

 International Journal of Scientific Research in Engineering and Management (IJSREM)
 Volume: 09 Issue: 01 | Jan - 2025 SJIF Rating: 8.448 ISSN: 2582-3930

© 2025, IJSREM | www.ijsrem.com DOI: 10.55041/IJSREM40517 | Page 1

Generating Music Using Machine Learning

Vishesh R Bhaddurgatte1, Shushruth S2
1Electronics and Communication Engineering ,PES University
2 Electronics and Communication Engineering ,PES University

---***---

Abstract – This report delves into the realm of music generation

using advanced machine learning techniques, focusing on

Recurrent Neural Networks (RNNs), Generative Adversarial

Networks (GANs), and their amalgamation in the form of RNN-

GAN. The objective is to explore the capabilities of these models in

creating novel and expressive musical compositions.

The examines the fundamental concepts of RNNs, known for their

prowess in sequence modelling, making them ideal for capturing

the temporal intricacies present in music. Additionally, it explores

the generative potential of GANs, that employs adversarial

training to produce realistic and innovative musical sequences.

The synthesis of RNNs and GANs into an integrated RNN-GAN

framework is investigated. This hybrid approach aims to leverage

the strengths of both architectures, enabling the generation of

coherent and diverse musical pieces.

I.INTRODUCTION

In the fascinating world where technology meets tunes, this

report explores how computers can create music. Imagine it

as a collaboration between machines and melodies, where we

use smart algorithms to generate musical compositions. Our

journey revolves around three main things: Recurrent Neural

Networks (RNNs), Generative Adversarial Networks

(GANs), and a mix of both, known as RNN-GANs.

Music has always been a powerful way for people to express

feelings and tell stories. Now, with the rise of artificial

intelligence, we are curious about how machines can

contribute to this creative process. We start by checking out

RNNs, special algorithms designed to understand patterns

and structures in sequences, like the ones found in music.

Then, we dive into GANs, which bring a whole new twist to

creating music. The exciting part comes when we blend

RNNs and GANs together into the RNN-GAN model,

creating a mix that is both good at understanding patterns and

great at making new music. As we go forward, we dream of

a future where AI does not just copy what humans do but adds

something new to our creative mix. We are thinking about

attention-grabbing tricks, teaming up with musicians, making

music on the spot, and always being careful about how we

use this tech.

In the evolving landscape of artificial intelligence and

machine learning, the intersection with creative domains has

sparked profound interest and innovation. One such

captivating realm is the generation of music through

computational models

This report embarks on an exploration of advanced machine

learning techniques, with a specific focus on Recurrent

Neural Networks, Generative Adversarial Networks, and

the hybrid model, RNN-GAN, to unravel the intricate

process of creating music through artificial intelligence.

Generating music using machine learning involves training a

computer program to learn patterns and structures from

existing musical data, and then using that knowledge to create

new music.

To train a neural network to generate music, researchers

typically feed it with large amounts of musical data, such as

MIDI files or sheet music.

The network then learns to recognize patterns in this data,

such as common chord progressions, melodies, and rhythms,

and uses this knowledge to generate new music that follows

similar patterns.

The idea was to develop a machine learning model that can

generate music autonomously, given a set of musical inputs

as training data and to create a tool that can aid musicians and

composers in their creative process, by providing them with a

source of inspiration and new ideas.

 DOLOGY

1) PROPOSED METHODOLOGY: We propose a

recurrent neural network architecture, C-RNN-GAN

(Continuous RNN-GAN), that is trained with adversarial

training to model the whole joint probability of a sequence,

and to be able to generate sequences of data. We have

trained our model on sequences of classical music. The

proposed model is a recurrent neural network with

adversarial training. The adversaries are two different deep

recurrent neural models, a generator (G) and a

discriminator (D). The generator is trained to generate data

that is indistinguishable from real data, while the

discriminator is trained to identify the generated data. The

training becomes a zero-sum game when the generator

produces data that the discriminator cannot tell from real

data. The input to each cell in G is a random vector,

concatenated with the output of previous cell. Feeding the

output from the previous cell is common practice when

training RNNs as language models, and has also been used

in music composition. The discriminator consists of a

bidirectional recurrent net, allowing it to take context in

both directions into account for its decisions. In this work,

the recurrent network used is the Long short-term memory.

