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Abstract—The Nipah virus, a highly pathogenic zoonotic virus, 

poses significant threats to human health, with high mortality 

rates and limited treatment options. Understanding its genomic 

structure is crucial for developing effective diagnostic and 

therapeutic strategies. This project leverages deep learning 

techniques, specifically Recurrent Neural Networks (RNNs), to 

analyze the Nipah virus genome. The primary objective is to 

identify key genetic features and variations that influence its 

pathogenicity. RNA sequence data of the virus is processed 

using Word2Vec for feature representation, transforming 

nucleotide sequences into vector embeddings. The trained RNN 

model is then employed to predict potential mutations in the 

viral genome and assess their implications for viral behavior. 

The proposed system aims to enhance our understanding of the 

virus's genomic makeup, enabling more accurate predictions of 

pathogenic variations and facilitating the development of 

targeted interventions. Through this approach, we seek to 

contribute to the advancement of genomic analysis in viral 

pathogenesis and disease control. 

Keywords— Recurrent Neural Networks(RNNs), Nipha virus, 

Word2Vec, RNA 

I. INTRODUCTION  
        Nipah virus (NiV) is a zoonotic pathogen that has caused 

severe outbreaks in South and Southeast Asia, representing a 

significant threat to public health due to its high fatality rate and 

potential for human-to-human transmission. The disease is 

typically diagnosed through serological testing or PCR-based 

methods, but no specific therapeutic treatments or vaccines are 

currently available. NiV is an RNA virus, and while Ribavirin 

has been explored as a potential treatment, no definitive 

solutions have emerged. NiV typically targets immune-

compromised individuals, with dendritic cells being one of its 

primary targets. These cells are an integral part of the immune 

system and are found among various blood cell types [5]. 

      Traditional approaches to predicting and managing NiV 

outbreaks have primarily relied on epidemiological models 

such as the SIR (Susceptible-Infected-Recovered) and SEIR 

(Susceptible-Exposed-Infected-Recovered) models, as well as 

phylogenetic analysis. While these models have been useful, 

they often fail to capture the complexities and uncertainties 

inherent in disease spread. Conventional models assume a 

homogeneous mixing of populations and fixed parameters, 

which do not fully reflect the dynamic and variable nature of 

real-world disease transmission [1][2]. Additionally, these 

models can be computationally intensive or require large 

amounts of labeled data, which is difficult to obtain in the 

context of emerging infectious diseases [3][4]. 

      The importance of accurate and reliable outbreak prediction 

cannot be overstated, as it is crucial for timely public health 

interventions and resource allocation. Existing methods, such 

as Bayesian inference and machine learning techniques, have 

shown promise but also come with notable limitations, 

including difficulties in handling uncertainties effectively [3]. 

Recent research has explored the use of machine learning 

techniques to improve prediction and diagnostic accuracy for 

intractable diseases like NiV. Machine learning models have 

demonstrated enhanced predictive capabilities, offering 

promising results for early detection and outbreak management. 

This approach is being increasingly emphasized by 

organizations like the World Health Organization (WHO) and 
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the National Centre for Disease Control (NCDC), as it holds 

potential for optimizing prediction models and controlling the 

disease [6]. 

       Gene expression data processing in molecular biology 

involves experimental and computational methods to analyze 

gene activity. Techniques such as qRT-PCR, which quantifies 

gene expression levels, are commonly used to validate high-

throughput results. Microarrays, which analyze thousands of 

genes simultaneously, have been the standard but are gradually 

being surpassed by RNA sequencing (RNA-Seq) due to its 

higher resolution and ability to detect novel transcripts. A 

newer technique, Drop-seq, combines RNA-Seq with 

microfluidics to study individual-cell gene expression. After 

experimental data collection, bioinformatics tools such as 

DESeq2 and edgeR are often employed for normalization and 

differential expression analysis, enabling a deeper 

understanding of gene activity and viral behavior. 

