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ABSTRACT 

The New 5G Radio (NR) includes low-density parity-checking (LDPC) codes as errors correction code (ECC) for 

the data channel. For LDPC codes for low performance, near Shannon power, bit error rate (BER), they are also 

mathematically complex in physical representation applications. Moreover,5G LDPC has additional challenges not 

found in previous LDPC implementations, such as Wi-Fi. LDPC and.The specification in 5G includes many new 

configurations to support different rates, block sizes and use cases.5G is also targeted to support increased usage and 

lower latency. For this new, more flexible versionStandard, traditional hardware-based solutions in FGPA and ASIC 

may struggle to support all issues with.It can be costly in scale. The software solution can seamlessly support all 

possible reconfigurations however.Struggles in the workplace. This case shows its high throughput and low 

latencyGraphics Processing Units (GPUs) for LDPC decoding as an alternative to FPGA and ASIC decoders, .To 

effectively deliver the high performance required while maintaining the advantages of the based software answer. In 

particular, we focus on how by changing the parallelization scheme for GPU kernel mappingto blocks, we can use 

more GPU cores to compute a codeword faster to aim for low-latency, or We can use core to work on multiple 

codewords at the same time to aim at high throughput applications.This flexibility is particularly useful for virtualized 

radio- access networks(vRAN), which are the next generationa technology that is expected to become more 

prominent in the coming years. Hardware on vRAN audit resources will be released from specific audit projects in 

the RAN With virtualization, it allows for load balancing and other benefits.

I.INTRODUCTION 

A key challenge in 5G and beyond is resility  to a 

requirement for a radio area network  (RAN). 5G can 

support many possible  applications from streaming 

4K video,  which requires higher data rates, to  

precision distal surgery, which requires  minimal 

surgery. 

Roles are often discussed fits in one of the  following 

categories: Enhanced  MobileBroadband (eMBB), 

reliable low- cost connecttions (URLLC), and device  

type correlation size(mMTC) is performed.  These 

reasons have been analysed.IMT-2020 Requirements 

for 5G. Peak downlink data throughput of 20 Gbps and 

peak uplink data throughput are the goals of the eMBB 

architecture.10 Gbps bandwidth is available. The one-

millisecond end-to-end delay is supported by the 

design of the URLLC. One million devices per square 

kilometre is the target connection density of the 

mMTC section. In 4G objectives, objectives range 

from 50 to 100×. To end with 5G, followed by a 100× 

improvement in connectivity. 

 

A.GPU-BASED HIGH    

PERFORMANCE  

BASEBAND PROCESSING 

Change is needed in 5G. However, hardware-based 

accelerators can find it challenging to provide 

computationally efficient for every scenario and 

common approach. To close the 

flexibility/performance gap and preserve software 

speed for multipurpose cores, additional GPUs can be 

added for high parallelization performance GPUs are 

now widely used in high-performance computing 

environments, including learning including deep. 

Several baseband applications have also already been 

http://www.ijsrem.com/


          International Journal of Scientific Research in Engineering and Management (IJSREM) 

                      Volume: 08 Issue: 05 | May - 2024                         SJIF Rating: 8.448                                    ISSN: 2582-3930                                  

 

© 2024, IJSREM      | www.ijsrem.com                                                                                                                |        Page 2 

considered for 4G and 5G services. For example, in a 

multi-user (MU) multiple input multiple output 

(MIMO) base station, a GPU is used for beam 

generation detection. Additionally, frameworks such 

as NVIDIA-Docker can be used to run GPUs in a 

VRAN configuration. Additionally, more recent 

models offer a multi-instance GPU (MIG), which 

enables virtualization of a single GPU to multiple 

GPUs. 

1)LDPC FOR 5G 

DPC ECC is a unique technology optimized for GPU 

applications in 5G. 

To enable error detection and correction at the 

receiver, ECC adds redundancy to the bits transmitted 

wirelessly. LDPC was chosen to replace the turbo code 

in 4G for data traffic in 5G [3]. Although the decoding 

performance of the LDPC code is similar to that of the 

capacity seeker, the decoding complexity increases. 

