
 International Journal of Scientific Research in Engineering and Management (IJSREM)

 Volume: 09 Issue: 05 | May - 2025 SJIF Rating: 8.586 ISSN: 2582-3930

© 2025, IJSREM | www.ijsrem.com | Page 1

Generating Database Independent API Using AI

Prof.Atul Akotkar1, Manya Dubey2, Prajakta Udgirkar3

1 2 3Computer Science and engineering & Nagarjuna Institute of engineering technology and management

---***---

Abstract - In the rapidly changing software development

environment of today, developing backend APIs that are not

tied to particular database technologies is essential for

ensuring flexibility, scalability, and compatibility across

different platforms. This initiative suggests an AI-based

approach to automatically create database-agnostic APIs,

simplifying backend development and minimizing manual

coding tasks. Utilizing machine learning and natural language

processing methods, the system understands comprehensive

user needs or schema specifications and produces fully

operational RESTful APIs that facilitate CRUD operations,

input validation, and error management. The created APIs

work with various database systems (e.g., MySQL,

PostgreSQL, MongoDB) by employing abstraction layers and

ORM frameworks. This method enables developers to

concentrate on business logic while speeding up development

cycles, improving maintainability, and guaranteeing

adaptability in various database settings. This solution is

perfect for quick prototyping, corporate applications, and

integration situations where backend adaptability is crucial.

KeyWords:Artificial Intelligence (AI), RESTful APIs,

Database Independence, Java Spring Boot, ORM (Object

Relational Mapping), JPA (Java Persistence API)

1.INTRODUCTION

In today's fast-paced software development landscape, the

demand for backend systems that are efficient, scalable, and

maintainable has increased considerably. Developers

frequently dedicate a significant amount of time to crafting

boilerplate code for APIs that connect with databases. These

APIs are generally closely integrated with particular database

technologies, which complicates migration, maintenance, and

support across different platforms. The goal of this project is

to overcome this limitation by developing an intelligent

system that automates the creation of database-independent

APIs through Artificial Intelligence. This initiative was

designed to reduce repetitive coding tasks on the backend and

allow developers to concentrate more on essential

functionality and business logic. Through the application of

AI methods, the system analyzes input schemas and

requirements to autonomously create APIs that are decoupled

from any particular database. This leads to enhanced

development velocity, uniformity in code quality, and

increased adaptability in selecting or changing databases.

2. Methodology
This project showcases the creation of an AI-driven system

that can autonomously produce database-agnostic RESTful

APIs utilizing Spring Boot. The goal is to facilitate effortless

API development across various SQL databases without

having to code manually for each type of database. The

backend structure adheres to a modular Spring Boot layered

design that includes Controller, Service, and DAO tiers.

Information is kept in SQL databases (MySQL/PostgreSQL),

and Postman serves for API testing.

2.1 System Architecture

The architecture of the system is structured in layers: The

Controller Layer processes incoming HTTP requests and

aligns them with service methods. The Service Layer handles

business logic and adjusts flexibly to various types of

technology content. The DAO Layer handles database tasks

through JPA, providing database abstraction. The Database

Layer facilitates relational databases such as MySQL and

PostgreSQL, which are abstracted through ORM.

2.2 Development Process

The procedure starts by analyzing SQL DDL input to create

an abstract schema. From this, Spring Boot automatically

creates entities, repositories, and controllers. APIs enable

CRUD functionalities for content related to technology.

Security is implemented through JWT authentication and role-

based access control. The flexible design facilitates the

straightforward integration of new databases or API

functionalities.

2.3 Tools and Technologies

▪ Java 17 – Programming language for backend

development

▪ Spring Boot 3.0.2 – Framework for APIs

▪ MySQL/PostgreSQL – relational databases using

SQL.

▪ JPA (Hibernate) – Object-Relational Mapping for

database relationships

▪ Postman – Testing APIs JWT – Security feature Git -

Source code management

3. MODELING AND ANALYSIS

The system utilizes a multi-tiered Spring Boot architecture

that includes Client, Controller, Service, DAO, and Database

layers. This modular approach improves scalability,

maintainability, and guarantees independence from databases.

