

"Glare Control with Façade Lighting Design: An overview for Visual Comfort in Architecture"

Kanak Bajretiya¹, Ar. Shefali Soni², Ar. Dhaneshwar Kosey³

¹Student, School of Architecture, RGPV, Bhopal

²Asst. Professor, School of Architecture, RGPV, Bhopal

³Asst. Professor, School of Architecture, RGPV, Bhopal

Abstract - Façade lighting improves the look and feel of buildings, giving them new life. However, it can also create problems like glare, which can affect visual comfort, pedestrian safety, and the usability of public areas. Most existing research has focused on indoor glare, light levels, and aesthetic factors while largely ignoring outdoor glare effects. This study takes a deeper look at glare and its measurements in relation to façade lighting. By exploring different types of glare, visual comfort standards, and façade lighting methods, it identifies key factors that contribute to glare. It also suggests a framework for designing glare-aware façade lighting, stressing the need to incorporate visual comfort into both architectural theory and practice.

Keywords: Glare, façade lighting, visual comfort, architectural lighting theory, urban environment

1. INTRODUCTION

Façade lighting has a profound impact on our urban landscapes, transforming how we experience buildings at night. It highlights architectural features, adds character, and creates a unique atmosphere that brings life to our city streets after dark. But it's not just about looking good; façade lighting also has practical benefits.

That said, there's a downside to all those beautiful lights—glare. This harsh, intense light can be more than just a nuisance; it can cause discomfort and even hinder our vision. While we often think of glare in indoor settings, it's just as relevant outdoors. The interplay between natural daylight and artificial façade lighting can create a surprising amount of glare for passersby, something that often flies under the radar in architectural design.

Unfortunately, our understanding of glare in outdoor environments is quite limited, which is why it's essential to take a more thorough approach. We need to move beyond simply focusing on aesthetics and illuminance and start considering how to minimize the negative effects of glare for everyone who enjoys our beautifully lit urban environments.

2. PURPOSE OF STUDY

While indoor glare has been studied a lot, there are few theoretical frameworks for glare from façade lighting. Current guidelines focus on light levels and appearance but do not provide a clear understanding of visual comfort in urban settings. This study aims to fill this gap by bringing together glare theory, visual perception, and architectural ideas to improve façade lighting design.

2.1 SCOPE AND LIMITATIONS

SCOPE

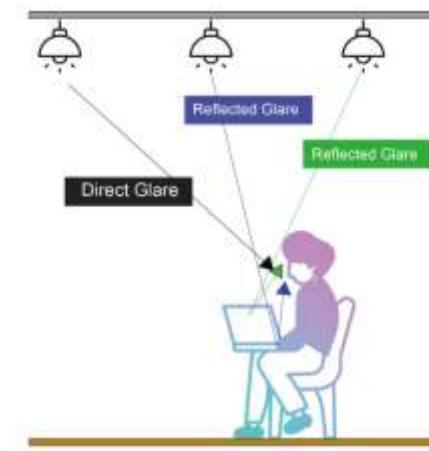
- This study looks at the theoretical analysis of glare in façade lighting and its effects on visual comfort.
- It examines common façade lighting techniques, such as wall grazing, uplighting, and accent lighting, along with their potential for producing glare.
- The study develops a framework for glare-aware façade lighting design in urban areas.

LIMITATIONS

- There is no empirical testing or field measurements; findings stem from literature and theoretical models.
- The ability to generalize may be limited due to differences in urban settings, materials, and observer perception.
- Existing glare metrics are mentioned conceptually, as they are mainly created for indoor lighting

3. METHODOLOGY

- **Literature Review:** In order to comprehend glare, visual comfort, and façade lighting principles, this study examines professional resources, lighting design guidelines, and scholarly research.
- **The Analytical Method**
The chosen literature is analyzed to determine the shortcomings of the current methods and how various glare types and glare metrics relate to outdoor façade lighting
- **Development of Frameworks**
A conceptual framework that supports glare-aware façade lighting design while upholding architectural intent is developed by synthesizing key findings.


4. FINDINGS

4.1 Understanding glare

Glare is intense, harsh light that causes discomfort and visual impairment. It occurs when bright light sources, like the sun or vehicle headlights, overwhelm the eyes through direct exposure or reflections. Symptoms include eye strain, headaches, and difficulty distinguishing objects. Glare arises from high contrast in brightness between the viewed object and the glare source, influenced by factors like the angle of light and the eye's adaptation to different light levels.