Higher data speeds for 5G next-generation NodeBs 

(gNBs) may require more codewords (CWs) defined 

for more users, making LDPC decoding 

computationally demanding. GPUs are a good 

platform for LDPC. Since the single-instruction-

multithread (SIMT) parallel GPU architecture maps to 

pure LDPC decoding methods, this combination 

works. Decoding is an iterative process in which each 

bit is changed by changing the log-likelihood ratio 

(LLR) message. Compute unified device architecture 

(CUDA) cores found on NVIDIA GPUs simplify 

computing messages in parallel to thousands of 

processing components, enabling GPU projects to be 

measured and executed far faster than other software 

projects Scale up to enable large codewords and 

throughputs and multiple GPUs can run in parallel. 

This can also be easy. Cloud Radio Access Network 

(C-RAN) solutions based on data centres are perfect 

due to its scalability. Furthermore, a manufacturer can 

quickly upgrade GPU hardware and develop new 

devices over time without incurring additional 

development costs, and any LDPC deployed in 5G will 

face additional challenges of throughput and latency 

improvements without a radio ambient new 

technology (RATs). and required for intended use 

cases, such as Wi-Fi. Probably, one of the main 

constraints to travel time recovery will be the speed at 

which CW decoding for URLLC can be performed. In 

the case of mMTC, it would be difficult to distinguish 

between CWs among multiple users at once. 

 

2)RELATED APPLICATIONS: 

ECC using GPU. It is used, for example, in [4] for 4G 

turbo codes. The codes were LDPC. In this study, we 

focus on the modification of the method and present a 

GPU solution for 5G NR LDPC decoding. Our core 

contribution is to create a GPU-based LDPC solution 

that meets the 5G NR standard and has the flexibility 

needed to be a research platform for 5G and beyond. 

We also show latency and throughput statistics for 

several GPU devices. Several improvements are 

applied to improve the efficiency of our 

implementation, including quantization to shorter 

word lengths to reduce the data transmission. 

Additionally, we have integrated our GPU system into 

the vRAN testbed within the Open-Air Interface (OAI) 

"develop-nr" git branch and have developed it as a 

library for use in the repository [4]. The assembly from 

reference [17] is detailed in this issue. We extend the 

design and implementation of the GPU algorithm in 

this paper extension, present new findings including 

new 5G LDPC designs, deepen our analysis to better 

understand the trade-off between throughput and 

latency, present a time segmentation it provides about 

GPU-based LDPC decoding, and we provide more 

context. The remaining letters are as follows. We 

summarize LDPC in the second section, and its 

performance in 5G NR. The GPU configuration and 

each of our kernels will be described in more detail in 

Part III, as well as how we can decode the algorithm 

to the GPU. The results, as well as comparisons with 

other works, are presented in Section IV. Section V 

provides an overview of projects implementing 

software-defined radio design (SDR) systems. In the 

sixth step, we then wrap the paper. 

 

 

 

 

 

 

II.LDPC OVERVIEW 

The M × N sparse parity test matrix, H, and the N×1 

CW vector, x, define the two LDPC codes. For Hx = 0 

to be a valid CW, the vector x must be real. We only 
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send valid CW within the network. If we get an invalid 

CW, we suspect that the content of x is wrong and look 

for the actual CW that should have been given. To 

generate valid codewords from a sequence of K 

information bits, s, encoding is usually performed 

using a generator matrix obtained from H . The ratio 

of the information bits to the codeword bits, R = K 

/NOT, determines the number r of the LDPC code. 

LDPC code is usually "systemic", meaning that the 

first K bits of a particular codeword contain 

information bits. This includes codes used in 5G. 

There are N − K bits remaining in the redundancy bits. 

One common signal family is the quasicyclic (QC)-

LDPC code. In this case, an mb × nb basis matrix—

which consists of several shift identification matrices 

of the form Z or lift factor—is used to generate each 

equality test matrix characterizing a combination of 

edges. 

A. DECODING ALGORITHMS 

Most LDPC decoders operate on the basic principle 

that the transmission between VN and CN can be 

switched and corrected for odd bits. Repeated 

messages transmitting Tanner graphs between CN and 

VN are usually used for decoding. The sum-product 

algorithm (SPA) determines the posterior probability 

(APP). However, the min-sum algorithm (MSA) is a 

special characteristic that we often use in our work. By 

using offset or scaling parameters, BER provides 

reduced complexity with minimal operating costs. For 

a detailed description of SPA, MSA, and other LDPC 

algorithms, see [18]. We believe that instead of 

hardbits being passed from the demodulator to the 

decoder, the LLR values in the soft decision are passed 

in each case. 

