
 International Journal of Scientific Research in Engineering and Management (IJSREM)

 Volume: 08 Issue: 05 | May - 2024 SJIF Rating: 8.448 ISSN: 2582-3930

© 2024, IJSREM | www.ijsrem.com | Page 1

GPU-Based, LDPC Decoding for 5G and Beyond

Mohamed Madni1, DR. Dilip R2

Department of Electronics and Communication Engineering

ABSTRACT

The New 5G Radio (NR) includes low-density parity-checking (LDPC) codes as errors correction code (ECC) for

the data channel. For LDPC codes for low performance, near Shannon power, bit error rate (BER), they are also

mathematically complex in physical representation applications. Moreover,5G LDPC has additional challenges not

found in previous LDPC implementations, such as Wi-Fi. LDPC and.The specification in 5G includes many new

configurations to support different rates, block sizes and use cases.5G is also targeted to support increased usage and

lower latency. For this new, more flexible versionStandard, traditional hardware-based solutions in FGPA and ASIC

may struggle to support all issues with.It can be costly in scale. The software solution can seamlessly support all

possible reconfigurations however.Struggles in the workplace. This case shows its high throughput and low

latencyGraphics Processing Units (GPUs) for LDPC decoding as an alternative to FPGA and ASIC decoders, .To

effectively deliver the high performance required while maintaining the advantages of the based software answer. In

particular, we focus on how by changing the parallelization scheme for GPU kernel mappingto blocks, we can use

more GPU cores to compute a codeword faster to aim for low-latency, or We can use core to work on multiple

codewords at the same time to aim at high throughput applications.This flexibility is particularly useful for virtualized

radio- access networks(vRAN), which are the next generationa technology that is expected to become more

prominent in the coming years. Hardware on vRAN audit resources will be released from specific audit projects in

the RAN With virtualization, it allows for load balancing and other benefits.

I.INTRODUCTION

A key challenge in 5G and beyond is resility to a

requirement for a radio area network (RAN). 5G can

support many possible applications from streaming

4K video, which requires higher data rates, to

precision distal surgery, which requires minimal

surgery.

Roles are often discussed fits in one of the following

categories: Enhanced MobileBroadband (eMBB),

reliable low- cost connecttions (URLLC), and device

type correlation size(mMTC) is performed. These

reasons have been analysed.IMT-2020 Requirements

for 5G. Peak downlink data throughput of 20 Gbps and

peak uplink data throughput are the goals of the eMBB

architecture.10 Gbps bandwidth is available. The one-

millisecond end-to-end delay is supported by the

design of the URLLC. One million devices per square

kilometre is the target connection density of the

mMTC section. In 4G objectives, objectives range

from 50 to 100×. To end with 5G, followed by a 100×

improvement in connectivity.

A.GPU-BASED HIGH

PERFORMANCE

BASEBAND PROCESSING

Change is needed in 5G. However, hardware-based

accelerators can find it challenging to provide

computationally efficient for every scenario and

common approach. To close the

flexibility/performance gap and preserve software

speed for multipurpose cores, additional GPUs can be

added for high parallelization performance GPUs are

now widely used in high-performance computing

environments, including learning including deep.

Several baseband applications have also already been

http://www.ijsrem.com/

 International Journal of Scientific Research in Engineering and Management (IJSREM)

 Volume: 08 Issue: 05 | May - 2024 SJIF Rating: 8.448 ISSN: 2582-3930

© 2024, IJSREM | www.ijsrem.com | Page 2

considered for 4G and 5G services. For example, in a

multi-user (MU) multiple input multiple output

(MIMO) base station, a GPU is used for beam

generation detection. Additionally, frameworks such

as NVIDIA-Docker can be used to run GPUs in a

VRAN configuration. Additionally, more recent

models offer a multi-instance GPU (MIG), which

enables virtualization of a single GPU to multiple

GPUs.

1)LDPC FOR 5G

DPC ECC is a unique technology optimized for GPU

applications in 5G.

To enable error detection and correction at the

receiver, ECC adds redundancy to the bits transmitted

wirelessly. LDPC was chosen to replace the turbo code

in 4G for data traffic in 5G [3]. Although the decoding

performance of the LDPC code is similar to that of the

capacity seeker, the decoding complexity increases.

Higher data speeds for 5G next-generation NodeBs

(gNBs) may require more codewords (CWs) defined

for more users, making LDPC decoding

computationally demanding. GPUs are a good

platform for LDPC. Since the single-instruction-

multithread (SIMT) parallel GPU architecture maps to

pure LDPC decoding methods, this combination

works. Decoding is an iterative process in which each

bit is changed by changing the log-likelihood ratio

(LLR) message. Compute unified device architecture

(CUDA) cores found on NVIDIA GPUs simplify

computing messages in parallel to thousands of

processing components, enabling GPU projects to be

measured and executed far faster than other software

projects Scale up to enable large codewords and

throughputs and multiple GPUs can run in parallel.