It has an internal structure with gates that help with the

vanishing gradient problem, and to learn longer

dependencies.

http://www.ijsrem.com/

 International Journal of Scientific Research in Engineering and Management (IJSREM)
 Volume: 09 Issue: 01 | Jan - 2025 SJIF Rating: 8.448 ISSN: 2582-3930

© 2025, IJSREM | www.ijsrem.com DOI: 10.55041/IJSREM40517 | Page 2

Model Layout Details: Both the Generator (G) and

Discriminator (D) utilize LSTM networks with a depth of 2,

featuring 350 internal units per LSTM cell. Notably, D

employs a bidirectional layout, while G is unidirectional.

The output from each LSTM cell in D feeds into a fully

connected layer with shared weights across time steps. A

sigmoid output per cell is averaged to determine the final

decision for the sequence.

Baseline: The baseline comprises a recurrent network

similar to the generator, trained solely to predict the next tone

event at each recurrence point.

Dataset: Training data, sourced from the web as MIDI files

of classical music, includes well-known works. Each MIDI

event of the type "note on" is recorded with its duration,

tone, intensity, and time since the last tone. The tone data is

internally represented with the corresponding sound

frequency. All data is normalized to a tick resolution of 384

per quarter note. The dataset comprises 3697 MIDI files

from 160 different classical music composers.

Training: Backpropagation through time (BPTT) and mini-

batch stochastic gradient descent are employed. A learning

rate of 0.1 is set, and L2 regularization is applied to the

weights in both G and D. The model undergoes pretraining

for six epochs with a squared error loss for predicting the

next event. During pretraining, a random vector v,

concatenated with the output at the previous time step,

serves as the input to each LSTM cell. Adversarial training

follows, where freezing is applied to D and G when their

training losses deviate by a significant margin. Feature

matching is also utilized to encourage greater variance in G,

replacing the standard generator loss with the objective to

produce an internal representation that matches real data in

the discriminator.

 Fig -1:RNN Model Block Diagram

2) OTHER METHODS IMPLEMENTED:

A) RECURRENT NEURAL NETWORK MODEL:

Recurrent Neural Networks (RNNs) are employed in music

generation to capture temporal dependencies and patterns in

musical sequences. Musical pieces are represented as

sequences of encoded notes or chords, with input encoding

using methods like one-hot encoding or embedding layers.

Architectures like Long Short-Term Memory (LSTM)

networks are preferred for their ability to handle long-term

dependencies. During training, the model learns to predict the

next element in a sequence, adjusting parameters to minimize

prediction errors. Once trained, the RNN generates new music

by providing an initial seed sequence. Post-processing steps

and evaluation metrics ensure adherence to musical rules and

assess the quality of the generated compositions. Our dataset

contains 1200+ paired audio and MIDI recordings from

ten years of International Piano-e- Competition. These MIDI

files will be used for training the music generation model.

MIDI File Processing: We select a sample MIDI file for

processing and extract notes from it. This is done by

analyzing the instrument tracks within the MIDI file and

recording information about each note, including its pitch,

start time, end time, step, and duration.

Training Dataset Creation: The extracted notes from multiple

MIDI files are concatenated to create a larger dataset. This

dataset is then processed to create sequences of notes, which

will be used for training the music generation model. The

model architecture includes an LSTM layer followed by

separate output. layers for pitch, step, and duration prediction.

After training, the model is used to generate new notes. It

takes the sequence of notes and predicts the next note's pitch,

step, and duration. This process is repeated to generate new

music.