      High-level Biosafety Level-4 (BSL-4) laboratories are 

required to safely test and handle the Nipah virus due to its 

potential for severe outbreaks. These labs are equipped with the 

necessary security and containment measures to study such 

dangerous pathogens effectively. Domestic animals, 

particularly bats, play a key role in the transmission of NiV, 

facilitating the spread of the virus to humans. In India, over 100 

species of bats have been identified as hosts for NiV, with 31 

species being affected by the virus [6]. Despite the availability 

of specialized labs and advanced methodologies, there remains 

a need for more accurate and optimized models for early 

detection and prediction to control future outbreaks. 

       The application of deep learning techniques to gene 

expression data for classification tasks has gained significant 

attention due to the complexity and high dimensionality of the 

data, which require advanced computational models. Deep 

learning algorithms, particularly convolutional neural networks 

(CNNs) and recurrent neural networks (RNNs), offer a robust 

framework to uncover intricate patterns in gene expression, 

making them highly effective for classification tasks. The 

multi-layered architectures of these models enable them to 

capture non-linear relationships in gene expression data, which 

is essential for accurate classification and understanding of 

gene activity [7]. 

        A key advantage of deep learning models is their ability to 

autonomously learn feature representations from raw data, 

eliminating the need for manual feature extraction. This not 

only reduces the introduction of potential biases but also 

enhances the model's ability to generalize to new data. When 

properly trained, deep learning models can minimize 

classification errors and optimize performance, providing 

reliable predictive capabilities. Furthermore, models such as 

autoencoders and variational autoencoders have shown efficacy 

in performing dimensionality reduction on gene expression 

data, helping to mitigate issues related to the curse of 

dimensionality and improving model efficiency [8]. 

       Recurrent neural networks (RNNs), in particular, offer 

specific advantages over CNNs when processing gene 

expression data, especially for sequence prediction and 

understanding temporal dynamics [9]. Unlike CNNs, which 

typically treat input features as independent, RNNs are 

designed to handle sequential data, making them ideal for 

analyzing gene expression time series where temporal 

dependencies are crucial. RNNs can maintain an internal 

memory of past inputs, allowing them to capture dynamic 

temporal behaviors in gene expression profiles. This ability is 

particularly useful in scenarios where gene expression changes 

over time, and the model needs to understand the progression 

or regulation of genes across different time points. 

Additionally, RNNs can handle sequences of varying lengths 

without requiring a fixed input size, providing greater flexibility 

in analyzing data from different experimental setups. 

      Moreover, RNNs can process bi-directional input, which is 

advantageous when investigating gene expression profiles with 

bi-directional influences. The sequential nature of RNNs also 

allows for more intuitive insights into gene expression 

pathways and regulatory cascades, potentially offering 

biologically relevant interpretations of gene activity compared 

to the hierarchical feature learning in CNNs. However, RNNs 

are not without challenges. They are prone to issues such as 

vanishing and exploding gradient problems, which can hinder 

model training and performance. These challenges must be 

carefully addressed during the development and application of 

RNNs in bioinformatics tasks. 

     The key contribution of this work lies in the innovative use 

of deep learning techniques, specifically Recurrent Neural 

Networks (RNNs), to analyze the genomic structure of the 

Nipah virus (NiV). 

● This work leverages Recurrent Neural Networks 

(RNNs), a deep learning technique, to analyze the 

genomic structure of the Nipah virus (NiV), offering a 

novel approach for studying viral genomes. 

● RNA sequence data of the virus is processed using 

Word2Vec to convert nucleotide sequences into vector 

embeddings, enabling the RNN model to capture 

complex patterns and genetic features in the virus's 

genome. 

● By identifying key genetic features and variations, this 

approach can facilitate the development of more 

targeted and effective diagnostic and therapeutic 

interventions for NiV, potentially improving disease 

management. 
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II. LITERATURE SURVEY 
        Nipah virus (NiV) is a severe and unpredictable 

respiratory infection that can lead to coma, encephalitis, or even 

death. Despite the ongoing research, no approved vaccines or 

effective treatments are currently available. A systematic 

review by Aditi and M. Shariff [10] explores the biological 

aspects of NiV, including its immunopathogenesis and 

diagnostic approaches for clinical settings. The authors 

conducted a literature survey from sources like Cochrane 

Library, Google Scholar, and PubMed, gathering insights into 

antibody detection techniques and case definitions based on 

NCDC guidelines. Rodolphe Pelissier et al. [11] discuss the 

immunopathogenesis of NiV infection, highlighting the protein 

expression systems involved and their relationship to human 

immune responses during the disease. 