This can also be easy. Cloud Radio Access Network

(C-RAN) solutions based on data centres are perfect

due to its scalability. Furthermore, a manufacturer can

quickly upgrade GPU hardware and develop new

devices over time without incurring additional

development costs, and any LDPC deployed in 5G will

face additional challenges of throughput and latency

improvements without a radio ambient new

technology (RATs). and required for intended use

cases, such as Wi-Fi. Probably, one of the main

constraints to travel time recovery will be the speed at

which CW decoding for URLLC can be performed. In

the case of mMTC, it would be difficult to distinguish

between CWs among multiple users at once.

2)RELATED APPLICATIONS:

ECC using GPU. It is used, for example, in [4] for 4G

turbo codes. The codes were LDPC. In this study, we

focus on the modification of the method and present a

GPU solution for 5G NR LDPC decoding. Our core

contribution is to create a GPU-based LDPC solution

that meets the 5G NR standard and has the flexibility

needed to be a research platform for 5G and beyond.

We also show latency and throughput statistics for

several GPU devices. Several improvements are

applied to improve the efficiency of our

implementation, including quantization to shorter

word lengths to reduce the data transmission.

Additionally, we have integrated our GPU system into

the vRAN testbed within the Open-Air Interface (OAI)

"develop-nr" git branch and have developed it as a

library for use in the repository [4]. The assembly from

reference [17] is detailed in this issue. We extend the

design and implementation of the GPU algorithm in

this paper extension, present new findings including

new 5G LDPC designs, deepen our analysis to better

understand the trade-off between throughput and

latency, present a time segmentation it provides about

GPU-based LDPC decoding, and we provide more

context. The remaining letters are as follows. We

summarize LDPC in the second section, and its

performance in 5G NR. The GPU configuration and

each of our kernels will be described in more detail in

Part III, as well as how we can decode the algorithm

to the GPU. The results, as well as comparisons with

other works, are presented in Section IV. Section V

provides an overview of projects implementing

software-defined radio design (SDR) systems. In the

sixth step, we then wrap the paper.

II.LDPC OVERVIEW

The M × N sparse parity test matrix, H, and the N×1

CW vector, x, define the two LDPC codes. For Hx = 0

to be a valid CW, the vector x must be real. We only

http://www.ijsrem.com/

 International Journal of Scientific Research in Engineering and Management (IJSREM)

 Volume: 08 Issue: 05 | May - 2024 SJIF Rating: 8.448 ISSN: 2582-3930

© 2024, IJSREM | www.ijsrem.com | Page 3

send valid CW within the network. If we get an invalid

CW, we suspect that the content of x is wrong and look

for the actual CW that should have been given. To

generate valid codewords from a sequence of K

information bits, s, encoding is usually performed

using a generator matrix obtained from H . The ratio

of the information bits to the codeword bits, R = K

/NOT, determines the number r of the LDPC code.

LDPC code is usually "systemic", meaning that the

first K bits of a particular codeword contain

information bits. This includes codes used in 5G.

There are N − K bits remaining in the redundancy bits.

One common signal family is the quasicyclic (QC)-

LDPC code. In this case, an mb × nb basis matrix—

which consists of several shift identification matrices

of the form Z or lift factor—is used to generate each

equality test matrix characterizing a combination of

edges.

A. DECODING ALGORITHMS

Most LDPC decoders operate on the basic principle

that the transmission between VN and CN can be

switched and corrected for odd bits. Repeated

messages transmitting Tanner graphs between CN and

VN are usually used for decoding. The sum-product

algorithm (SPA) determines the posterior probability

(APP). However, the min-sum algorithm (MSA) is a

special characteristic that we often use in our work. By

using offset or scaling parameters, BER provides

reduced complexity with minimal operating costs. For

a detailed description of SPA, MSA, and other LDPC

algorithms, see [18]. We believe that instead of

hardbits being passed from the demodulator to the

decoder, the LLR values in the soft decision are passed

in each case.

Minimum Sum Algorithm: MSA and its variants, such

as scaled min-sum algorithm and offset min-sum

algorithm, are weaknesses designed for SPA to

improve decoding throughput with minimal loss in

decoding performance In the basic

approach, . decoding can only be done by comparing

operations and changes. The algorithm starts with

check node operation. The first messages for each CN

are set to the first corresponding LLRs, Q(0) mn =

L(0) n . Each CN continuously counts the number of

messages to send to each associated VN, Rmn.

Eq.1.1.1.1.1.1.1.1.1.1.1. (2) denote these numbers

where m and n are the indexes of check and variable

nodes, respectively, Nm is the order of all variable

nodes associated with check node m, and γ is the MSA

scale factor:

B.LDPC FOR 5G NR

3GPP TS.38.212 in Rel. 15, LDPC encoding and

decoding requirements for 5G NR are explained. Most

of the data including the 5G paging channel (PCH), the

uplink shared channel (UL-SCH), the downlink shared

channel (DL-SCH), and the transport channel are all

transmitted using LDPC. In contrast, 5G uses polar

codes for broadcast channels (BCH), most of which

carry system data. For your convenience, we’ve

included a quick summary of resources related to the

presentation in the area below. See [19] for details; See

[20] for a discussion on LDPC configuration for 5G.