3.1 Database Design

A normalized schema is employed to save technology-related

articles featuring attributes like id, name, category, version,

http://www.ijsrem.com/

 International Journal of Scientific Research in Engineering and Management (IJSREM)

 Volume: 09 Issue: 05 | May - 2025 SJIF Rating: 8.586 ISSN: 2582-3930

© 2025, IJSREM | www.ijsrem.com | Page 2

description, posted_by, and posted_date. The database is

compatible with MySQL and PostgreSQL via JPA and

Hibernate.

3.2 Workflow

HTTP requests (GET, POST, PUT, DELETE) are dispatched

from Postman to the Controller layer, which then sends them

to the Service layer for handling business logic. The DAO

layer manages database interactions, and replies are sent to the

client, ensuring a distinct separation of responsibilities.

Figure 1: Workflow Digram.

3.3 Implementation

The backend APIs cleave to peaceful principles by exercising

Spring Boot. ORM is managed through JPA/ Hibernate. JWT

commemoratives cover the API endpoints, while Postman is

extensively employed for testing and verification. Git

oversees interpretation control and cooperation.

3.4 Requirements

Hardware: Intel i5 processor, 8GB RAM, SSD storage, and

stable internet connection.Software: Spring Boot, SQL

databases (MySQL/PostgreSQL), JPA/Hibernate, Postman,

Git, and IDEs like IntelliJ IDEA or Eclipse.

4. RESULTS AND DISCUSSION

4.1 Result

The initiative effectively created a strong web application for

submitting, modifying, and accessing technology-oriented

information utilizing Spring Boot and SQL databases.

RESTful APIs were developed for effective CRUD functions,

tested using Postman. The system's tiered architecture

provided modularity and ease of maintenance, while JWT

implementation safeguarded API access. The platform

facilitates the sharing of dynamic content across various

technology types and versions. The design additionally

accommodates upcoming features such as user roles, ratings,

and comments.

4.2 Discussion

The design showcased how a modular, API- driven frame

improves backend performance and scalability. Spring Boot

simplified HTTP request operation, whereas JPA with

Hibernate eased royal ORM. Postman played a crucial part

in validating endpoints. Main advantages correspond of a

structuredmulti-layered armature, secure authentication using

JWT, and a regularized database schema that allows for

extensibility. Obstacles, including setting up Spring Security

and managing custom JPA queries, were dived via iterative

debugging. The system establishes a solid base for

forthcoming advancements similar as frontend UI, stoner

analytics, and pall deployment.

5. CONCLUSIONS

The project effectively showcases the design and execution of

an AI-driven system for API generation that is independent of

any database. By leveraging Spring Boot, JPA, and SQL

databases, the system offers a scalable and effective approach

for developing RESTful APIs with reduced manual effort. The

layered structure—consisting of controller, service, DAO, and

database layers—guarantees a distinct division of

responsibilities and encourages maintainability and

scalability. During the development phase, the project adhered

to contemporary software engineering practices, such as

secure authentication via JWT, API testing through Postman,

and version management using Git. The system’s capability to

abstract database functions via JPA enhances its versatility

and allows for easy adaptation to various relational databases

without the need to rewrite business logic.

ACKNOWLEDGEMENT

I wish to express my gratitude to my mentors, colleagues, and

the organization for their unwavering support and guidance

during the course of this project's development

REFERENCES

1. 1 Cole, J. B., & Florez, J. C. (2023). Standards of

Medical Care in Diabetes—2023. Diabetes Care,

46(1), 377–390.

2. Lee, S., & Park, J. (2022). Applying Machine

Learning to Database Schema Understanding for

Automated Application Generation. Data &

Knowledge Engineering, 139, 101900.

3. Jones, A., & Chen, Y. (2022). Leveraging AI for

Automated Software Code Generation. IEEE

Transactions on Software Engineering, 48(7), 236–

249.

4. Kumar, V., & Singh, P. (2021). Security Challenges

in Automated API Generation and Deployment.

International Journal of Information Security, 20(4),

567–581.

5. OpenAI. (2021). Codex: An AI System for Code

Generation and Understanding. arXiv preprint

arXiv:2107.03374.

6. Smith, J., & Lee, M. (2021). Automated REST API

Generation Using Schema Definitions. Journal of

Software Engineering, 15(3), 112–124.

http://www.ijsrem.com/

