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Abstract – This report delves into the realm of music generation 

using advanced machine learning techniques, focusing on 

Recurrent Neural Networks (RNNs), Generative Adversarial 

Networks (GANs), and their amalgamation in the form of RNN- 

GAN. The objective is to explore the capabilities of these models in 

creating novel and expressive musical compositions. 

The examines the fundamental concepts of RNNs, known for their 

prowess in sequence modelling, making them ideal for capturing 

the temporal intricacies present in music. Additionally, it explores 

the generative potential of GANs, that employs adversarial 

training to produce realistic and innovative musical sequences. 

The synthesis of RNNs and GANs into an integrated RNN-GAN 

framework is investigated. This hybrid approach aims to leverage 

the strengths of both architectures, enabling the generation of 

coherent and diverse musical pieces. 

I.INTRODUCTION 

In the fascinating world where technology meets tunes, this 

report explores how computers can create music. Imagine it 

as a collaboration between machines and melodies, where we 

use smart algorithms to generate musical compositions. Our 

journey revolves around three main things: Recurrent Neural 

Networks (RNNs), Generative Adversarial Networks 

(GANs), and a mix of both, known as RNN-GANs. 

Music has always been a powerful way for people to express 

feelings and tell stories. Now, with the rise of artificial 

intelligence, we are curious about how machines can 

contribute to this creative process. We start by checking out 

RNNs, special algorithms designed to understand patterns 

and structures in sequences, like the ones found in music. 

 

Then, we dive into GANs, which bring a whole new twist to 

creating music. The exciting part comes when we blend 

RNNs and GANs together into the RNN-GAN model, 

creating a mix that is both good at understanding patterns and 

great at making new music. As we go forward, we dream of 

a future where AI does not just copy what humans do but adds 

something new to our creative mix. We are thinking about 

attention-grabbing tricks, teaming up with musicians, making 

music on the spot, and always being careful about how we 

use this tech. 

 

In the evolving landscape of artificial intelligence and 

machine learning, the intersection with creative domains has 

sparked profound interest and innovation. One such 

captivating realm is the generation of music through 

computational models 

This report embarks on an exploration of advanced machine 

learning techniques, with a specific focus on Recurrent 

Neural Networks, Generative Adversarial Networks, and 

the hybrid model, RNN-GAN, to unravel the intricate 

process of creating music through artificial intelligence. 

Generating music using machine learning involves training a 

computer program to learn patterns and structures from 

existing musical data, and then using that knowledge to create 

new music. 

To train a neural network to generate music, researchers 

typically feed it with large amounts of musical data, such as 

MIDI files or sheet music. 

The network then learns to recognize patterns in this data, 

such as common chord progressions, melodies, and rhythms, 

and uses this knowledge to generate new music that follows 

similar patterns. 

The idea was to develop a machine learning model that can 

generate music autonomously, given a set of musical inputs 

as training data and to create a tool that can aid musicians and 

composers in their creative process, by providing them with a 

source of inspiration and new ideas. 

 DOLOGY 

 

1) PROPOSED METHODOLOGY: We propose a 

recurrent neural network architecture, C-RNN-GAN 

(Continuous RNN-GAN), that is trained with adversarial 

training to model the whole joint probability of a sequence, 

and to be able to generate sequences of data. We have 

trained our model on sequences of classical music. The 

proposed model is a recurrent neural network with 

adversarial training. The adversaries are two different deep 

recurrent neural models, a generator (G) and a 

discriminator (D). The generator is trained to generate data 

that is indistinguishable from real data, while the 

discriminator is trained to identify the generated data. The 

training becomes a zero-sum game when the generator 

produces data that the discriminator cannot tell from real 

data. The input to each cell in G is a random vector, 

concatenated with the output of previous cell. Feeding the 

output from the previous cell is common practice when 

training RNNs as language models, and has also been used 

in music composition. The discriminator consists of a 

bidirectional recurrent net, allowing it to take context in 

both directions into account for its decisions. In this work, 

the recurrent network used is the Long short-term memory. 