Homogeneity test matrices were constructed using two

QC base graphs (BGs). BG 2, shown in Fig. 1(b), is

shown for large payload and low coding rate because

BG 1 = 46 rows and nb = 68 columns is less than 0.25

mb while BG 2 has mb = 42 and nb = 52 Overall. BG

1, seen in Fig. 1(a), is used for high data sizes. The

maximum bit sequence length in encoding code part

Kcb is 3840 bits for BG 2 and 8448 bits for BG 1. Z,

using Z = 384, the longest conceivable 5G NR code is

irregular (25344, 8448) rate 1/3 code utilizing BG 1.

per Supports, Z. Various boosters from 2 to 384 Below

is a discussion of the encoding method for LDPC for

http://www.ijsrem.com/

 International Journal of Scientific Research in Engineering and Management (IJSREM)

 Volume: 08 Issue: 05 | May - 2024 SJIF Rating: 8.448 ISSN: 2582-3930

© 2024, IJSREM | www.ijsrem.com | Page 4

5G. We start by applying a cyclic redundancy check

(CRC) to vector a, in order to create a new vector, b.

The BG is chosen according to the B length B and the

coding rate, R, given by the Modulation and Coding

Scheme (MCS). The input sequence is split into many

code segments, each with its own CRC that generates

an extra sequence, c, if B > Kcb for the chosen BG.

1) LDPC and HARQ. In 5G NR, hybrid automated

repeat request (HARQ) is utilized to boost

redundancy. The eNB must respond to uplink

messages in less than 4 milliseconds, either with an

ACK or a NACK indicating failure. This will serve as

the basis for our calculation of the LDPC decoding

delay in the results section.

However, all uplink operations must go through the

CRC check to update the appropriate HARQ

configuration, which means that more time needs to be

allocated for proper LDPC decoding and

demodulation procedures.

C. SUMMARY OF NOTES

In this section, we provide a list of all the symbols used

throughout the work.

Matrices such as H are capitalized and shown in bold.

Uppercase letters in bold are used to represent scalar

constants, such as K. Lowercase letters in bold are

used as vectors, such as c. The l0 criterion is used to

return the number of null elements of the vector,

denoted by ‖.‖0. Table 1 lists all the markers and their

significance.

III.IMPLEMENTATION DETAILS

A.GPU OVERVIEW

An array of stream multiprocessors (SMs), about 32 or

64 vector processing lenses each connected to the

GPU. Applications that use an Nvidia C++ language

extension called the GPU are designed to run in high

parallel on these devices. To create many blocks and

threads—about a programming abstraction involving

SMs and CuDA cores—the developer creates the

kernel. The GPU has multiple layers of memory.

Typically, global memory is off-chip, GDDR-based

memory that is accessible to all kernels for the

duration of the program. During the duration of the

kernel, all threads in the block share the same low

latency, high throughput SRAM memory running on

the same SM. This memory is called "shared”. Each

thread also has n 'own local registers. Furthermore,

"permanent" read-only memory is globally accessible

to all threads on the chip. Whenever possible, it is

advisable to store data in shared memory because

global memory is the slowest. Each new generation of

GPU computing brought significant improvements.

The 2020 generation of Nvidia Ampere introduced

features such as Mellanox-based RDMA support,

improved data processing capabilities previously

limited to GPUs and enabled real-time reception, such

as PHY performance an advanced multi-instance

GPUs, which enabled single GPU virtualization for

many smaller ones, the use of NVLink can be useful

for vRAN applications that do so.

B.MAPPING OF LDPC TO GPU

When implementing any algorithm on a GPU, it is

important to properly map the algorithm to the

hardware to achieve the desired speed. Deciding

where to draw kernel boundaries in this mapping

algorithm for GPU systems, deciding how to build

parallel calculations in formulas, arranging the

information to enable proper placement in the memory

hierarchy and using profiling techniques to mimic

design choices. A vast array of algorithms, such as

LDPC decoding, may be set up to execute on a GPU.

By offering a kernel for processing nodes and a kernel

for processing variable nodes, we expand the

architecture outlined in [5] and [7] in this work.

Individual threads will fail, which will be accounted

for by either a check node or a variable node. For more

details on the trade-offs involved in choosing an

architectural design, see [5]. A CN kernel and a VN

kernel are essentially the two kernels that we design.

There are two primary techniques for defining many

CWs simultaneously. Initially, we gather α ∈ N CWs,

which we refer to as macro-codewords (MCW).

Currently, the same CUDA block is being used to

assess these CWs.

Secondly, we perform a batch transfer of ϲ ∈ N MCWs

to the GPU so that they may be executed in discrete

blocks. Every block will function on a single row of

the underlying graph, and each thread will apply the

lift factor by working on a sub-row. With this

approach, the GPU may receive and decode the α · β

total code words at the same time. When constructing

the system, the operator's willingness to compromise

http://www.ijsrem.com/

 International Journal of Scientific Research in Engineering and Management (IJSREM)

 Volume: 08 Issue: 05 | May - 2024 SJIF Rating: 8.448 ISSN: 2582-3930

© 2024, IJSREM | www.ijsrem.com | Page 5

on hardware, lift factor Z, delay, and throughput will

determine which values of α and β are used. There is a

maximum of around 1024 threads per block in CUDa.

