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Abstract: The integration of Green Chemistry and Artificial Intelligence (AI) presents a transformative path 

toward sustainable chemical synthesis. While green chemistry emphasizes minimizing toxicity, waste, and 

environmental harm through safer and more efficient processes, AI provides data-driven capabilities such as 

predictive modeling, retrosynthetic planning, process optimization, and automation. This synergy enables 

intelligent systems that predict reaction outcomes, optimize solvent and catalyst selection, minimize hazardous 

by-products, and align closely with the Twelve Principles of Green Chemistry. Leveraging technologies like 

machine learning, deep neural networks, cheminformatics, and generative models, AI speeds the creation of 

eco-friendly chemicals and low-energy reaction pathways while decreasing the need for significant lab research. 

Tools that facilitate solvent-free synthesis, atom economy, and high-throughput testing, such Molecular 

Transformer, Chemistry42, AlphaFold, and Graph Neural Networks (GNNs), are prime examples of this 

progression. The expanding importance of robotic systems and autonomous labs that employ AI to dynamically 

optimize synthesis methods in real time is also examined in the article. AI's concrete contributions to safer, 

more economical, and environmentally friendly chemical innovation are demonstrated by case studies in the 

pharmaceutical, agrochemical, and fine chemicals industries. Based on a comprehensive literature analysis and 

expert discussions from the ASLLA Symposium, the report highlights the value of multidisciplinary education, 

interpretable AI models, and carefully selected green datasets. Even if there are still issues with model 

generalisation, ethical implementation, and data governance, integrating AI literacy into chemistry courses and 

encouraging cooperation between academia, industry, and politics will be crucial to expanding this integration. 

In the end, this multidisciplinary approach promotes global objectives for responsible manufacturing, 

sustainable innovation, and climate action in addition to chemical intelligence. 

 

Keywords: Green Chemistry, Artificial Intelligence, Cheminformatics,, Environmental Impact, Smart 

Chemical Design. 
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1. Introduction  

The demand for safer, cleaner, and more resource-efficient chemical processes has increased due to the pressing 

worldwide push for sustainable development. Green chemistry, as described by Anastas and Warner's Twelve 

Principles, has become a fundamental paradigm for creating less hazardous, waste-reducing, and energy- 

efficient chemical systems in response to growing concerns about climate change, ecological degradation, and 

resource depletion. Concurrently, artificial intelligence (AI) has developed as a potent catalyst for this change. 

AI enables high- throughput prediction, optimisation, and decision-making through machine learning, deep 

learning, natural language processing, and reinforcement learning. AI was first used in drug discovery, but it 

is currently used in environmental chemistry, materials science, sustainable manufacturing, and catalysis, 

among other areas. AI speeds up the transition to intelligent, sustainable, and life-cycle- oriented chemical 

innovation by reducing reliance on trial-and-error experimentation and increasing predictive efficiency. This 

helps to rethink synthesis and production paradigms for a more environmentally friendly future. 

 

 

               Figure 1: Conceptual Framework of AI Integration with Multiomics in Chemistry 

The combination of green chemistry with artificial intelligence (AI) represents a paradigm shift in the way that 

chemical research is planned, carried out, and taught. By making predictive modelling for reaction outcomes, 

physicochemical attributes, retrosynthetic planning, solvent and catalyst selection, toxicity evaluation, and 

reaction condition optimisation possible, artificial intelligence (AI) improves green chemistry. Pre-synthesis 

screening for environmental effect, degradability, and synthetic feasibility is now possible because to 

sophisticated AI structures like graph neural networks (GNNs), transformer models, Bayesian frameworks, and 

generative models, which supplement traditional techniques like QSAR and QSPR.Using massive datasets like 

ChEMBL, ZINC, PubChem, and USPTO, generative AI models like VAEs, GANs, and reinforcement learning 

frameworks further facilitate the design of new, eco-optimized compounds. In the meanwhile, deep learning 

and search algorithms (e.g., MCTS, PNS) are used by AI-powered retrosynthesis platforms such as   IBM   

RXN,   SYNTHIA,   and AiZynthFinder to suggest viable multistep synthesis paths. In accordance with the 

Twelve Principles of Green Chemistry, these instruments aid in minimising dangerous reagents, cutting waste, 

and improving conditions. 