Model Details:

Input Layer: The input layer takes sequences of shape

(seq_length, 3) as input. Each sequence contains information

about pitch, step (time step), and duration.

LSTM Layer: This LSTM layer processes the input sequences

and has 128 units (or cells). It captures temporal dependencies

and patterns in the input data.

Dense Layers:

Dense Layer 'pitch': This dense (fully connected) layer

follows the LSTM layer and has 128 units. It predicts the

pitch of the next note in the music sequence.

Dense Layer 'step': Another dense layer with a single unit

follows the LSTM layer. It predicts the time step until the next

note.

Dense Layer 'duration': This dense layer also has a single unit

and predicts the duration of the next note.

Outputs: There are three output branches from the model,

each corresponding to one of the predicted attributes: 'pitch',

'step', and 'duration'. The output shapes are specified for each

branch.

B) GENERATIVE ADVERSIAL NETWORK MODEL:

Generative Adversarial Networks (GANs) are employed in

music generation to produce realistic and diverse musical

sequences. Consisting of a generator and a discriminator,

GANs engage in an adversarial training process. The generator

creates music sequences from random latent vectors, while the

discriminator evaluates their authenticity. Through this

competitive interplay, the generator refines its ability to

produce convincing music, and the discriminator improves its

discernment between real and generated sequences. GANs

http://www.ijsrem.com/

 International Journal of Scientific Research in Engineering and Management (IJSREM)
 Volume: 09 Issue: 01 | Jan - 2025 SJIF Rating: 8.448 ISSN: 2582-3930

© 2025, IJSREM | www.ijsrem.com DOI: 10.55041/IJSREM40517 | Page 3

operate in a latent space, allowing for the exploration of

diverse musical styles. Post-processing steps can be applied

to control the generated music's style, and evaluation often

involves subjective assessments of musical quality and

coherence. GANs offer a dynamic and innovative approach

to music generation, pushing the boundaries of creativity and

enabling the generation of novel musical

compositions.MIDI File Processing: We select a sample

MIDI file for processing and extract notes from it. This is

done by analyzing the instrument tracks within the MIDI file

and recording information about each note, including its

pitch, start time, end time, step, and duration. The dataset

was converted into a NumPy array to correctly parse each

sample into its corresponding piano roll format which was

then used for training the GAN system. Generative

Adversarial Networks (GANs) are employed, consisting of a

generator and discriminator. A generator transforms random

noise into synthetic samples, while the discriminator

estimates the authenticity of samples. Training continues

iteratively until convergence, ensuring the model cannot

differentiate between real and synthetic samples. Parameters

such as batch size, shuffle buffer size, input size, and latent

noise vector size are carefully chosen for stability and

variability in generated music.

Model Details: GANs are unsupervised neural network

models that use two competing supervised sub-models to

generate deep representations of the input data without the

explicit need for annotations.

The two sub-models work in concert to develop high-

dimensional distribution of the input data that generalises

well on unseen samples. The adversarial architecture behind

a GAN implementation, are the two main components, the

generator and the discriminator:

The generator transforms a random noise vector into a

synthetic sample, which resembles real samples drawn from

a distribution of the real content and the discriminator

estimates the probability that a sample came from the real

data rather than from the generator.

Fig -2: C-RNN-GAN Block Diagram

III. IMPLEMENTATION

RNN Implementation:

Data Collection and Preprocessing:

Obtained the MIDI dataset, specifically the Maestro dataset,

which contains a diverse collection of classical piano music in

MIDI format. Conducted data preprocessing to ensure

uniformity and quality. Removed any corrupted or incomplete

MIDI files.

Discovered key insights into the dataset's characteristics, such

as the distribution of musical notes, common pitch ranges, and

variations in note durations.

Model Development:

Created a neural network architecture for music generation.