Thus, αZ ≤ 1024 serves as a restriction. The delay per

codeword offered by α · β grows as the total number

of codewords transferred to the GPU increases every

batch. Throughput usually increases as the amount of

codewords transmitted every batch throughout

increases. There's no need in increasing either option

further if the group's overall codeword count is so high

that GPU cores will lag significantly. The system

builder should experiment with Nvidia profiling tools

to find the best settings for their hardware platform and

design goals. A figure is displayed. Table 1 provides a

description of each memory array along with

information about how long it is. The length of the

array multiplied by the size of the chosen data type

determines the final size of memory for each GPU

stream in most of these arrays. We also keep a

structure in continuous memory that contains the

different parameters needed for decoding in addition

to these basic arrays.

1)Check Node Processing

In this kernel, each thread operates in a row

of H. Using a two-minute algorithm for

scaled MSA, messages are created for each

associated variable node and then these

messages are stored in global memory. Blocks with

dimensions (mb, β, 1) and threads with size (Z, α, 1)

are used to implement the CUD mesh. In kernel 1, the

check node kernel is displayed. A thread may operate

on a single check node, which is the fundamental

principle of the kernel.

To find the variable nodes connected to it, the

individual thread will load a collapsed parity check

matrix. It will then take incoming messages from

global memory and check the lowest and second

lowest messages. It then calculates the messages for

each VN according to (2) in the second iteration. Two

optimizations are to be noted in the method of Kernel

1. Initially, in accordance with (4), the check node

counts the messages delivered by every variable node.

We can enhance speed by lowering the number of

global memory accesses needed by calculating Q

rather than check nodes. Second, we save the

difference in our own array dt for use by kernel 2,

again saving memory space, as the kernel already has

access to both R iterations.

2) Processing of Variable Nodes

Each thread in the VN kernel corresponds to a H

column, and it uses kernel 1's R variables, which are

stored in dt, to determine its APP LLR. To update the

LLR as in (3), the kernel retrieves the dt elements in

accordance with h_compact_vn and saves the

variables in a message. Next, the modified LLR is kept

in global memory. In kernel 2, the complete algorithm

is displayed. Dimensional threads (Z, α, 1) and blocks

(nb, β, 1) are used to implement the CUDA mesh.

C.OPTIMIZATION STRATEGIES

1)Reduced Word Length

The primary optimization we provide in this study is a

reduction in word length to an 8-bit char format, in

comparison to earlier GPU-based methods. It is well

known that six bits is sufficient [23] and is frequently

used in FPGA and ASIC applications.

http://www.ijsrem.com/

 International Journal of Scientific Research in Engineering and Management (IJSREM)

 Volume: 08 Issue: 05 | May - 2024 SJIF Rating: 8.448 ISSN: 2582-3930

© 2024, IJSREM | www.ijsrem.com | Page 6

We toss to floats for each thread count and leverage

this shortened word length to save 4x on data

transmission time between hosts and devices as well

as global memory accesses.

2) Packing: The Last Hard Choice

A complicated choice can be taken after I total

iterations, and each LLR can be represented by a

single bit. Many times, this was not utilized in

previous study, and the results are obscured by

redundant data sets.

Prior to final transmission to the host, we employ a bit-

packing kernel. We then make the tough choice to

transfer only the final information bits to the host,

rather than the complete decoded CW. The expression

for this kernel is kernel 3. After retrieving eight

components from llr, each thread uses (5) to guide its

intricate decision-making. After that, this is somewhat

altered to the matching byte. For the host program to

return to the CPU, the bytes are kept in the packed

array in global memory once each of the eight llr

elements has been determined by the thread in charge.

3)Streams

To further reduce the memory transfer

between host and device, we use η ∈ N

CUDA streams. Each stream acts as a

separate process in the CPU application to

be organized and synchronized. This allows

one stream to calculate, while the other may

be updating data to the GPU. This helps

ensure that computing resources are fully

utilized most of the time and that the device

does not wait for new data.

4)Caching of H

The equilibrium rows and column versions,

H_compact_cn and h_compact_vn, are

assigned to the daily memory of the column

version, that is, the fastest nodel, VN or CN

path to the memory record.

D.MEMORY TRANSFER TIME OVERVIEW

The main bottleneck in LDPC

implementation is the need to transfer

motion data. First we need to get the LLRs

on the GPU which is usually limited by a

bus like PCIe. Once the data is in the global

memory of the GPU, it must be transferred

to the SM for processing by the kernels.

This data movement is performed by both

kernels for each iteration. In Table 2 , we

presented the specifications of each array in

memory for LDPC decoding. In this section

we state the required memory transfer time

in bytes per second as a function of the

number of iterations I, and the bus

throughput rate r of each.