Through closed-loop systems like AlphaFlow, Coscientist, and Chemputer— which utilize real-time sensor 

data, robotic automation, and AI-driven feedback to dynamically optimize synthesis conditions—the integration 

of Artificial Intelligence (AI) into laboratory settings has enabled autonomous experimentation. These platforms 

exemplify AI’s dual role in sustainable process development: acting both as an operational driver and as a 

predictive engine to enhance environmental performance, efficiency, and reproducibility. 

This synergy is supported by data-rich ecosystems and cheminformatics infrastructures. Toolkits such as RDKit, 

Chemprop, and SMILES-based encoders, along with molecular fingerprinting techniques like ECFP4 and 
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MACCS, enable machine-readable molecular modeling and efficient chemical representation. Robust model 

training across diverse chemical domains is made possible by curated databases such as Reaxys, CAS Registry, 

ZINC, PubChem BioAssay, and the USPTO repository. These resources facilitate high-quality, domain-specific 

learning for AI systems applied in chemical synthesis and discovery.Beyond pharmaceuticals, AI is 

transforming green chemistry applications in fields like materials science, agrochemicals, and environmental 

chemistry. It aids in meeting regulatory requirements such as REACH, GHS, and GRAS, while accelerating the 

development of safer pesticides, biodegradable polymers, eco-friendly additives, and sustainable packaging 

solutions. 

 

This report evaluated 98 peer-reviewed publications published between 2022 and 2023 in order to evaluate the 

present status of AI in sustainable chemical innovation. Prediction, design, pattern recognition, and workflow 

optimisation are the four areas into which the chosen papers were divided using the Web of Science, Scopus, 

and PubMed databases and the PRISMA methodology. According to the analysis, there is a growing body of 

research that supports the alignment of AI methods with green chemistry principles. 

 

Universities and training institutions are increasingly incorporating AI into chemistry education through courses 

in cheminformatics, SMILES modeling, Python programming, and tools such as AlphaFold and Chemputer. 

This shift reflects the growing importance of digital competencies in sustainable research and prepares future 

chemists to navigate both experimental and computational domains effectively. 

However, several challenges remain, including issues of model interpretability, algorithmic bias, data quality, 

the lack of negative reaction data, and ethical concerns surrounding the trade-offs between automation and 

sustainability. Addressing these concerns requires the adoption of Explainable AI (XAI), human- in-the-loop 

systems, and strong interdisciplinary collaboration among computer scientists, chemists, and ethicists. To 

ensure reproducibility and alignment with green chemistry metrics like life- cycle assessment (LCA), the 

development and use of open-access, sustainability- tagged datasets are critical. These resources will support 

transparent, data- driven research and responsible innovation. 

 

In conclusion, the integration of AI with green chemistry signifies more than just technological progress; it 

represents a systemic transformation aligned with global sustainability targets such as the Paris Agreement and 

the UN Sustainable Development Goals. This study highlights the emerging advancements, opportunities, and 

responsibilities shaping the future of sustainable chemical innovation. 

 

1.1 The Digital Wave in Chemistry: A Sustainable Catalyst 

 

AI is driving the digital transformation of chemistry, which includes a wide range of instruments that support 

green chemistry: 

 

Table 1: Summary of AI-Based   Technologies in Chemistry and Their   Impact

AI  Technology 
Relevance to Green Chemistry and Sustainable Synthesis 

AI-Driven Drug Discovery Helps design eco- friendly pharmaceuticals and reduce 

experimentation waste through virtual screening. 

Big Data & Integrated Data Consolidates heterogeneous data sets for environmentally 

conscious decision-making in synthesis design. 

Automated Laboratory 

Platforms 

Reduces chemical waste and enhances precision by 

minimizing manual errors in green synthetic experiments. 

IoT-Integrated Lab 

Instruments 

Enables real-time monitoring of green process  metrics.  

AI in Analytical Method Enhances rapid, low- waste  analytical procedures to 
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Figure 2       Figure 3 

 

 

Development monitor green chemistry compliance. 

Digital Twins & Virtual 

Labs 

Allows simulation of sustainable synthesis avoiding resource 

wastage. 

Natural Language Processing 

(NLP) 

Extracts environmentally safe synthesis routes from vast 

chemical literature databases. 

Predictive Toxicology Forecasts ecological and toxicity of compounds, essential for 

sustainable chemical product design. 

AI in Environmental 

Chemistry 

Models pollutant fate and optimizes waste reduction  

strategies  in chemical manufacturing. 