       The natural reservoir for Nipah virus (NiV) involves hosts 

that spread the virus primarily through the respiratory route or 

throat swabs. Jorge D. Mello-Roman et al. [13] conducted a 

case study on dengue in Paraguay, demonstrating the 

effectiveness of combining Artificial Neural Networks (ANN) 

and Support Vector Machines (SVM) for early dengue 

diagnosis. SVM, in particular, achieved over 90% accuracy, 

alongside high specificity and sensitivity, outperforming other 

models. Similarly, Gaurav Sharma, Seema Bawa, and 

colleagues [5] applied hybrid machine learning models, 

including Random Forest and K-Means, for predicting T-cell 

Lymphotropic Virus, evaluating the performance through K-

fold cross-validation and AUROC methods. Additionally, 

machine learning models such as XGBoost, Random Forest, 

Decision Tree, and Logistic Regression were used to predict 

HBsAg seroclearance with a focus on specificity [14]. 

       In response to NiV, Akanksha Rajput, Archit Kumar, and 

Manoj Kumar [15] developed an "anti-Nipah" web server that 

integrates data from PubMed and patents into a QSAR model 

using machine learning techniques. This tool provides valuable 

resources related to NiV and its inhibitors, though it lacks a 

detailed methodology for its computational work.  

     Md. Zakiul Hassan[16] analyzes Nipah virus (NiV) gene 

expression using NGS RNA-Seq data to identify differentially 

expressed genes (DEGs). NiV, an enveloped ssRNA 

paramyxovirus, has a high case fatality rate (>70%). Using 

statistical tools like limma and bioinformatics platforms such as 

Cytoscape, Ensembl, and STRING, the study identifies 2707 

DEGs (p-value <0.05) from a total of 54359 NiV genes. Key 

up-regulated genes include EPST1, MX1, IFIT3, RSAD2, and 

OAS1, while down-regulated genes include SLFN13 and 

SPAC977.17. The gene interaction analysis reveals no 

significant association between NiV and viruses like Ebola or 

Tularemia, highlighting the unique genetic profile of NiV. 

These findings provide potential biomarkers and candidates for 

future vaccine or drug development to combat Nipah virus 

infections.  

        Sergii Babichev[17], various recurrent neural network 

(RNN) architectures were tested for gene expression data 

classification. The performance of models was evaluated using 

classification accuracy, F1-score, and loss function values. The 

results showed that a single-layer GRU network with 75 

neurons outperformed other models, achieving a 97.2% 

classification accuracy, slightly better than CNN and LSTM 

models (97.1%). The GRU model correctly identified 954 out 

of 981 objects, making it the most effective model for 

classifying gene expression data in this study.  

        Rui Yin[18], the challenge of predicting influenza virus 

mutations is addressed through a time-series mutation 

prediction model called Tempel. Influenza viruses evolve 

rapidly, complicating antiviral treatments, so predicting 

mutations for upcoming flu seasons is critical. Tempel 

leverages recurrent neural networks (RNNs) with attention 

mechanisms to model the temporality and dimensionality of 

influenza A virus glycoprotein hemagglutinin sequences. The 

attention mechanism improves prediction by focusing on key 

residue parts in the sequence. Experimental results from three 

influenza datasets show that Tempel significantly outperforms 

existing approaches, offering valuable insights into viral 

mutation dynamics and evolution.  

        Liping Ma[19], a rapid RT-LAMP assay was developed 

for detecting Nipah virus (NiV), targeting the nucleocapsid 

protein (N) gene. The assay, which works at 65°C, was found 

to be 10 times more sensitive than conventional RT-PCR, with 

a detection limit of 100 pg of NiV pseudovirus RNA. It showed 

high specificity with no cross-reactivity to related viruses, 

providing results in 45 minutes using simple equipment. 