IV.GPU MEASUREMENT

RESULTS

a) Performance: First, we assess the BER performance

in relation to relative power. Fig. 4. Throughput for

three distinct GPUs' worth of data kinds.

Eb/N0 is the spectral density. This examines the

LDPC's decoding performance and displays the results

for various word lengths, as seen in Fig. 3. Bit char is

used for 8-bit data storage, and the performance of

semi-precision and float data types is almost the same.

We also offer an OAI implementation from [16] for

comparison, which uses char formats for both data

storage and processing to carry out CPU decoding. For

a given decoder algorithm, such as min-sum,

performance should be consistent between

implementations. Any differences can be attributed to

differences in algorithms and quantization. The

difference between the OAI implementation and ours

here can be attributed to the difference between the

http://www.ijsrem.com/

 International Journal of Scientific Research in Engineering and Management (IJSREM)

 Volume: 08 Issue: 05 | May - 2024 SJIF Rating: 8.448 ISSN: 2582-3930

© 2024, IJSREM | www.ijsrem.com | Page 7

min-sum algorithm used in OAI and the scaled min-

sum implemented in this work.

b)Throughput vs Latency: We tested

maximum throughput for three different

GPUs. For this test, we configured the GPU

to use 6 streams, 20 MCW of replacement,

and 2 CW per MCW. This setting helped

ensure that the GPU was always full,

reducing the impact of PCIe relocations. In

Figure 4 we can see that the performance of

each generation GPU increases as the

number of CUDA cores also increases. The

best performance is char data type in T

ITAN RTX with 3964 Mbps decoding

throughput, including transport time for

CPU and GPU In this configuration, the

latency is high and is of the order of 700 µs,

although this can has been acceptable for

eMBB applications.

The decoding time can

be reduced by targeting URLLC to reset the

GPU. To achieve low latency, we can

reduce MCWs, MCWs to CWs, and

streams. Where there is a good signal-to-

noise ratio (SNR), the number of decoding

iterations can also be reduced or an earlier

termination can be used Testing on several

GPUs as shown in Figure 5, we find that T

ITAN The RTX is capable in order to

achieve latency as low as 87 µs Also, there

is travel time for both GPUs The capacity

of this system is 290 Mbps.

To better highlight the tradeoff between

latency and throughput, the two are plotted

against each other in Figure 6. Latency

increases by combining more codewords to

increase throughput With this batched

transfer so the observed latency to send all

code words to the GPU, decode them all,

and transfer them again is 700 us. This

delay is much less than the 4 ms time limit

for sending each HARQ response to a user

device (UE).

c)Latency versus iteration: In Figure 7 we

examine latency as a function of the number

of LDPC iterations, I. This also gives an

estimate of the performance to use early

termination where I if decoding ends before

current reaches The LLR vector is set to

represent the correct codeword. As the number of

iterations increases, the latency

also increases at a linear rate. For 8-bit LLR

data with 1080 TI, the latency increases at

13.7 μs per iteration.

d)Time allocation: In Table 3 , we allocate

the time required for how much time it takes

to transfer data against computation. For

1080 Ti, we perform a series of tests

varying the MCW rate, α to MCW, β and

CW rate. By making this adjustment, we

increase the total number of code words in

each batch and find that as the total number

of code words in the batch increases, there

is a proportional increase in each time due

http://www.ijsrem.com/

 International Journal of Scientific Research in Engineering and Management (IJSREM)

 Volume: 08 Issue: 05 | May - 2024 SJIF Rating: 8.448 ISSN: 2582-3930

© 2024, IJSREM | www.ijsrem.com | Page 8

to memory transfer which is increased

e)Other comparable applications:

Currently, few publicly published results

are available for 5G LDPC decoders. To

understand how our decoder fits in the

space of 5G NR LDPC decoders in the open

book, we surveyed the available metrics, as

shown in Table 4. In this work, we

construct a variation that lies between

maximum throughput and minimum delay

are highlighted, and we configured Table 4

to highlight these trade-offs. However, not

all tasks reported the lowest latency and the

highest throughput, which may be due to

code wording schemes. Many short

commercial products do not indicate the

exact LDPC code used or the decoding

frequency. Although we show the

application space of each in the table, it is

quite impossible to properly compare each without

knowing the exact resource

consumption and power consumption of

each This table is presented for purposes

giving a rather functional perspective to

look at. However, we should not use it to

draw strong conclusions about how our

decoder compares to others.

OAI provides a software-based

implementation and reports results in [25].