ML in Molecular Design Identifies molecules with high efficacy and low 

environmental burden. 

SAR via Deep Learning Links chemical structure with biological activity for bio-safe, 

sustainable compound prediction. 

High-Throughput 

Experimentation (HTE) 

Enables green synthesis screening with minimal sample and 

energy usage. 

Data-Driven  Reaction 

Optimization 

Reduces trial-and-error and chemical waste by 

predicting optimal reaction conditions. 

Automated Synthesis 

Planning 

Designs efficient, eco- friendly synthetic routes, saving time 

and raw materials. 

Chemoinformatics Enhances understanding of structure-property relationships 

critical for green chemical design. 

AI in Quantum Chemistry Reduces computational resources in modeling greener reaction 

pathways and catalysts 
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Figure 2:Integration of AI and Green Chemistry for Sustainable Synthesis 

Figure 3: Workflow of AI-Driven Autonomous Organic Synthesis 

 

By combining intelligence, automation, and sustainability, these developments have completely changed the 

field of chemistry research. The combination of AI and green chemistry principles enables chemists to develop 

new approaches that lead to safer products, cleaner technologies, and less environmental impact. 

 

1.2 Toward Data-Driven Sustainable Synthesis 

Conventional chemical synthesis requires a lot of resources and is frequently limited by trial-and-error 

techniques. AI provides instruments for environmentally sensitive chemical production through toxicity 

predictions, synthetic route design, and reaction prediction algorithms. For example, in order to prevent 

unnecessary bench tests, AI-powered software such as IBM's RXN, DeepChem, and Chemprop allows for  the  

in-silico  prediction  of reaction outcomes and retrosynthesis processes. By connecting chemical descriptors 

with greenness criteria (such as atom economy, E-factor, and biodegradability), the combination of 

chemoinformatics and machine learning also makes it possible to screen for sustainable molecules. For 

businesses looking to adhere to green chemical regulations without sacrificing productivity or revenue, this is 

essential. 

 

1.3 Implications for Innovation and Education 

 

In addition to changing research procedures, these technologies are influencing the chemists of the future. These 

days, educational platforms use real- world datasets and coding tools like Python, RDKit, and deep learning 

frameworks to teach AI-powered cheminformatics, green synthesis modelling, and environmental impact 

prediction. This enables researchers and students to act responsibly, think computationally, and use science to 

create a more environmentally friendly future. Green chemistry principles may now be used at every stage of 

chemical synthesis thanks to the digital revolution in chemistry, which is led by artificial intelligence. 

 

AI speeds up the process of sustainable innovation through automated optimisation, real-time monitoring, and 

predictive design. With an emphasis on real-world applications, case studies, and potential paths forward in 

sustainable molecular development, this study examines the relationship between artificial intelligence (AI) 

and green chemistry, offering a thorough analysis of how these game-changing technologies promote 

ecologically conscious synthesis. 

 

 

AI-Based Technology / 

Digital Chemistry 

Trajectory 

 

Key Application Area 
Impact on Green & 

Sustainable Synthesis 
Relative 

Publication 

Volume 

AI- Driven Drug 

Discovery 

Prediction of eco- 

friendly active 

compounds 

Reduces experimentation, 

supports green 

pharmaceuticals 

 

High 

 

Big Data & Integrated 

Data 

Harmonization of 

chemical data 

repositories 

Enables holistic analysis 

for green chemical 

innovation 

 

High 

Automated  Laboratory 

Platforms 

Automated, minimal -

waste synthesis setups 

Enhances reproduci bility, 

minimizes chemical waste         High 
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Integration of 

Laboratory Instruments 

& IoT 

Real- time monitoring in 

synthesis and 

purification 

Improves reaction control 

and reduces resource 

consumption 

High 

 

 

AI in Spectroscopy & 

Analytical Chemistry 

Real- time monitoring 

of green catalysts or 

pollutants 

Accelerates eco- friendly 

process optimization High 

Predictive Toxicology Prediction of harmful 

by- products or 

reagents 

Enables early- stage 

elimination of toxic 

options 

Medium- High 

 

Machine Learning in 

Molecula r Design 

Molecular property 

prediction, solvent- free 

synthesis design 

Supports design of green 

molecule s and solvent 

alternatives 

Medium 

Deep Learning in 

Structure –Activity 

Relations hips (SAR) 