Clinical testing confirmed the assay’s stability and 

effectiveness for detecting all known NiV strains, offering a 

promising tool for rapid field detection.  

        Syed Kannan[20], a prognostic model for early Nipah 

virus (NiV) diagnosis was developed using Machine Learning 

(ML), combining clinical factors like symptoms and blood test 

results. The model used a Restricted Boltzmann Machine 

(RBM) for feature selection and a stacking ensemble meta 

classifier (SEMC) for prediction. Trained on data from the 

2018-2019 NiV outbreak in Kozhikode, Kerala, the SEMC 

model achieved 88.3% accuracy and high precision (92.5%) 

and recall (89.2%). Key indicators like fever, headache, and 

cough were identified as critical for diagnosis. The model could 

aid early detection of NiV, though more data is needed for 

maximum accuracy.  

         Rodolphe Pelissier[21], Nipah virus (NiV), a deadly 

zoonotic virus, is examined for its impact on the immune 

system. While causing severe illness in humans, NiV remains 
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asymptomatic in its natural hosts, fruit bats, which facilitate 

outbreaks. The virus disrupts the innate immune response, 

particularly interferon signaling, allowing it to spread. Human-

to-human transmission is common, especially in Bangladesh 

and India. The review summarizes recent research on NiV's 

immune modulation and stresses the need for new prophylactic 

and therapeutic strategies to control this emerging threat. 

III. PROPOSED METHODOLOGY 
         Here, we propose a deep learning-based approach, NiV-

RNN, to analyze the genome of the Nipah virus and predict 

potential mutations that influence its pathogenicity. The NiV-

RNN model takes RNA sequence data of the virus as input and 

converts it into a feature matrix using the Word2Vec method. 

This involves dividing the RNA sequence into overlapping k-

mers (short subsequences of fixed length) and converting each 

k-mer into a vector representation using the Word2Vec 

algorithm. The resulting feature matrix is then input into a 

Recurrent Neural Network (RNN), which is designed to capture 

the temporal dependencies and complex patterns in the viral 

genome. 

 

Figure 1. Architecture of the proposed NiV-RNN model 

       The RNN is specifically trained to identify key genetic 

features and variations that could affect the virus's 

pathogenicity and predict how potential mutations may impact 

viral behavior. The output from the RNN is passed through a 

fully connected layer and a sigmoid layer, which classifies the 

sequence based on whether it contains mutations that may affect 

the virus’s ability to cause disease. The proposed system aims 

to enhance the understanding of the Nipah virus's genomic 

structure, enabling more accurate predictions of pathogenic 

variations and contributing to the development of targeted 

diagnostic and therapeutic strategies. 

        Through this approach, NiV-RNN seeks to advance 

genomic analysis in viral pathogenesis, facilitating the 

identification of mutation hotspots and improving disease 

control strategies for this high-risk pathogen. The architecture 

of the proposed NiV-RNN model is illustrated in Figure1. 

1) Data Pre-processing 

        In this step, the RNA sequences undergo a series of text 

preprocessing techniques to prepare the data for further analysis 

and model training. The primary goal is to eliminate 

unnecessary or irrelevant information that could introduce noise 

into the model and negatively impact its performance. 

        The first cleaning task involves removing user handles. 

These handles, which are often present in the raw data, have no 

meaningful relevance for RNA sequence classification, 

especially when dealing with biological sequences. Removing 

these user handles ensures that the data is focused solely on the 

sequence itself, which is critical for accurate model training and 

classification. 

          The next preprocessing step is removing stopwords, 

which are common words that appear frequently in text but do 

not contribute significant meaning to the analysis. In traditional 

natural language processing (NLP), stopwords include words 

like "the," "a," "and," "is," etc., which are typically excluded 

from analysis because they do not help in distinguishing 

between different classes. Although RNA sequences are not 

text in the conventional sense, the preprocessing of sequences 

into k-mers (subsequences) can result in the presence of "stop" 

k-mers — short subsequences that frequently appear but do not 

provide meaningful information for classification. By removing 

these, we reduce the noise in the data, making it cleaner and 

more focused on the features that are important for the 

classification task. 