These results were observed on the same

platform and the corresponding delay was

measured. The LDPC codes used were

(25344, 8448) codes from BG1 which had

5 repeats. [8] also used a software-based

solution. However, this implementation

also uses the AVX SIMD instructions for

the architecture. Using a single core, a

performance of 271.8 Mbps throughput can

be achieved with a delay of 31.08 µs for 10

iterations of the layered decoder. With 18

cores, a maximum throughput of 5 Gbps is

reported. [26] also uses a software-based

decoder for OAI. A layered min-sum

decoder is adopted with the AVX-256

instruction. Using i7, a decode time of 240

µs is reported for an unspecified code and

number of iterations. Creonic offers FPGA-

based, NR, LDPC decoder accelerators for

use throughout the OAI community. In their

product brief they show a maximum

throughput of 574 Mbps for an unspecified

FPGA and LDPC code structure [27]. [28]

present a new GPU benchmark for Nvidia

2080Ti for (2080, 1760) code using 10

iterations of the layered minimal decoder.

They achieve a maximum throughput of

1380 Mbps with unspecified latency.

V. vRAN DISCUSSION AND OAI

INTEGRATION

vRAN will be the dominant technology

going forward. In this section, we discuss

vRAN and demonstrate how GPU solutions

can be used for baseband computing tasks.

As an example, we now discuss the

integration of our GPU-based LDPC

decoder with OAI

A.THE NEED FOR SOFTWARE-BASED, VRAN

SYSTEMS

Software-based solutions excel in

flexibility, and the development of

standards-compliant SDR projects is an

emerging theme that highlights this. For

example, OAI and srsLTE are examples of

software-defined platforms for 4G and 5G

systems [29], [30]. With this initiative it is

now possible to deploy 4G base stations and

core networks entirely on object CPUs, and

http://www.ijsrem.com/

 International Journal of Scientific Research in Engineering and Management (IJSREM)

 Volume: 08 Issue: 05 | May - 2024 SJIF Rating: 8.448 ISSN: 2582-3930

© 2024, IJSREM | www.ijsrem.com | Page 9

support a wide range of commercially

available off- the-shelf (COTS) Ues. This

software-based approach is feasible fast and

tested with analysts for each job in the stack

Provides an opportunity to test new

algorithms Software solutions such as OAI

are a more natural fit for potential future

deployments based on C-RAN, where

operators perform baseband operations in

central cloud data center on enterprise

grade servers recently vRAN An -RAN

extension has been proposed [31], [32]. We

illustrate this concept in Figure 8. Here, a

cloud computing environment provides a

baseband usage accelerator pool that can be

used by multiple remote radio headers and

RAT standards Virtualization is added to

the computing center in vRAN. By

virtualizing baseband usage, hardware

resources can be freed from process work.

Many telecom companies participate in

vRAN efforts through the O-RAN Alliance

which pushes RAN virtualization through

new standards and software development

[33]. Virtualization provides many benefits

such as improved system management,

increased fault tolerance, better scalability,

and reduced costs. By decoupling hardware

resources from computing, more dynamic

resource management based on real-time

network requirements and constraints is

possible.

Scalability is about adding additional

hardware resources to existing resources.

Adding the right software and connecting it

to a hardware resource pool also makes it

possible to switch to multiple standards.

C-RAN/vRAN configurations are also

economical because enterprise-grade

servers and other COTS devices are widely

available to replace application

functionality with expensive, highly

specialized devices In addition to the above

advantages, centralized processing can

allow the development of new algorithms

and architectures such as coordinated

multipoint (CoMP) and cell-free .

These

future vRAN systems will likely be

heterogeneous compute clusters with

CPUs, FPGAs, application-specific

integrated circuits (ASICs), GPUs, and

even tensor processing units (TPUs) CPUs

can be used for sequential tasks such as

planning and medium access control (

MAC) function. FPGAs and ASICs can

accelerate specific tasks such as precoding

and detection. GPUs can bridge the

performance/flexibility gap for any task

that requires both. GPUs can also provide

high performance for any algorithm without

developing any dedicated FPGA/ASIC

accelerators. In next-generation

applications, machine learning has been

proposed for various networking

applications and TPUs are available to

provide dedicated application components

for such applications.

http://www.ijsrem.com/

 International Journal of Scientific Research in Engineering and Management (IJSREM)

 Volume: 08 Issue: 05 | May - 2024 SJIF Rating: 8.448 ISSN: 2582-3930

© 2024, IJSREM | www.ijsrem.com | Page 10

B.OAI INTEGRATION

Our GPU software is designed to compile into a

generic C++ library to accelerate SDR platforms for

vRAN systems. To highlight this portability on SDR

platforms, we integrated our decoder with OAI.

Integration is done by adding our CMAKE file to the

master CMAKE and updating the function call in the

decoder. We evaluated the performance of our GPU

decoder in two scenarios. First, we tested with the

OAI independent “ldpctest” value. “ldpctest” checks

BER performance and latency. Testing OAI current

C-based LDPC decoder in “ldpctest”, the best

decoding delay is FIGURE 10. Example for custom

call, LDPC accelerator from OAI ldpctest is 178 µs In

contrast our GPU-based decoder latency is 87 µs, 51%

reduction in latency .

With the BER data in this test we were able to verify

the performance and collect the data used in Figure 3.