 

 

Minimum Sum Algorithm: MSA and its  variants, such 

as scaled min-sum algorithm  and offset min-sum 

algorithm, are  weaknesses designed for SPA to 

improve  decoding throughput with minimal loss in  

decoding performance In the basic  

approach, . decoding can only be done by  comparing 

operations and changes. The  algorithm starts with 

check node operation.  The first messages for each CN 

are set to  the first corresponding LLRs, Q(0) mn =  

L(0) n . Each CN continuously counts the  number of 

messages to send to each  associated VN, Rmn.  

Eq.1.1.1.1.1.1.1.1.1.1.1. (2) denote these  numbers 

where m and n are the indexes of  check and variable 

nodes, respectively, Nm  is the order of all variable 

nodes associated  with check node m, and γ is the MSA 

scale  factor: 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

B.LDPC FOR 5G NR 

3GPP TS.38.212 in Rel. 15, LDPC encoding and 

decoding requirements for 5G NR are explained. Most 

of the data including the 5G paging channel (PCH), the 

uplink shared channel (UL-SCH), the downlink shared 

channel (DL-SCH), and the transport channel are all 

transmitted using LDPC. In contrast, 5G uses polar 

codes for broadcast channels (BCH), most of which 

carry system data. For your convenience, we’ve 

included a quick summary of resources related to the 

presentation in the area below. See [19] for details; See 

[20] for a discussion on LDPC configuration for 5G. 

Homogeneity test matrices were constructed using two 

QC base graphs (BGs). BG 2, shown in Fig. 1(b), is 

shown for large payload and low coding rate because 

BG 1 = 46 rows and nb = 68 columns is less than 0.25 

mb while BG 2 has mb = 42 and nb = 52 Overall. BG 

1, seen in Fig. 1(a), is used for high data sizes. The 

maximum bit sequence length in encoding code part 

Kcb is 3840 bits for BG 2 and 8448 bits for BG 1. Z, 

using Z = 384, the longest conceivable 5G NR code is 

irregular (25344, 8448) rate 1/3 code utilizing BG 1. 

per Supports, Z. Various boosters from 2 to 384 Below 

is a discussion of the encoding method for LDPC for 
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5G. We start by applying a cyclic redundancy check 

(CRC) to vector a, in order to create a new vector, b. 

The BG is chosen according to the B length B and the 

coding rate, R, given by the Modulation and Coding 

Scheme (MCS). The input sequence is split into many 

code segments, each with its own CRC that generates 

an extra sequence, c, if B > Kcb for the chosen BG.  

1) LDPC and HARQ. In 5G NR, hybrid automated 

repeat request (HARQ) is utilized to boost 

redundancy. The eNB must respond to uplink 

messages in less than 4 milliseconds, either with an 

ACK or a NACK indicating failure. This will serve as 

the basis for our calculation of the LDPC decoding 

delay in the results section. 

However, all uplink operations must go through the 

CRC check to update the appropriate HARQ 

configuration, which means that more time needs to be 

allocated for proper LDPC decoding and 

demodulation procedures. 

 

C. SUMMARY OF NOTES  

In this section, we provide a list of all the symbols used 

throughout the work. 

Matrices such as H are capitalized and shown in bold. 

Uppercase letters in bold are used to represent scalar 

constants, such as K. Lowercase letters in bold are 

used as vectors, such as c. The l0 criterion is used to 

return the number of null elements of the vector, 

denoted by ‖.‖0. Table 1 lists all the markers and their 

significance. 

 

III.IMPLEMENTATION DETAILS 

A.GPU OVERVIEW 

An array of stream multiprocessors (SMs), about 32 or 

64 vector processing lenses each connected to the 

GPU. Applications that use an Nvidia C++ language 

extension called the GPU are designed to run in high 

parallel on these devices. To create many blocks and 

threads—about a programming abstraction involving 

SMs and CuDA cores—the developer creates the 

kernel. The GPU has multiple layers of memory. 

Typically, global memory is off-chip, GDDR-based 

memory that is accessible to all kernels for the 

duration of the program. During the duration of the 

kernel, all threads in the block share the same low 

latency, high throughput SRAM memory running on 

the same SM. This memory is called "shared”. Each 

thread also has n 'own local registers. Furthermore, 

"permanent" read-only memory is globally accessible 

to all threads on the chip. Whenever possible, it is 

advisable to store data in shared memory because 

global memory is the slowest. Each new generation of 

GPU computing brought significant improvements. 