It has an internal structure with gates that help with the 

vanishing gradient problem, and to learn longer 

dependencies.
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Model Layout Details: Both the Generator (G) and 

Discriminator (D) utilize LSTM networks with a depth of 2, 

featuring 350 internal units per LSTM cell. Notably, D 

employs a bidirectional layout, while G is unidirectional. 

The output from each LSTM cell in D feeds into a fully 

connected layer with shared weights across time steps. A 

sigmoid output per cell is averaged to determine the final 

decision for the sequence. 

Baseline: The baseline comprises a recurrent network 

similar to the generator, trained solely to predict the next tone 

event at each recurrence point. 

Dataset: Training data, sourced from the web as MIDI files 

of classical music, includes well-known works. Each MIDI 

event of the type "note on" is recorded with its duration, 

tone, intensity, and time since the last tone. The tone data is 

internally represented with the corresponding sound 

frequency. All data is normalized to a tick resolution of 384 

per quarter note. The dataset comprises 3697 MIDI files 

from 160 different classical music composers. 

 

Training: Backpropagation through time (BPTT) and mini- 

batch stochastic gradient descent are employed. A learning 

rate of 0.1 is set, and L2 regularization is applied to the 

weights in both G and D. The model undergoes pretraining 

for six epochs with a squared error loss for predicting the 

next event. During pretraining, a random vector v, 

concatenated with the output at the previous time step, 

serves as the input to each LSTM cell. Adversarial training 

follows, where freezing is applied to D and G when their 

training losses deviate by a significant margin. Feature 

matching is also utilized to encourage greater variance in G, 

replacing the standard generator loss with the objective to 

produce an internal representation that matches real data in 

the discriminator.

 
   Fig -1:RNN Model Block Diagram 

 

 

 

 

2) OTHER METHODS IMPLEMENTED: 

 

A) RECURRENT NEURAL NETWORK MODEL: 

Recurrent Neural Networks (RNNs) are employed in music 

generation to capture temporal dependencies and patterns in 

musical sequences. Musical pieces are represented as 

sequences of encoded notes or chords, with input encoding 

using methods like one-hot encoding or embedding layers. 

Architectures like Long Short-Term Memory (LSTM) 

networks are preferred for their ability to handle long-term 

dependencies. During training, the model learns to predict the 

next element in a sequence, adjusting parameters to minimize 

prediction errors. Once trained, the RNN generates new music 

by providing an initial seed sequence. Post-processing steps 

and evaluation metrics ensure adherence to musical rules and 

assess the quality of the generated compositions. Our dataset 

contains 1200+ paired audio and MIDI recordings from 

ten years of International Piano-e- Competition. These MIDI 

files will be used for training the music generation model. 

 

MIDI File Processing: We select a sample MIDI file for 

processing and extract notes from it. This is done by 

analyzing the instrument tracks within the MIDI file and 

recording information about each note, including its pitch, 

start time, end time, step, and duration. 

 

Training Dataset Creation: The extracted notes from multiple 

MIDI files are concatenated to create a larger dataset. This 

dataset is then processed to create sequences of notes, which 

will be used for training the music generation model. The 

model architecture includes an LSTM layer followed by 

separate output. layers for pitch, step, and duration prediction. 

After training, the model is used to generate new notes. It 

takes the sequence of notes and predicts the next note's pitch, 

step, and duration. This process is repeated to generate new 

music. 

 
Model Details: 

Input Layer: The input layer takes sequences of shape 

(seq_length, 3) as input. Each sequence contains information 

about pitch, step (time step), and duration. 

 

LSTM Layer: This LSTM layer processes the input sequences 

and has 128 units (or cells). It captures temporal dependencies 

and patterns in the input data. 

Dense Layers: 

Dense Layer 'pitch': This dense (fully connected) layer 

follows the LSTM layer and has 128 units. It predicts the 

pitch of the next note in the music sequence. 