We then moved the GPU-based LDPC decoder to the

larger “RFSimulator” target, driven by the entire 5G

NR protocol Strew around. Testing with a full 5G

stack, we were able to coordinate with OAI and ensure

that CRC passed as expected. Two screenshots from

the OAI experiments are shown. First, in Fig. 9 we

show the NR performance of the OAI with each star

for the physical distance. Figure 10 shows a

screenshot of the terminal during OAI. In this

experiment, the individual blocks are sent to the GPU

for written decoding.

VI.CONCLUSION

Our top level GPU broker code can catch new code

words and start processing them with kernels. Here,

we add a message to the log file indicating that the

function call to the GPU LDPC accelerator was

successful.

When the decoded information bits are sent back to

the OAI, a CRC check is performed for the HARQ. In

Figure 10 we confirm CRC check passing after the

call to the GPU.

REFERENCES

[1] International Telecommunication

Union. (Nov. 2017). Minimum

Requirements Related to Technical

Performance for IMT-2020 Radio

Interface(s). [Online]. Available:

https://www.itu.int/dms_pub/itu-

r/opb/rep/R-REP-M.2410-2017-PDF-E.pdf

[2] K. Li, “Decentralized baseband

http://www.ijsrem.com/

 International Journal of Scientific Research in Engineering and Management (IJSREM)

 Volume: 08 Issue: 05 | May - 2024 SJIF Rating: 8.448 ISSN: 2582-3930

© 2024, IJSREM | www.ijsrem.com | Page 11

processing for massive MU-MIMO

systems,” Ph.D. dissertation, Dept. Elect. Comput.

Eng., Rice Univ.,

Houston, TX, USA, 2019.

[3] D. Hui, S. Sandberg, Y. Blankenship,

M. Andersson, and L. Grosjean,

“Channel coding in 5G new radio: A tutorial overview

andperformance

comparison with 4G LTE,”

IEEE Veh. Technol. Mag.,

vol. 13, no. 4, pp. 60–69, Dec. 2018.

[4] M. Wu, G. Wang, B. Yin, C. Studer, and

J. R. Cavallaro, “HSPA;/LTE-

A turbo decoder on GPU and multicore

CPU,” in Proc. Asilomar Conf.Signals Syst. Comput.,

Nov. 2013, pp. 824–828.

[5] G. Wang, M. Wu, Y. Sun, and J. R.

Cavallaro, “A massively parallel

implementation of QC-LDPC decoder on GPU,” in

Proc. Symp. Appl.Specific Processors (SASP), 2011,

pp. 82–85.

[6] G. Falcao, L. Sousa, and V. Silva, “Massively

LDPC decoding on

multicore architectures,” IEEE Trans.

Parallel Distrib. Syst., vol. 22,

no. 2, pp. 309–322, Feb. 2011.

[7] G. Wang, M. Wu, B. Yin, and J. R.

Cavallaro, “High throughput low

latency LDPC decoding on GPU for SDR systems,” in

Proc. IEEE Glob. Conf. Signal Inf. Process., Dec.

2013, pp. 1258–1261.

[8] Y. Xu, W. Wang, Z. Xu, and X. Gao, “AVX-512

based software decoding for 5G LDPC codes,” in

Proc. IEEE Int.

Workshop Signal Process. Syst. (SiPS), 2019, pp. 54–

59.

[9] (Jun. 2020). 5G LDPC Intel FPGA IP User Guide.

[Online].

Available:

https://www.intel.com/content/www/us/en/programm

able/

documentation/ond1481066696968.html

[10] (Dec. 2019). LDPC Encoder Decoder

v2.0 LogiCORE IP Product

Brief (PB052). [Online]. Available:

https://www.xilinx.com/support/

documentation/ip_documentation/ldpc/v2_0/pb052-

ldpc.pdf

[11] A. Balatsoukas-Stimming and C.

Studer, “Deep unfolding for com-

munications systems: A survey and some

new directions,” in Proc. IEEE Int.

Workshop Signal Process. Syst. (SiPS),

2019, pp. 266–271.

[12] L. Lugosch and W. J. Gross, “Neural

offset min-sum decoding,” in

Proc. IEEE Int. Symp. Inf. Theory (ISIT),

2017, pp. 1361–1365.

[13] L. Lugosch and W. J. Gross, “Learning from the

syndrome,” in Proc.

52nd Asilomar Conf. Signals Syst.

Comput., 2018, pp. 594–598.

[14] S. Velayutham. (Oct. 2019). NVIDIA

Aerial Software Accelerates

5G on Nvidia Gpus—NVIDIA Blog.

[Online]. Available:

https://blogs.nvidia.com/blog/2019/10/21/aerial-

application-framework-5g-networks/

[15] Nvidia. (Jul. 2020). 5G CloudRAN and Edge AI

End-to-End

System Featuring NVIDIA Aerial SDK and EGX

Platform. [Online].

Available: https://news.developer.nvidia.com/5g-

cloudran-and-edge-ai-

end-to-end-system-featuring-nvidia-aerial-sdk-and-

egx-platform/

[16] (Nov. 2019). OAI Develop-nr Gitlab Repository.