QSAR/ QSPR 

modeling for biodegra 

dable and sustainable 

materials 

Facilitates efficient 

design of safe and 

functional molecules 

Medium 

Data- Driven   Chemical 

Reaction Optimization 

 

 

AI Models  for reaction 

condition selection 

Increases reaction  

efficiency and eco- 

compatibility 

Medium 

Automated Synthesis 

Planning 

Retrosynthetic route 

optimization 

Reduces number of 

synthetic steps, saves 

energy and 

solvents 

 

Medium 

Digital Materials Design 

& Materials Informatics 

Design of recyclable 

polymers, catalysts 

Accelerates discovery of 

eco- friendly materials Medium 

Environmental 

Chemistry & AI for 

Sustainability 

AI for pollution 

monitoring and lifecycle 

analysis 

Promotes sustainable 

manufacturing and 

environmental protection 

Medium 

Smart Control Systems 

in Chemistry 

Adaptive control in 

real- time synthesis 

systems 

Enhances energy and 

material efficiency Medium 

Natural Language 

Processin g (NLP) in 

Chemical Space 

Text mining from 

patents and journals for 

green synthesis data 

Unlocks hidden 

sustainable synthesis 

pathways from literature 

Medium- High 

AI- Driven High- 

Throughput 

Experimentation (HTE 

Rapid  screening of 

reaction conditions and 

catalysts 

Enables  fast green 

reaction optimization 

with minimal waste 

Medium 

Digital Twins in 

Chemistry 

Virtual modeling of 

chemical processes 

Enables virtual validation 

of green process 

designs 

Medium 

 

Quantum Chemistry & 

AI- Enhanced 

Simulations 

Simulating reaction 

mechanisms for catalyst 

and solvent- free 

reactions 

Reduces experimental 

load, predicts reaction 

efficiency 

Medium 
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 Table 2: AI-Based Technologies and Their Influence on Green and Sustainable Chemistry 

 

3.Background and Literature Review 

 

This literature review is divided into two sections to give readers a structured understanding of how AI and 

Green Chemistry work together for sustainable synthesis. The first section is a Integrated Literature thorough 

thematic table (see Table 3), which is followed by a detailed narrative discussion of seminal contributions and 

new paradigms. 

 
 

 

Table 3:Review on AI Applications in Green Chemistry and Sustainable Synthesis 

 

 

Blockchain in Chemical 

Supply Chains 

Verification and 

traceability of green 

chemical sources 

Ensures responsible 

sourcing and  

transparency 

Medium 

Virtual Laboratories & 

Augmented Reality for 

Education 

Simulation of green 

chemistry experiments 

Enhances sustainab ility 

education in chemistry Medium 

Theme / Focus 

Area 

Key Study 

/ Authors 

Key Insights / 

Contributions 

Relevance to Green 

Chemistry 

Foundations of AI 

in Chemistry 

E. J. Corey & W. Todd 

Wipke, (1969) 

Pioneered comput er- 

assisted synthesis 

planning (CASP) 

. 

Established the 

comptational foundation 

for green synthesis route 

design 
. 

Retrosynthesis 

&CASP 

Systems 

Segler et al., (2018): 

Coley et al., (2019); 

Mikulak- Klucznik et 

al., (2020) 

Symbol ic AI, neural- 

symbolic and Monte 

Carlo approaches for 

automated low- 

step retrosynthesis 

Enhances atom econo 

my, avoids hazardous 

intermediates, and 

supports sustainable 

route planning. 

Inverse Molecular 

Design & Generative 

Models 

Sanchez- Lengeling & 

Aspuru- Guzik, (2018); 

Gómez- Bombarelli et 

al., (2018); 

Putin et al., (2018); 

Olivecrona et al., 

(2017) 

Developed VAEs, 

GANs, RNNs to 

generate eco- 

optimized, 

biodegradable, and 

low- toxicity 

molecules. 

Accelerates discovery of 

green alternatives with 

enhanced safety and 

sustain ability profiles. 

Reaction Prediction 

& Optimization 

Coley et al., 

(2019);Schwaller et 

al.,(2019); Jin 

et al., (2017); 

Ahneman et al., 

(2018) 

GNNs, seq2seq 

models forecast 

yields, conditions, 

and selectivity. 

Reduces failed trials and 

supports greener 

reagent/catalyst 

selection. 
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Reaction Condition 

Optimization 

Gao et al., (2018); 

Zhou et al., (2017); 

Struebing et al., (2013); 

Seifrid et al., (2022) 

Bayesian optimiz 

ation and ML fine- 

tune solvent, pressure, 

tempera 

ture. 