Dense Layer 'step': Another dense layer with a single unit 

follows the LSTM layer. It predicts the time step until the next 

note. 

Dense Layer 'duration': This dense layer also has a single unit 

and predicts the duration of the next note. 

Outputs: There are three output branches from the model, 

each corresponding to one of the predicted attributes: 'pitch', 

'step', and 'duration'. The output shapes are specified for each 

branch. 

 

B) GENERATIVE ADVERSIAL NETWORK MODEL: 

Generative Adversarial Networks (GANs) are employed in 

music generation to produce realistic and diverse musical 

sequences. Consisting of a generator and a discriminator, 

GANs engage in an adversarial training process. The generator 

creates music sequences from random latent vectors, while the 

discriminator evaluates their authenticity. Through this 

competitive interplay, the generator refines its ability to 

produce convincing music, and the discriminator improves its 

discernment between real and generated sequences. GANs 
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operate in a latent space, allowing for the exploration of 

diverse musical styles. Post-processing steps can be applied 

to control the generated music's style, and evaluation often 

involves subjective assessments of musical quality and 

coherence. GANs offer a dynamic and innovative approach 

to music generation, pushing the boundaries of creativity and 

enabling the generation of novel musical 

compositions.MIDI File Processing: We select a sample 

MIDI file for processing and extract notes from it. This is 

done by analyzing the instrument tracks within the MIDI file 

and recording information about each note, including its 

pitch, start time, end time, step, and duration. The dataset 

was converted into a NumPy array to correctly parse each 

sample into its corresponding piano roll format which was 

then used for training the GAN system. Generative 

Adversarial Networks (GANs) are employed, consisting of a 

generator and discriminator. A generator transforms random 

noise into synthetic samples, while the discriminator 

estimates the authenticity of samples. Training continues 

iteratively until convergence, ensuring the model cannot 

differentiate between real and synthetic samples. Parameters 

such as batch size, shuffle buffer size, input size, and latent 

noise vector size are carefully chosen for stability and 

variability in generated music. 

 

Model Details: GANs are unsupervised neural network 

models that use two competing supervised sub-models to 

generate deep representations of the input data without the 

explicit need for annotations. 

The two sub-models work in concert to develop high- 

dimensional distribution of the input data that generalises 

well on unseen samples. The adversarial architecture behind 

a GAN implementation, are the two main components, the 

generator and the discriminator: 

The generator transforms a random noise vector into a 

synthetic sample, which resembles real samples drawn from 

a distribution of the real content and the discriminator 

estimates the probability that a sample came from the real 

data rather than from the generator. 

 
Fig -2: C-RNN-GAN Block Diagram 

 

 

 

 

III. IMPLEMENTATION 

 
RNN Implementation: 

Data Collection and Preprocessing: 

Obtained the MIDI dataset, specifically the Maestro dataset, 

which contains a diverse collection of classical piano music in 

MIDI format. Conducted data preprocessing to ensure 

uniformity and quality. Removed any corrupted or incomplete 

MIDI files. 

Discovered key insights into the dataset's characteristics, such 

as the distribution of musical notes, common pitch ranges, and 

variations in note durations. 

 

Model Development: 

Created a neural network architecture for music generation. 

The architecture consists of LSTM layers for sequence 

modelling and dense layers for generating pitch, step, and 

duration. We chose the Adam optimizer and selected loss 

functions, including Sparse Categorical Cross-Entropy for 

pitch prediction. 

 

Training: 

Conducted multiple training epochs to allow the model to 

learn complex musical patterns. Implemented batch 

processing to efficiently train the model. Batches of MIDI 

sequences were processed in parallel, optimizing both 

memory usage and training speed. 

Defined a sequence length that determines the length of input 

sequences for training 

Model Evaluation: 

Evaluated the model's performance using various metrics, 

including loss values. For further analysis we used data 

visualization techniques for graphical analysis of piano rolls, 

pitch, step, and duration of the output for comparison with the 

input. 