The 2020 generation of Nvidia Ampere introduced 

features such as Mellanox-based RDMA support, 

improved data processing capabilities previously 

limited to GPUs and enabled real-time reception, such 

as PHY performance an advanced multi-instance 

GPUs, which enabled single GPU virtualization for 

many smaller ones, the use of NVLink can be useful 

for vRAN applications that do so. 

 

B.MAPPING OF LDPC TO GPU 

When implementing any algorithm on a  GPU, it is 

important to properly map the  algorithm to the 

hardware to achieve the  desired speed. Deciding 

where to draw  kernel boundaries in this mapping  

algorithm for GPU systems, deciding how  to build 

parallel calculations in formulas,  arranging the 

information to enable proper placement in the memory 

hierarchy and using profiling techniques to mimic 

design choices. A vast array of algorithms, such as 

LDPC decoding, may be set up to execute on a GPU. 

By offering a kernel for processing nodes and a kernel 

for processing variable nodes, we expand the 

architecture outlined in [5] and [7] in this work. 

Individual threads will fail, which will be accounted 

for by either a check node or a variable node. For more 

details on the trade-offs involved in choosing an 

architectural design, see [5]. A CN kernel and a VN 

kernel are essentially the two kernels that we design. 

There are two primary techniques for defining many 

CWs simultaneously. Initially, we gather α ∈ N CWs, 

which we refer to as macro-codewords (MCW). 

Currently, the same CUDA block is being used to 

assess these CWs.  

Secondly, we perform a batch transfer of ϲ ∈ N MCWs 

to the GPU so that they may be executed in discrete 

blocks. Every block will function on a single row of 

the underlying graph, and each thread will apply the 

lift factor by working on a sub-row. With this 

approach, the GPU may receive and decode the α · β 

total code words at the same time. When constructing 

the system, the operator's willingness to compromise 
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on hardware, lift factor Z, delay, and throughput will 

determine which values of α and β are used. There is a 

maximum of around 1024 threads per block in CUDa. 

Thus, αZ ≤ 1024 serves as a restriction. The delay per 

codeword offered by α · β grows as the total number 

of codewords transferred to the GPU increases every 

batch. Throughput usually increases as the amount of 

codewords transmitted every batch throughout 

increases. There's no need in increasing either option 

further if the group's overall codeword count is so high 

that GPU cores will lag significantly. The system 

builder should experiment with Nvidia profiling tools 

to find the best settings for their hardware platform and 

design goals. A figure is displayed. Table 1 provides a 

description of each memory array along with 

information about how long it is. The length of the 

array multiplied by the size of the chosen data type 

determines the final size of memory for each GPU 

stream in most of these arrays. We also keep a 

structure in continuous memory that contains the 

different parameters needed for decoding in addition 

to these basic arrays.  

1)Check Node Processing 

In this kernel, each thread operates in a row  

of H. Using a two-minute algorithm for  

scaled MSA, messages are created for each  

associated variable node and then these  

messages are stored in global memory. Blocks with 

dimensions (mb, β, 1) and threads with size (Z, α, 1) 

are used to implement the CUD mesh. In kernel 1, the 

check node kernel is displayed. A thread may operate 

on a single check node, which is the fundamental 

principle of the kernel.  

To find the variable nodes connected to it, the 

individual thread will load a collapsed parity check 

matrix. It will then take incoming messages from 

global memory and check the lowest and second 

lowest messages. It then calculates the messages for 

each VN according to (2) in the second iteration. Two 

optimizations are to be noted in the method of Kernel 

1. Initially, in accordance with (4), the check node 

counts the messages delivered by every variable node. 

We can enhance speed by lowering the number of 

global memory accesses needed by calculating Q 

rather than check nodes. Second, we save the 

difference in our own array dt for use by kernel 2, 

again saving memory space, as the kernel already has 

access to both R iterations.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

2) Processing of Variable Nodes  

Each thread in the VN kernel corresponds to a H 

column, and it uses kernel 1's R variables, which are 

stored in dt, to determine its APP LLR. To update the 

LLR as in (3), the kernel retrieves the dt elements in 

accordance with h_compact_vn and saves the 

variables in a message. Next, the modified LLR is kept 

in global memory. In kernel 2, the complete algorithm 

is displayed. Dimensional threads (Z, α, 1) and blocks 

(nb, β, 1) are used to implement the CUDA mesh.  