         After cleaning the RNA sequences by removing user 

handles and stopwords, the next critical step is to extract k-mers 

from the cleaned sequences. A k-mer is a subsequence of length 

k (in this case, k = 6) extracted from the original RNA sequence. 

This process involves breaking the sequences into smaller, 

more manageable units, which are likely to help the model 

capture local patterns within the data that are essential for 

distinguishing between classes, such as "Infected" versus 

"Normal." 

       The extraction of k-mers is done using a sliding window 

approach, where a fixed-length window of size 6 moves along 

the RNA sequence to generate overlapping subsequences. This 

approach ensures that every possible subsequence of length 6 is 

captured from the original sequence. For example, for a 

sequence AGCTAGCTAG, the sliding window will generate 

the k-mers AGCTAG, GCTAGC, CTAGCT, and so on. By 

generating k-mers in this way, the RNA sequence is represented 

in terms of shorter, more manageable components that retain 

critical local sequence patterns. 

http://www.ijsrem.com/
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      Overall, these preprocessing steps—removing irrelevant 

handles and stopwords, followed by k-mer extraction—help 

transform the raw RNA sequences into a cleaner, more feature-

rich format. This enables machine learning models to better 

capture relevant patterns in the data, improving classification 

performance and making the data more suitable for downstream 

analysis. 

2) Feature Extraction 

        The genetic data, especially from viral genomes like the 

Nipah virus, can be viewed as a language, where the nucleotide 

sequences convey crucial biological information. Just as 

Natural Language Processing (NLP) techniques process human 

languages, we can apply similar methods to analyze the 

genomic structure of viruses. In this project, we leverage 

Word2Vec, a popular NLP method, to convert the nucleotide 

sequences of the Nipah virus genome into numerical vector 

representations. Word2Vec captures the contextual 

relationships between genetic elements (such as k-mers) and 

transforms them into meaningful embeddings that reflect their 

biological significance. 

       In particular, Word2Vec offers two model approaches: 

Continuous Bag of Words (CBOW) and Skip-Gram. The 

CBOW [22] model predicts the target nucleotide (or k-mer) 

based on its surrounding context, learning to understand 

relationships within sequences by focusing on adjacent 

nucleotides. Conversely, the Skip-Gram model predicts the 

surrounding context from a given target nucleotide (or k-mer). 

The Skip-Gram model is particularly effective for modeling 

rare k-mers or nucleotide sequences that appear less frequently, 

as it is capable of generating high-quality vector representations 

even for infrequent k-mers. 

      In our approach, the genome sequence is divided into 100 

nucleotide (nt) segments, and k-mers (such as 3-mers, 4-mers, 

etc.) are extracted from each segment. These k-mers are then 

processed using the Skip-Gram model, which learns vector 

representations for each k-mer. This transformation allows us 

to capture the relationships between different parts of the 

genome, providing a comprehensive understanding of the viral 

sequence. These vector embeddings are then used as a 

preliminary feature matrix for further analysis. 

     The core goal of this project is to apply deep learning, 

particularly Recurrent Neural Networks (RNNs), to analyze the 

Nipah virus genome. The RNN model is trained to predict 

genetic mutations and assess their potential impact on the 

virus’s pathogenic behavior. By understanding the variations in 

the viral genome, we aim to improve the accuracy of predictions 

regarding the virus’s evolution and its potential threat to human 

health. 

       In the Skip-Gram model, the objective is to maximize the 

probability of observing the context k-mers given the target k-

mer. The model achieves this by adjusting the word vectors 

such that the dot product between the vector representations of 

the target k-mer and its context is large when they frequently 

co-occur and small otherwise. This helps the model learn the 

relationships between k-mers, facilitating the classification of 

RNA sequences and helping identify potential promoters or 

non-promoters in the virus's genetic makeup. 