[Online]. Available:

https://gitlab.eurecom.fr/oai/openairinterface5g/tree/d

evelop-nr

[17] C. Tarver, M. Tonnemacher, H. Chen, J. C.

Zhang, and J. R. Cavallaro,

“GPU-based LDPC decoding for vRAN

systems in 5G and beyond,”

in Proc. IEEE Int. Symp. Circuits Syst.

(ISCAS), 2020, pp. 1–5.

[18] J. Chen, A. Dholakia, E. Eleftheriou, M. P. C.

Fossorier, and X.Y.

Hu, “Reduced-complexity decoding of

LDPC codes,” IEEE Trans.

Commun., vol. 53, no. 8, pp. 1288–1299, Aug. 2005.

http://www.ijsrem.com/

 International Journal of Scientific Research in Engineering and Management (IJSREM)

 Volume: 08 Issue: 05 | May - 2024 SJIF Rating: 8.448 ISSN: 2582-3930

© 2024, IJSREM | www.ijsrem.com | Page 12

[19] NR; Multiplexing and Channel Coding Version

15.7.0, 3GPP

Standard TS 36.212, Sep. 2019. [Online]. Available:

https://portal.

3gpp.org/desktopmodules/Specifications/Specificatio

nDetails.aspx?

specificationId=3214

[20] T. Richardson and S. Kudekar,

“Design of low-density parity check

codes for 5G new radio,” IEEE Commun.

Mag., vol. 56, no. 3,

pp. 28–34, Mar. 2018.

[21] (2020). NVIDIA A100 Tensor Core

GPU Architecture. [Online].

Available: https://www.nvidia.com/content/dam/en-

zz/Solutions/Data-

Center/nvidia-ampere-architecture-whitepaper.pdf

[22] Mellanox OFED GPUDirect RDMA. Accessed:

Aug. 9, 2020.

[Online]. Available:

https://www.mellanox.com/products/GPUDirect-

RDMA

[23] T. Zhang, Z. Wang, and K. K. Parhi, “On finite

precision implementation of low density parity check

codes decoder,” in Proc. IEEE Int.

Symp. Circuits Syst. (ISCAS), vol. 4, May 2001, pp.

202–205.

[24] S. Shao et al., “Survey of turbo, LDPC, and polar

decoder ASIC

implementations,” IEEE Commun. Surveys Tuts., vol.

21, no. 3,

pp. 2309–2333, 3rd Quart., 2019.

[25] F. Kaltenberger. (Sep. 2019). 5G-NR-

Development-and-Releases.

[Online].Available:

https://gitlab.eurecom.fr/oai/openairinterface5g/

wikis/5g-nr-development-and-releases

[26] W. Ji, Z. Wu, K. Zheng, L. Zhao, and

Y. Liu, “Design and implemen-

tation of a 5G NR system based on LDPC in open

source SDR,” in

Proc. IEEE Globecom Workshops (GC Wkshps), Dec.

2018, pp. 1–6.

[27] Creonic. (2019). 5G LDPC Decoder

and HARQ Buffers Product Brief.

[Online]. Available:

https://www.creonic.com/wp-

content/uploads/PB_Creonic_5G_RL15_Decoder.pdf

[28] R. Li, X. Zhou, H. Pan, H. Su, and Y. Dou, “A

high-throughput

LDPC decoder based on GPUs for 5G new radio,” in

Proc. IEEE

Symp. Comput. Commun. (ISCC), 2020,

pp. 1–7.

[29] N. Nikaein et al., “OpenAirInterface:

A flexible platform for 5G research,”

SIGCOMM Comput. Commun. Rev.,

vol. 44, no. 5, pp. 33–38, Oct. 2014.

[Online]. Available:

http://doi.acm.org/10.1145/2677046.26775

[30] I. Gomez-Miguelez, A. Garcia-

Saavedra, P. D. Sutton, P. Serrano, C.

Cano, and D. J. Leith, “srsLTE: An open

source platform for LTE

evolution and experimentation,” in Proc.

10th ACM Int. Workshop Wireless Netw. Testbeds

Exp. Eval.

Characterization, 2016, pp. 25–32.

[31] Wind River. Nov. 2017. vRAN: The

Next Step in Network Transformation.

[Online]. Available:

https://builders.intel.com/docs/

networkbuilders/vran-the-next-step-in-network-

transformation.pdf

[32] A. Garcia-Saavedra, X. Costa-Perez, D. J. Leith,

and G. Iosifidis,

“FluidRAN: Optimized vRAN/MEC

orchestration,” in Proc. IEEE

Conf. Comput. Commun., Apr. 2018, pp.

2366–2374.

[33] O-RAN Alliance. O-RAN Use Cases and

Deployment Scenarios. Accessed: Aug. 9, 2020.

[Online]. Available:

https://static1.squarespace.com/static/5ad774cce7494

0d7115044b0/t/

5e95a0a306c6ab2d1cbca4d3/1586864301196/O-

RAN+Use+Cases+

and+Deployment+Scenarios+Whitepaper+February+

2020.pdf

http://www.ijsrem.com/