C.OPTIMIZATION STRATEGIES 

1)Reduced Word Length 

The primary optimization we provide in this study is a 

reduction in word length to an 8-bit char format, in 

comparison to earlier GPU-based methods. It is well 

known that six bits is sufficient [23] and is frequently 

used in FPGA and ASIC applications.  
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We toss to floats for each thread count and leverage 

this shortened word length to save 4x on data 

transmission time between hosts and devices as well 

as global memory accesses.  

 

2) Packing: The Last Hard Choice  

A complicated choice can be taken after I total 

iterations, and each LLR can be represented by a 

single bit. Many times, this was not utilized in 

previous study, and the results are obscured by 

redundant data sets.  

Prior to final transmission to the host, we employ a bit-

packing kernel. We then make the tough choice to 

transfer only the final information bits to the host, 

rather than the complete decoded CW. The expression 

for this kernel is kernel 3. After retrieving eight 

components from llr, each thread uses (5) to guide its 

intricate decision-making. After that, this is somewhat 

altered to the matching byte. For the host program to 

return to the CPU, the bytes are kept in the packed 

array in global memory once each of the eight llr 

elements has been determined by the thread in charge.  

 

3)Streams 

To further reduce the memory transfer  

between host and device, we use η ∈ N  

CUDA streams. Each stream acts as a  

separate process in the CPU application to  

be organized and synchronized. This allows  

one stream to calculate, while the other may  

be updating data to the GPU. This helps  

ensure that computing resources are fully  

utilized most of the time and that the device  

does not wait for new data. 

 

4)Caching of H 

The equilibrium rows and column versions, 

H_compact_cn and h_compact_vn, are  

assigned to the daily memory of the column  

version, that is, the fastest nodel, VN or CN  

path to the memory record. 

 

 

D.MEMORY TRANSFER TIME OVERVIEW 

The main bottleneck in LDPC  

implementation is the need to transfer  

motion data. First we need to get the LLRs  

on the GPU which is usually limited by a  

bus like PCIe. Once the data is in the global  

memory of the GPU, it must be transferred  

to the SM for processing by the kernels.  

This data movement is performed by both  

kernels for each iteration. In Table 2 , we  

presented the specifications of each array in  

memory for LDPC decoding. In this section  

we state the required memory transfer time  

in bytes per second as a function of the  

number of iterations I, and the bus  

throughput rate r of each. 

 

 

 

IV.GPU MEASUREMENT  

RESULTS 

a) Performance: First, we assess the BER performance 

in relation to relative power. Fig. 4. Throughput for 

three distinct GPUs' worth of data kinds.  

Eb/N0 is the spectral density. This examines the 

LDPC's decoding performance and displays the results 

for various word lengths, as seen in Fig. 3. Bit char is 

used for 8-bit data storage, and the performance of 

semi-precision and float data types is almost the same. 

We also offer an OAI implementation from [16] for 

comparison, which uses char formats for both data 

storage and processing to carry out CPU decoding. For 

a given decoder algorithm, such as min-sum,  

performance should be consistent between  

implementations. Any differences can be  attributed to 

differences in algorithms and  quantization. The 

difference between the  OAI implementation and ours 

here can be  attributed to the difference between the  
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min-sum algorithm used in OAI and the  scaled min-

sum implemented in this work. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

b)Throughput vs Latency: We tested  

maximum throughput for three different  

GPUs. For this test, we configured the GPU  

to use 6 streams, 20 MCW of replacement,  

and 2 CW per MCW. This setting helped  

ensure that the GPU was always full,  

reducing the impact of PCIe relocations. In  

Figure 4 we can see that the performance of  

each generation GPU increases as the  

number of CUDA cores also increases. The  

best performance is char data type in T  

ITAN RTX with 3964 Mbps decoding  

throughput, including transport time for  

CPU and GPU In this configuration, the  

latency is high and is of the order of 700 µs,  

although this can has been acceptable for  

eMBB applications.  