     Mathematically, the objective of the skip-gram model can 

be expressed as follows: 

𝑀𝑎𝑥𝑖𝑚𝑖𝑧𝑒 ∑ (𝑖 = 1)𝑛 ∑ (𝑗

∈ 𝑐𝑜𝑛𝑡𝑒𝑥𝑡(𝑖))𝑚𝑙𝑜𝑔𝑝(𝑥𝑖|𝑥𝑖)             (1) 
Where 𝑛 is the number of k-mers in the training dataset, 𝑚 is 

the context window size (the number of surrounding k-mers), 

𝑥𝑖 is the target k-mer, 𝑥𝑖+𝑗  is the context k-mer for 𝑝(𝑥𝑖+𝑗 +, 

|𝑥𝑖)  is the probability of observing the context k-mer 𝑥𝑖+𝑗 given 

the target k-mer 𝑥𝑖. 

      By maximizing this objective, the model learns to create 

high-quality vector representations for k-mers, which can then 

be used to predict important genetic features and their 

relationships, contributing to a deeper understanding of the 

virus’s genomic structure. 

3) Classification 

      A Recurrent Neural Network (RNN) is a class of artificial 

neural networks designed for sequence prediction and analysis, 

where the output depends not only on the current input but also 

on the previous inputs in the sequence. This is especially useful 

for tasks involving time-series data, natural language 

processing (NLP), and sequence classification, such as RNA 

sequence classification. 

      In this work, we are utilizing RNN architecture to classify 

RNA sequences as either "Infected" or "Normal." The 

architecture of the RNN consists of several layers, each serving 

a specific function to process and learn from the data. The input 

layer receives the preprocessed RNA sequences, which are 

represented as scaled k-mers (subsequences of length 6). These 

sequences are transformed into a format suitable for neural 

network processing, where each feature is processed 

sequentially by the layers that follow. The Flatten layer 

reshapes the input data from a multi-dimensional format into a 

one-dimensional vector, ensuring the data can be fed into fully 

connected layers for further analysis. Next, the model includes 

dense layers, which are fully connected layers that learn to 

represent the complex relationships between the input features. 

Each dense layer uses the ReLU (Rectified Linear Unit) 

activation function, which introduces non-linearity to the 

model, enabling it to capture intricate patterns within the data. 

http://www.ijsrem.com/
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To avoid overfitting, dropout layers are introduced, randomly 

disabling a fraction of the neurons during training, which 

encourages the model to generalize better and prevents it from 

relying too heavily on any one feature. Finally, the output layer 

uses a softmax activation function, producing a probability 

distribution across the two possible classes: "Infected" or 

"Normal." The class with the highest probability is selected as 

the model's prediction. Overall, the RNN architecture is 

designed to effectively learn from the sequential nature of RNA 

sequences, making it well-suited for this classification task, 

while the inclusion of dropout helps prevent overfitting and 

ensures better performance on unseen data. 

IV. RESULTS AND DISCUSSION 
       The performance of the prediction model is evaluated using 

four commonly used metrics: accuracy (ACC), sensitivity (Sn), 

specificity (Sp), and Matthews Correlation Coefficient (MCC). 

These metrics are defined as follows:  

                                        𝐴𝐶𝐶 =
𝑇𝑁+𝑇𝑃

𝑇𝑃+𝐹𝑁+𝑇𝑁+𝐹𝑃
                          (2)              

                                                  𝑆𝑛 =
𝑇𝑃

𝑇𝑃+𝐹𝑁
                                (3)                    

                                                 𝑆𝑝 =
𝑇𝑁

𝐹𝑃+𝑇𝑁
                                 (4) 

𝑀𝐶𝐶 =
𝑇𝑃𝑋𝑇𝑁 − 𝐹𝑃𝑋𝐹𝑁

√(𝑇𝑁 + 𝐹𝑃)(𝑇𝑁 + 𝐹𝑁)(𝑇𝑃 + 𝐹𝑃)(𝑇𝑃 + 𝐹𝑁)
    (5) 

         In addition to these metrics, Receiver Operating 

Characteristic (ROC) curves are plotted to evaluate model 

performance, where the Area Under the Curve (AUC) is 

calculated. AUC values range from 0.5 to 1, with higher values 

indicating better model performance. Precision-Recall (PR) 

curves are also used to assess the balance between precision 

(positive predictive value) and recall (sensitivity). Finally, the 

confusion matrix is used to visually represent the model's 

classification performance. Cross-validation is employed to 

ensure robust evaluation by splitting the data into training, 

validation, and testing sets. 

