C (R’)  

5. while BestNorm > K do  

6. Select any one of the neighbor S’ of R’ uniformly at random by performing one of the elementary 

operations as defined  
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7.  if BestNorm > C (S’) then 

8.  BestNorm = C (S’) 

9.  end if  

10.  Set R’= S’ with probability  

              

11.   end while 

 

Metropolis algorithm as the proposal stage will chose a neighbor uniformly at random. To overcome this 

problem, we make use of the Hasting’s generalization of the Metropolis algorithm. In this generalization, we 

can use any probability to select the neighbor of a state in the proposal stage. Let qxz denote the probability by 

which we select a neighbor z when the current state is x. Let x be a state. If y1, . . . , ynx be neighbors the 

neighbors of x. Then 

 

where the values ri can be chosen appropriately depending on how much we want to invest on each of the 

strategy. The Hasting’s generalized metropolis algorithm M2 runs on the same state space but has a different 

transition probability: Suppose the chain M2 is at a state the state x at some step. Then  

1) With probability qxz, M2 selects a state z in the neighborhood. 

 2) If z = x then the next state of M2 is x.  

3) If z = yi , we first compute α defined as 

 

Here, for any state z, c(z) represents the cost of the candidate solution of z and T is a fixed temperature 

parameter. 

  4) We move to yi with probability α else we remain in the present state x. 

It can be verified easily that the chain M2 is time-reversible and the in its stationary distribution, the 

probability of x, πx is given by: 

http://www.ijsrem.com/
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where Z is the normalizing factor ∑ i πi . The chain M2 is the Hasting’s generalization. This chain has the same 

stationary distribution as the usual Metropolis algorithm, but has the flexibility of fine tuning the probability of 

choosing a neighbor to reflect the structure of the problem at hand. In our implementation, we shall keep qxyi 

the same as qyix. The detailed algorithm (Algorithm 2) is given below. In the next section we will compare the 

results of our algorithm with that of LLL algorithm. 

 

Algorithm 2 Hasting’s Generalization  

1:  Input: B ← Basis for the lattice L and a rational number K 

 2:  Output: Matrix R 0 such that B ∗ R’ contains a vector v with ||v|| ≤ K. 

 3:  Let I ← n × n Identity matrix. Let R’ = [R|I] be the starting state in the search space as in Definition        and 

C(R 0 ) denote cost of R’ as defined in the beginning of this section. Let d denote total number of neighbors  

4:  Set BestNorm = C(R’ )  

5:  while BestNorm > K do  

6:  Select any one of the neighbor S’ of R’ by performing one of the elementary operations defined below.  

   • Swap two columns of R with probability mC2/ d ,  

• Multiply a column of R by −1 with probability m/d  

• Add a power of 2 times a column of R0 to another column of R i.e. in particular, ri ← r 0 i±c×r 0 j ,(i 

6= j, 1 ≤ i ≤ m, 1 ≤ j ≤ m + n, where C= 20 , . . . , 2 k , k = n · log (αn)) with probability d−mC2−m d · 

Pi ,  

where Pi denote probability of selecting the value of C = 2i and Pk i=0 Pi = 1. 

[We can use more than one probability distribution to select values for c. In our implementation we have 

selected two probability distributions Pi = 1 k+1 and Qi = 2(k + 1−i)/(k + 1)(k + 2) to select values for 

c. We will keep on changing our selection probability distribution with Pi and Qi for every selected 

number of steps (500 steps).]  

7:  if BestNorm > C(S’) then  

8:  BestNorm = C(S’)  

9:  end if  

10:  Set R’= S’ with probability. 

http://www.ijsrem.com/
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11.End while 

 

The purpose of the Metropolis–Hastings algorithm is to generate a collection of states according to a desired 

distribution P(x). To accomplish this, the algorithm uses a Markov process, which asymptotically reaches a 

unique stationary distribution π(x) such that π(x)=P(x). 

A Markov process is uniquely defined by its transition probabilities P(x’|x), the probability of transitioning from 

any given state x to any other given state x’. It has a unique stationary distribution π(x) when the following two 

conditions are met:  

1. Existence of stationary distribution: there must exist a stationary distribution π(x).  A sufficient but not 

necessary condition is detailed balance, which requires that each transition x→x’ is reversible: for every 

pair of states x, x’the probability of being in state x and transitioning to state x’ must be equal to the 

probability of being in state x’ and transitioning to state x, π(x)P(x’|x)= π(x’) P(x|x’) 

2. Uniqueness of stationary distribution: the stationary distribution π(x) must be unique. This is guaranteed 

by ergodicity of the Markov process, which requires that every state must (1) be aperiodic—the system 

does not return to the same state at fixed intervals; and (2) be positive recurrent—the expected number 

of steps for returning to the same state is finite. 

The Metropolis–Hasting’s algorithm involves designing a Markov process (by constructing transition 

probabilities) that fulfills the two above conditions, such that its stationary distribution π(x)  is chosen to be 

P(x). The derivation of the algorithm starts with the condition of detailed balance:  

 

which is re-written as 

 

 

The approach is to separate the transition in two sub-steps; the proposal and the acceptance-rejection. The 

proposal distribution g(x’/x) is the conditional probability of proposing a state x’ given x , and the acceptance 
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distribution A(x’/x)is the probability to accept the proposed state x’. The transition probability can be written 

as the product of them:  

 

Inserting this relation in the previous equation, we have  

 

The next step in the derivation is to choose an acceptance ratio that fulfills the condition above. One common 

choice is the Metropolis choice:  

 

For this Metropolis acceptance ratio, A , either A (x’, x) or A (x, x’) and, either way, the condition is satisfied.  

The Metropolis–Hasting’s algorithm can thus be written as follows:  

1. Initialize  

1. Pick an initial state x0. 

2. Set t=0. 

2. Iterate  

1. Generate a random candidate state x’ according to g (x’/xt) . 

2. Calculate the acceptance probability  

. 

3. Accept or reject:  

1. generate a uniform random number u € [0,1]; 

2. if u<= A(x’/xt), then accept the new state and set  xt+1=x’; 

3. if u>= A (x’/xt), then reject the new state, and copy the old state forward . 

4. Increment: set t=t+1. 

Provided that specified conditions are met, the empirical distribution of saved states 

 x0, x1, …… xT will approach P(x). The number of iterations (T) required to effectively estimate P(x) depends 

on the number of factors, including the relationship between P(x) and the proposal distribution and the desired 
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accuracy of estimation. For distribution on discrete state spaces, it has to be of the order of the autocorrelation 

time of the Markov process.  

It is important to notice that it is not clear, in a general problem, which distribution g(x’/x) one should use or 

the number of iterations necessary for proper estimation; both are free parameters of the method, which must 

be adjusted to the particular problem in hand. 
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