4.2 Types of glare

- **Discomfort glare:** A psychological sensation of discomfort or pain triggered by an intense light source, which may cause annoyance without necessarily impairing vision.
- **Disability glare:** An objective reduction in vision or contrast due to light scattering in the eye, making it hard to see details (e.g., headlights blinding you at night).
- **Direct Glare:** A visible light source could be the sun at noon, radiating bright rays, or an exposed lamp illuminating a room and casting strong shadows. Such sources capture attention and influence your perception of the environment.
- **Reflected (indirect) glare:** On glossy computer screens or damp road surfaces, light reflected from polished surfaces produces an unsettling glare.
- **Contrast glare:** The luminance contrast that results from a display that is noticeably brighter than its surroundings can be uncomfortable to the eye and draw undue attention to the screen.

FIG1: Types of glare

4.3 Glare metrics

The evaluation of glare uses established metrics:

- **Unified Glare Rating (UGR):** This measures discomfort glare in indoor spaces by considering factors like luminance, background, observer position, and luminaire geometry. While it is widely used, UGR has limitations in outdoor settings

$$UGR = 8 \log \left[\frac{0.25}{L_b} \sum \left(\frac{L^2 \omega}{P^2} \right) \right]$$

FIG2: Formula to find UGR

- **Daylight Glare Probability (DGP):** This predicts discomfort from daylight. It is especially useful for buildings with large glazed façades.

- **Visual Comfort Probability (VCP):** This estimates the chance of acceptable visual comfort in a specific environment

5. Theoretical considerations for façade lighting

5.1 Principles for façade lighting

Façade lighting focuses on highlighting architectural features, form, shapes, textures. It is used to show depth, drama and create visual interest. The common techniques used are:

- **Wall grazing:** used to emphasize vertical textures in façade.
- **Uplighting:** used for highlighting a building's form and its height.
- **Accent lighting:** accent lighting provides an emphasis on architectural features.
- **Floodlighting:** it is used for illuminating entire wall and facades.

5.2 Factors influencing glare

- **Luminaire character:** the intensity with which the light illuminates, its beam angle, and whether there is any sort of shielding provided constitute the luminaire character.
- **Façade material:** the material's reflective index, its color, texture, etc., all impact how much glare is produced.
- **Human perception:** glare also depends on a person's height, their position, movement, age, and their visual perception, as it highly affects how much discomfort glare causes.
- **Environmental context:** the setting of a structure in its urban environment, where it is located, the surrounding buildings, sky, urban illuminance, etc.

6. RECOMMENDATIONS

- **Source control:** limiting luminance, considering shielding from daylight, and avoiding directional beams from all sources like other structures.
- **Material considerations:** use surfaces with low reflectances, using glare-reducing glass facades, using diffuse surfaces to reduce indirect glare.
- **Spatial optimization:** placing lighting fixtures such that they don't affect public spaces directly, and using them at visually comforting angles.
- **Perception integration:** keeping in visual comfort of users, and their natural response to visual designs.
- **Evaluation metrics:** using glare metrics that are being adapted to the context of outdoor lighting

7. CONCLUSIONS

Façade lighting affects how we experience cities at night, but it can also cause glare that harms visual comfort. A theory-based approach helps architects understand where glare comes from, its different types, and its effects. This knowledge guides design strategies that find a balance between appearance and human comfort. This study presents a framework for glare-aware façade lighting, highlighting the importance of including visual comfort in architectural theory and practice. Future research should work on defining specific glare measurements for façades and expanding theoretical models to cover various urban settings.

ACKNOWLEDGEMENT

I would like to extend my deepest gratitude to all the researchers, scholars, and institutions that have influenced and inspired this work. Their contributions provided the fundamental theoretical and practical basis necessary throughout, especially regarding museum lighting strategies, adaptive environmental systems, and the use of intelligent technologies within cultural institutions.

These will be helpful in formulating the conceptual framework of the paper and directing its methodological course. The present study represents a furtherance in some measure and scope of their efforts; indeed, their work continues, as it is through such contributions that growth in insight and ingenuity continues to improve.

REFERENCES

- *Glare (vision)*. (n.d.). In *Wikipedia*. Retrieved from [https://en.wikipedia.org/wiki/Glare_\(vision\)](https://en.wikipedia.org/wiki/Glare_(vision)) — Defines glare as difficulty seeing in the presence of bright light, including its classification into discomfort and disability glare.
- ERCO. (n.d.). *Glare: types and definition*. Retrieved from <https://www.ercol.com/en/designing-with-light/lighting-knowledge/visual-perception/glare-7462/> — Provides a lighting-design perspective on physiological vs. psychological glare and direct vs. reflected glare.
- NVC UK. (n.d.). *What is UGR? UGR stands for Unified Glare Rating*. Retrieved from <https://www.nvcuk.com/technical-support/view/what-is-ugr-18> — Explains the Unified Glare Rating (UGR) metric used by lighting designers to quantify glare in built environments.
- UpShine. (2025). *A comprehensive comparison of main glare metrics*. Retrieved from <https://www.upshine.com/blog/a-comprehensive-comparison-of-main-glare-metrics-9nt2.html> — Compares various glare metrics for assessing visual comfort under different lighting conditions.