         RNN model outperformed XGBoost across all metrics. In 

terms of Accuracy, the RNN achieved 91.86%, higher than 

XGBoost's 89.5%, indicating a more accurate overall 

classification. When examining Sensitivity, which measures the 

model's ability to correctly identify positive instances, the RNN 

scored 92.74%, compared to 86.8% for XGBoost, showing that 

the RNN is significantly better at detecting positive cases, such 

as "Infected" RNA sequences. Similarly, the RNN also 

performed better in Specificity, with 91% compared to 

XGBoost’s 87.9%, meaning it was more effective at correctly 

identifying negative instances. Furthermore, the Matthews 

Correlation Coefficient (MCC), which balances all four 

outcomes (true positives, true negatives, false positives, and 

false negatives), was higher for the RNN at 0.83, compared to 

0.74 for XGBoost. A higher MCC reflects better overall 

performance, particularly in imbalanced datasets. In 

conclusion, the RNN model consistently outperforms XGBoost 

in all aspects, making it a more reliable and effective model for 

RNA sequence classification, especially when accurate 

detection of both "Infected" and "Normal" sequences is crucial. 

 

Figure 2. The RNN model comparison with existing method 

 

 

Figure 3. The proposed model’s confusion matrix 

       The Area Under the Curve (AUC) of 0.909 for the Receiver 

Operating Characteristic (ROC) curve indicates that the model 

exhibits excellent performance in distinguishing between 

"Infected" and "Normal". AUC values range from 0 to 1, where 

a value closer to 1 indicates better discriminatory ability. An 

AUC of 0.909 suggests that there is a 90.9% chance that the 

model will correctly rank a randomly selected promoter higher 

than a randomly selected non-promoter. This indicates that the 

model is highly effective in identifying promoters in DNA 

sequences, with a low likelihood of misclassifying them as non-

promoters. The ROC curve itself provides a visual 

representation of the model's ability to distinguish between the 

two classes by plotting the True Positive Rate (TPR) against the 

http://www.ijsrem.com/
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False Positive Rate (FPR) at various classification thresholds. 

For a model with an AUC of 0.909, the ROC curve would lie 

close to the top-left corner, indicating high sensitivity and low 

false positives. This performance suggests that the model is 

capable of making accurate predictions with few 

misclassifications. The threshold setting in the model plays a 

crucial role in determining the balance between sensitivity and 

specificity, which could be adjusted depending on the 

application needs, such as minimizing false negatives or false 

positives. Overall, the high AUC reflects the strong predictive 

capability of the model in classifying promoters and non-

promoters, which is crucial for applications in genomics and 

viral pathogenesis prediction. 

 

Figure 4. The ROC curves of the RNN model 

V. CONCLUSION 
       In conclusion, this study demonstrates the effectiveness of 

machine learning models, particularly Recurrent Neural 

Networks (RNNs), in classifying RNA sequences as either 

"Infected" or "Normal." The results show that the RNN 

outperforms other models, such as XGBoost, across all 

evaluation metrics including accuracy, sensitivity, specificity, 

and Matthews Correlation Coefficient (MCC). The RNN's 

superior performance, especially in terms of sensitivity and 

specificity, highlights its ability to accurately detect both 

positive and negative cases in RNA sequence classification. 

These findings suggest that RNNs, with their ability to capture 

complex patterns in sequential data, are highly suitable for tasks 

involving biological sequence analysis. Furthermore, the study 

underscores the importance of preprocessing techniques, such 

as k-mer extraction and text cleaning, in enhancing the quality 

of the input data and ensuring reliable model predictions. Future 

work will explore additional datasets, balanced data handling 

techniques, and the potential integration of more advanced deep 

learning architectures to further improve classification accuracy 

and robustness in real-world applications of RNA sequence 

classification.. 
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