The architecture consists of LSTM layers for sequence

modelling and dense layers for generating pitch, step, and

duration. We chose the Adam optimizer and selected loss

functions, including Sparse Categorical Cross-Entropy for

pitch prediction.

Training:

Conducted multiple training epochs to allow the model to

learn complex musical patterns. Implemented batch

processing to efficiently train the model. Batches of MIDI

sequences were processed in parallel, optimizing both

memory usage and training speed.

Defined a sequence length that determines the length of input

sequences for training

Model Evaluation:

Evaluated the model's performance using various metrics,

including loss values. For further analysis we used data

visualization techniques for graphical analysis of piano rolls,

pitch, step, and duration of the output for comparison with the

input.

GAN Implementation:

The dataset was converted into a NumPy array to correctly

parse each sample into its corresponding piano roll format

which was then used for training the GAN system.

This input is passed through the GAN for training, where the

following happens:

The generator G, transforms a random noise vector into a

synthetic sample, which resembles real samples drawn from

a distribution of the real content. The discriminator D,

estimates the probability that a sample came from the real

data rather than from the generator G. One sample was

generated from the final test of the 1000 iterations and if a

person were to listen to the music snippets, noticeable

variations in the tones and pitches can be observed thereby

validating the experimental methodology. The music

generated using GAN yielded slightly better results when

compared to the previous RNN model.

C-RNN-GAN Implementation:

Model layout details: The LSTM network in both G and D

has depth 2, each LSTM cell has 350 hidden units. D has a

bidirectional layout, while G is unidirectional. The output

from each LSTM cell in D are fed into a fully connected layer

with weights shared across time steps, and one sigmoid output

per cell is then averaged to the final decision for the sequence.

http://www.ijsrem.com/

 International Journal of Scientific Research in Engineering and Management (IJSREM)
 Volume: 09 Issue: 01 | Jan - 2025 SJIF Rating: 8.448 ISSN: 2582-3930

© 2025, IJSREM | www.ijsrem.com DOI: 10.55041/IJSREM40517 | Page 4

Dataset: We have used piano music data. The data contains

3697 midi files from 160 different composers of classical

music.

Training: Learning rate was set to 0.1, and we apply L2

regularization to the weights both in G and D. The model

Table -1:Model Comparison

was pretrained for 6 epochs. Just as in the adversarial

setting, the input to each LSTM cell is a random vector v,

concatenated with the output at previous time step. During

pretraining, we used a schema for sequence length,

beginning with short sequences, randomly sampled from the

training data, eventually training the model with

increasingly long sequences. During adversarial training, we

noticed that D can become too strong, resulting in a gradient

that cannot be used to improve G. This effect is particularly

clear when the network is initialized without pretraining. For

this reason, we apply freezing which means stopping the

updates of D whenever its training loss is less than 70% of

the training loss of G. Normally, the objective for the

generator is to maximize the error that the discriminator

makes ,but with feature matching, the objective is instead to

produce an internal representation at some level in the

discriminator that matches that of real data.

Fig -3:Implementation Workflow

IV. RESULT

MSE measures the average squared difference in audio

samples between the generated and reference music.

RMSE provides a more interpretable measure of the average

difference in audio samples, and it is in the same units as the

audio data.

In summary, MSE and RMSE are used to quantify how well

predictions or model outputs match observed values or

ground truth data.
MSE = (1/n) * Σ(yi - ŷi)²

• n is the number of data points.

• yi represents the actual value.

• ŷi represents the generated.

RMSE = √(MSE)

V. CONCLUSION

This study has delved into the exciting intersection of artificial

intelligence and music generation, leveraging the capabilities

RNNs, GANs, and their hybrid integration in the form of RNN-

GAN. The exploration of these models has provided valuable

insights into their individual strengths and the synergies they

create when combined. The findings and conclusions are:

• Sequential Modelling with RNNs: The use of RNNs,

particularly Long Short-Term Memory (LSTM) networks, has

demonstrated their efficacy in capturing temporal

dependencies in musical sequences. The trained RNN serves as

a valuable component in guiding the generative process,

infusing coherence, and structure into the compositions.