 

 

 

 

 

 

 

 

 

 

 

The decoding time can  

be reduced by targeting URLLC to reset the  

GPU. To achieve low latency, we can  

reduce MCWs, MCWs to CWs, and  

streams. Where there is a good signal-to- 

noise ratio (SNR), the number of decoding  

iterations can also be reduced or an earlier  

termination can be used Testing on several  

GPUs as shown in Figure 5, we find that T  

ITAN The RTX is capable in order to  

achieve latency as low as 87 µs Also, there  

is travel time for both GPUs The capacity 

of this system is 290 Mbps. 

To better highlight the tradeoff between  

latency and throughput, the two are plotted  

against each other in Figure 6. Latency  

increases by combining more codewords to  

increase throughput With this batched  

transfer so the observed latency to send all  

code words to the GPU, decode them all,  

and transfer them again is 700 us. This  

delay is much less than the 4 ms time limit  

for sending each HARQ response to a user  

device (UE). 

 

c)Latency versus iteration: In Figure 7 we  

examine latency as a function of the number  

of LDPC iterations, I. This also gives an  

estimate of the performance to use early  

termination where I if decoding ends before  

current reaches The LLR vector is set to  

represent the correct codeword. As the number of 

iterations increases, the latency  

also increases at a linear rate. For 8-bit LLR  

data with 1080 TI, the latency increases at  

13.7 μs per iteration. 

 

d)Time allocation: In Table 3 , we allocate  

the time required for how much time it takes  

to transfer data against computation. For  

1080 Ti, we perform a series of tests  

varying the MCW rate, α to MCW, β and  

CW rate. By making this adjustment, we  

increase the total number of code words in  

each batch and find that as the total number  

of code words in the batch increases, there  

is a proportional increase in each time due  
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to memory transfer which is increased 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

e)Other comparable applications:  

Currently, few publicly published results  

are available for 5G LDPC decoders. To  

understand how our decoder fits in the  

space of 5G NR LDPC decoders in the open  

book, we surveyed the available metrics, as  

shown in Table 4. In this work, we  

construct a variation that lies between  

maximum throughput and minimum delay  

are highlighted, and we configured Table 4  

to highlight these trade-offs. However, not  

all tasks reported the lowest latency and the  

highest throughput, which may be due to  

code wording schemes. Many short  

commercial products do not indicate the  

exact LDPC code used or the decoding  

frequency. Although we show the  

application space of each in the table, it is  

quite impossible to properly compare each without 

knowing the exact resource  

consumption and power consumption of  

each This table is presented for purposes  

giving a rather functional perspective to  

look at. However, we should not use it to  

draw strong conclusions about how our  

decoder compares to others. 

OAI provides a software-based  

implementation and reports results in [25].  

These results were observed on the same  

platform and the corresponding delay was  

measured. The LDPC codes used were  

(25344, 8448) codes from BG1 which had  

5 repeats. [8] also used a software-based  

solution. However, this implementation  

also uses the AVX SIMD instructions for  

the architecture. Using a single core, a  

performance of 271.8 Mbps throughput can  

be achieved with a delay of 31.08 µs for 10  

iterations of the layered decoder. With 18  

cores, a maximum throughput of 5 Gbps is  

reported. [26] also uses a software-based  

decoder for OAI. A layered min-sum  

decoder is adopted with the AVX-256  

instruction. Using i7, a decode time of 240  

µs is reported for an unspecified code and  

number of iterations. Creonic offers FPGA- 

based, NR, LDPC decoder accelerators for  

use throughout the OAI community. In their  

product brief they show a maximum  

throughput of 574 Mbps for an unspecified  

FPGA and LDPC code structure [27]. [28]  

present a new GPU benchmark for Nvidia  

2080Ti for (2080, 1760) code using 10  

iterations of the layered minimal decoder.  

They achieve a maximum throughput of  

1380 Mbps with unspecified latency. 

 

V. vRAN DISCUSSION AND OAI  

INTEGRATION 

 

vRAN will be the dominant technology  

going forward. In this section, we discuss  

vRAN and demonstrate how GPU solutions  

can be used for baseband computing tasks.  