Improves energy 

efficiency and minim 

izes toxic chemical 

usage. 

Automated & 

Robotic Synthesis 

 

Dragone et al., 

(2017);Granda et al., 

(2018);Roch et al., 

(2018);Boiko et al., 

(2023a); Mahjour et 

al., (2023) 

 

Robotic labs and 

LLMs support closed- 

loop synthesis 

planning and 

execution. 

Reduces waste and 

human error; improves 

scalability and 

reproducibility. 

Catalysis & 

Interface Chemistry 

Yang et al., (2019); 

Mai et al., (2022); 

Toyao et al., (2019); 

(Galushko et al., 

2023);Schlexer 

Lamoureux et al., 

(2019) 

ML and DFT models 

enhance catalyst 

performance 

prediction. 

Enables selection of 

recyclable, energy 

- efficient, and non- toxic 

catalytic systems. 

High- Through put 

Discovery & 

Automat ion 

Bédard et al., 

(2018);Häse et al., 

; Gómez-Bombarelli et 

al.,(2018) 

Robotic and AI- 

guided platforms 

accelerate explorat ion 

of synthetic space. 

Facilitates rapid 

identification of greener 

pathways. 

MOF Synthesis & 

Text Mining 
Zheng et al., (2023) NLP and LLMs 

extract synthetic 

protocols from 

literature. 

Supports efficient 

material discovery with 

lower energy and 

resource use. 

Drug Discovery & 

Green Pharma 

Vamatheva n et al., 

(2019);Zhavoronk ov 

et al., (2019); 

Stokes et al.,(2020); 

Griffen et al.(2020); 

Chan et al., (2019) 

AI accelerates lead 

discovery, ADMET 

prediction, and safety 

profiling. 

Reduces chemical waste 

and environmental 

toxicity in 

pharmaceutical pipelines. 

Chemoinformatics 

& Descript or 

Learning 

Varnek & Baskin, 

(2012);Rogers & Hahn, 

(2010); Duvenaud et 

al., (2015); Reker et 

al., (2016) 

Developed molecular 

fingerpr ints, ECFPs, 

and pattern 

recognition tools. 

Supports toxicity 

prediction and green 

compound screening. 

Molecular Encoding 

& Representation 

Weininger, (1988a); 

Heller et al., 

(2013a);Yang et al., 

(2019); Leach & 

Lewis, (1994) 

Introduced SMILES, 

InChI, and GNN-

friendly encodings. 

Foundational for ML- 

driven sustain ability 

predict ion models. 
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QSAR/QSPR 

& Property 

Prediction 

Hansch &Fujita, 

(1964); 

Dahl et al., (2014); Ma 

et al., (2015); 

Muratov et  al., (2020) 

ML models estimate 

toxicity, solubility, 

biodegradability, log 

P. 

Supports eco- evalua 

tion of molecules prior  

to synthesis. 

Material Discovery 

& Sustainable 

Design 

Moosavi et al., (2020); 

Kim et al., (2019); 

Stach et al., (2021); 

Dimitrov et al., (2019) 

Used HTVS and ML 

to develop green 

MOFs, COFs, and 

polymers. 

Enables lifecycle- 

aligned material 

development for energy 

and filtration. 

Quantum Chemistry 

& ML Integration 

Smith et al., (2018); 

Grisafi et al., (2018); 

Aspuru- Guzik et al., 

(2018); 

Cao et al., (2012); 

Westermayr & Marquet 

and, (2020) 

ML accelerates 

quantum property 

estimation with 

reduced comput 

ational load. 

Optimizes energy 

-efficient reaction 

modeling and green 

catalyst screening. 

Spectral Analysis & 

Quality Monitoring 

Elyashberg & 

Williams, (2015); 

Schwaller et al., 

(2019); 

McCardle, (2022); 

Boiko et al., (2023); 

Ayres et al., (2021) 

ML interprets NMR, 

MS, and IR data for 

real- time impurity 

profiling. 

Supports green quality 

control by minimizing 

reprocessing. 

Environmental 

Monitoring &  IoT 

Integration 

Capella et al., (2020); 

Nourani et al., (2018); 

Campelo et al.,(2022); 

Boger, (1992) 

AI + IoT enables real-

time 

pollutant/emission 

tracking 

Enhances green 

compliance and closed-

loop  

manufacturing. 