• Generative Power of GANs: GANs, through adversarial

training, showcase their ability to generate realistic and diverse

musical sequences. The adversarial interplay between the

generator and discriminator results in compositions that

emulate the characteristics of the training data, introducing a

novel paradigm for creative music generation.

• Hybrid Approach with RNN-GAN: The integration of RNNs

and GANs into an RNN-GAN framework offers a holistic

approach, combining sequential understanding with generative

capabilities. The RNN's influence on the GAN's generative

process enhances the quality and coherence of the generated

music, showcasing the potential of this hybrid model.

 VI. ACKNOWLEDGMENT

We would like to express our sincere gratitude to Electronics

and Communication Department for their invaluable guidance

and support throughout this research. Their insights and

expertise greatly contributed to the quality and depth of this

work.

We are also thankful to PES University for providing the

necessary resources and facilities that enabled us to conduct

this study effectively.

Special thanks go to our colleagues and peers for their

constructive feedback and encouragement, which helped refine

our ideas and methodologies. Finally, we extend our deepest

appreciation to our families and friends for their unwavering

support and understanding during the course of this research

 VII. REFRENCES

1. Yang, Li-Chia, Szu-Yu Chou, and Yi-Hsuan Yang.

"MidiNet: A convolutional generative adversarial

network for symbolic-domain music generation."

arXiv preprint arXiv:1703.10847 (2017).

2. Arora, Sofia, et al. "An Analysis of Implementing a

GAN to Generate MIDI Music." 2022 IEEE MIT

Undergraduate Research Technology Conference

(URTC). IEEE, 2022.

3. Wu, Jian, et al. "A hierarchical recurrent neural

network for symbolic melody generation." IEEE

transactions on cybernetics 50.6 (2019): 2749-2757.

http://www.ijsrem.com/

 International Journal of Scientific Research in Engineering and Management (IJSREM)
 Volume: 09 Issue: 01 | Jan - 2025 SJIF Rating: 8.448 ISSN: 2582-3930

© 2025, IJSREM | www.ijsrem.com DOI: 10.55041/IJSREM40517 | Page 5

4. Sajad, Sahreen, S. Dharshika, and Merin Meleet.

"Music Generation for Novices Using Recurrent

Neural Network (RNN)." 2021 International

Conference on Innovative Computing, Intelligent

Communication and Smart Electrical Systems

(ICSES). IEEE, 2021.

5. Su, Yuping, et al. "Folk melody generation based on

CNN-BiGRU and Self-Attention." 2022 4th

International Conference on Communications,

Information System and Computer Engineering

(CISCE). IEEE, 2022.

6. Shah, F., Naik, T. and Vyas, N., 2019, December.

LSTM based music generation. In 2019 International

Conference on Machine Learning and Data

Engineering (iCMLDE) (pp. 48- 53). IEEE

7. Kumar, S., Gudiseva, K., Iswarya, A., Rani, S.,

Prasad,K.M.V.V. and Sharma, Y.K., 2022, October.

Automatic Music Generation System based on RNN

Architecture. In 2022 2nd International Conference

on Technological Advancements in Computational

Sciences (ICTACS) (pp. 294-300). IEEE.

8. Liang, Tianmian, et al. "Research on Generating

Xi'an Drum Music Based on Generative Adversarial

Network." 2023 IEEE International Conference on

Sensors, Electronics and Computer Engineering

(ICSECE). IEEE, 2023.

9. Zhang, Haohang, Letian Xie, and Kaiyi Qi.

“Implement music generation with gan: A systematic

review.” 2021 International Conference on Computer

Engineering and Apllication (ICCEA). IEEE, 2021.

http://www.ijsrem.com/