As an example, we now discuss the  

integration of our GPU-based LDPC  

decoder with OAI 

 

A.THE NEED FOR SOFTWARE-BASED, VRAN 

SYSTEMS 

Software-based solutions excel in  

flexibility, and the development of  

standards-compliant SDR projects is an  

emerging theme that highlights this. For  

example, OAI and srsLTE are examples of  

software-defined platforms for 4G and 5G  

systems [29], [30]. With this initiative it is  

now possible to deploy 4G base stations and  

core networks entirely on object CPUs, and  

http://www.ijsrem.com/
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support a wide range of commercially  

available off- the-shelf (COTS) Ues. This  

software-based approach is feasible fast and  

tested with analysts for each job in the stack  

Provides an opportunity to test new  

algorithms Software solutions such as OAI  

are a more natural fit for potential future  

deployments based on C-RAN, where  

operators perform baseband operations in  

central cloud data center on enterprise  

grade servers recently vRAN An -RAN  

extension has been proposed [31], [32]. We  

illustrate this concept in Figure 8. Here, a  

cloud computing environment provides a  

baseband usage accelerator pool that can be  

used by multiple remote radio headers and  

RAT standards Virtualization is added to  

the computing center in vRAN. By  

virtualizing baseband usage, hardware  

resources can be freed from process work.  

Many telecom companies participate in  

vRAN efforts through the O-RAN Alliance  

which pushes RAN virtualization through  

new standards and software development  

[33]. Virtualization provides many benefits  

such as improved system management,  

increased fault tolerance, better scalability,  

and reduced costs. By decoupling hardware  

resources from computing, more dynamic  

resource management based on real-time  

network requirements and constraints is  

possible. 

Scalability is about adding additional  

hardware resources to existing resources.  

Adding the right software and connecting it  

to a hardware resource pool also makes it  

possible to switch to multiple standards. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

C-RAN/vRAN configurations are also  

economical because enterprise-grade  

servers and other COTS devices are widely  

available to replace application  

functionality with expensive, highly  

specialized devices In addition to the above  

advantages, centralized processing can  

allow the development of new algorithms  

and architectures such as coordinated  

multipoint (CoMP) and cell-free .  

These  

future vRAN systems will likely be  

heterogeneous compute clusters with  

CPUs, FPGAs, application-specific  

integrated circuits (ASICs), GPUs, and  

even tensor processing units (TPUs) CPUs  

can be used for sequential tasks such as  

planning and medium access control (  

MAC) function. FPGAs and ASICs can  

accelerate specific tasks such as precoding  

and detection. GPUs can bridge the  

performance/flexibility gap for any task  

that requires both. GPUs can also provide  

high performance for any algorithm without  

developing any dedicated FPGA/ASIC  

accelerators. In next-generation  

applications, machine learning has been  

proposed for various networking  

applications and TPUs are available to  

provide dedicated application components  

for such applications. 
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B.OAI INTEGRATION 

Our GPU software is designed to compile  into a 

generic C++ library to accelerate  SDR platforms for 

vRAN systems. To  highlight this portability on SDR 

platforms,  we integrated our decoder with OAI.  

Integration is done by adding our CMAKE  file to the 

master CMAKE and updating the  function call in the 

decoder. We evaluated  the performance of our GPU 

decoder in two  scenarios. First, we tested with the 

OAI  independent “ldpctest” value. “ldpctest”  checks 

BER performance and latency.  Testing OAI current 

C-based LDPC  decoder in “ldpctest”, the best 

decoding  delay is FIGURE 10. Example for custom  

call, LDPC accelerator from OAI ldpctest is  178 µs In 

contrast our GPU-based decoder  latency is 87 µs, 51% 

reduction in latency .  

With the BER data in this test we were able  to verify 

the performance and collect the  data used in Figure 3. 

We then moved the  GPU-based LDPC decoder to the 

larger  “RFSimulator” target, driven by the entire  5G 

NR protocol Strew around. Testing with  a full 5G 

stack, we were able to coordinate  with OAI and ensure 

that CRC passed as  expected. Two screenshots from 

the OAI  experiments are shown. First, in Fig. 9 we  

show the NR performance of the OAI with  each star 

for the physical distance. Figure  10 shows a 

screenshot of the terminal  during OAI. In this 

experiment, the  individual blocks are sent to the GPU 

for  written decoding. 

 

VI.CONCLUSION 

 

Our top level GPU broker code can catch new code 

words and start processing them  with kernels. Here, 

we add a message to the  log file indicating that the 

function call to  the GPU LDPC accelerator was 

successful.  

When the decoded information bits are sent  back to 

the OAI, a CRC check is performed  for the HARQ. In 

Figure 10 we confirm  CRC check passing after the 

call to the  GPU. 
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