 

GAN Implementation: 

The dataset was converted into a NumPy array to correctly 

parse each sample into its corresponding piano roll format 

which was then used for training the GAN system. 

This input is passed through the GAN for training, where the 

following happens: 

The generator G, transforms a random noise vector into a 

synthetic sample, which resembles real samples drawn from 

a distribution of the real content. The discriminator D, 

estimates the probability that a sample came from the real 

data rather than from the generator G. One sample was 

generated from the final test of the 1000 iterations and if a 

person were to listen to the music snippets, noticeable 

variations in the tones and pitches can be observed thereby 

validating the experimental methodology. The music 

generated using GAN yielded slightly better results when 

compared to the previous RNN model. 

C-RNN-GAN Implementation: 

Model layout details: The LSTM network in both G and D 

has depth 2, each LSTM cell has 350 hidden units. D has a 

bidirectional layout, while G is unidirectional. The output 

from each LSTM cell in D are fed into a fully connected layer 

with weights shared across time steps, and one sigmoid output 

per cell is then averaged to the final decision for the sequence. 
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Dataset: We have used piano music data. The data contains 

3697 midi files from 160 different composers of classical 

music. 

 

Training: Learning rate was set to 0.1, and we apply L2 

regularization to the weights both in G and D. The model  

Table -1:Model Comparison 

 

was pretrained for 6 epochs. Just as in the adversarial 

setting, the input to each LSTM cell is a random vector v, 

concatenated with the output at previous time step. During 

pretraining, we used a schema for sequence length, 

beginning with short sequences, randomly sampled from the 

training data, eventually training the model with 

increasingly long sequences. During adversarial training, we 

noticed that D can become too strong, resulting in a gradient 

that cannot be used to improve G. This effect is particularly 

clear when the network is initialized without pretraining. For 

this reason, we apply freezing which means stopping the 

updates of D whenever its training loss is less than 70% of 

the training loss of G. Normally, the objective for the 

generator is to maximize the error that the discriminator 

makes ,but with feature matching, the objective is instead to 

produce an internal representation at some level in the 

discriminator that matches that of real data. 

 

Fig -3:Implementation Workflow 

 

IV. RESULT 

MSE measures the average squared difference in audio 

samples between the generated and reference music. 

RMSE provides a more interpretable measure of the average 

difference in audio samples, and it is in the same units as the 

audio data. 

In summary, MSE and RMSE are used to quantify how well 

predictions or model outputs match observed values or 

ground truth data. 
MSE = (1/n) * Σ(yi - ŷi)² 

• n is the number of data points. 

• yi represents the actual value. 

• ŷi represents the generated. 

RMSE = √(MSE) 
 

V. CONCLUSION 

This study has delved into the exciting intersection of artificial 

intelligence and music generation, leveraging the capabilities 

RNNs, GANs, and their hybrid integration in the form of RNN-

GAN. The exploration of these models has provided valuable 

insights into their individual strengths and the synergies they 

create when combined. The findings and conclusions are: 

• Sequential Modelling with RNNs: The use of RNNs, 

particularly Long Short-Term Memory (LSTM) networks, has 

demonstrated their efficacy in capturing temporal 

dependencies in musical sequences. The trained RNN serves as 

a valuable component in guiding the generative process, 

infusing coherence, and structure into the compositions. 

• Generative Power of GANs: GANs, through adversarial 

training, showcase their ability to generate realistic and diverse 

musical sequences. The adversarial interplay between the 

generator and discriminator results in compositions that 

emulate the characteristics of the training data, introducing a 

novel paradigm for creative music generation. 

• Hybrid Approach with RNN-GAN: The integration of RNNs 

and GANs into an RNN-GAN framework offers a holistic 

approach, combining sequential understanding with generative 

capabilities. The RNN's influence on the GAN's generative 

process enhances the quality and coherence of the generated 

music, showcasing the potential of this hybrid model. 
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