AI Platforms & 

Synthesis Tools 
Ivanenkov et al., 

(2023) 

Provides end- to-end 

AI platforms for 

molecule generation 

and synthesis. 

Democratizes access to 

green synthesis design 

capabilities. 

Data Curation & 

FAIR Principles 

Baum et al., (2021); 

Villalba et al., n.d.; 

Wilkinson et al., 

(2016) 

Emphasized 

structured, 

interoperable, open- 

access datasets 

. 

Enhances 

reproducibility, data 

reusability, and low- 

waste research 

planning. 

Explainable & 

Ethical AI 

Rudin, (2019); 

Azodi et al., (2020); 

Pavel et al., (2022); 

Bender & Cortés- 

Ciriano, (2021); 

Wallach & Heifets, 

(2018) 

Called for transpar 

ent, auditable, and 

bias- mitigated AI 

models. 

Supports responsible AI 

integration in high- 

stakes green 

applications. 
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The field of sustainable chemical synthesis is undergoing a radical transformation due to the convergence of 

green chemistry and artificial intelligence (AI). Once limited to theoretical  modeling,  AI  now  enables 

intelligent automation and predictive, data- driven decision-making across the entire chemical workflow. This 

includes molecular design, retrosynthetic planning, reaction condition optimization, process control, and 

environmental monitoring. This multidisciplinary integration aligns closely with Anastas and Warner's Twelve 

Principles of Green Chemistry, which advocate for atom economy, waste minimization, energy efficiency, the 

use of safer solvents and reagents, and a cradle- to-grave approach to chemical design and innovation. The 

theoretical groundwork for this convergence dates back to the 1960s and 1970s, with the pioneering work of E. 

J. Corey & W. Todd Wipke, (1969)in computer-assisted synthesis planning (CASP), which laid the foundation 

for today’s AI-driven retrosynthetic tools. Simultaneously, Hansch & Fujita, (1964) introduced Quantitative 

Structure– Activity Relationship (QSAR) models, which established correlations between molecular structures 

and their physicochemical or biological properties. These models continue to be fundamental in 

cheminformatics and the design of sustainable compounds. 

 

The development of machine-readable molecular encodings such as SMILES Weininger, (1988), Heller et al., 

(2013) and molecular fingerprints Leach &Lewis, (1994) provided the digital infrastructure necessary for 

training AI algorithms. These tools allow modeling of structure– property relationships, toxicity predictions, 

and synthetic feasibility. These advancements have facilitated large- scale virtual screening and predictive 

modeling, enabling the creation of data- rich pipelines essential for driving green and sustainable chemical 

synthesis.The use of Artificial Intelligence (AI) in chemistry has surged in recent years, primarily due to the 

development of advanced deep learning architectures such as Graph Neural Networks (GNNs), Variational 

Autoencoders (VAEs), Generative Adversarial Networks (GANs), and Reinforcement Learning (RL). These 

models now span the entire chemical lifecycle—from de novo molecule generation and retrosynthetic planning 

to reaction outcome prediction, green metric optimization, and end-of-life sustainability analysis. Seminal 

works by Segler et al., (2018), Coley et al., (2019), Gómez- Bombarelli et al., (2018)and Aspuru-Guzik et al., 

(2018); demonstrate these advances. 

 

Platforms like IBM RXN, Chematica (now SYNTHIA), and the Molecular Transformer integrate neural-

symbolic reasoning, rule-based logic, and probabilistic algorithms to offer efficient and environmentally 

Benchmarking & 

Model  obustness 

Maryasin et al., 2018); 

Walters &  Murcko, 

(2020a) 

Assessed generali 

zation,uncertainty, 

and reproducibility in 

chemical ML. 

Ensures scienti fic 

credibility of AI- 

enable d green solutions 

Integrate d AI- 

Green Chemistry 

Frameworks 

Gómez- Bombarelli et 

al., (2018b); 

Schwaller et al., 

(2019); 

Walters & Murcko, 

(2020) 

Theoretical and 

practical frameworks 

aligning AI tools with 

sustainability 

goals. 

Frame s AI as a central 

enabler of sustain able 

molecular innovation. 

Reaction Template 

Extraction & Rule 

Mining 

Plehiers et al., (2018); 

Zhavoronk ov et al., 

(2019) 

NLP and cheminf 

ormatics extract 

reusable, eco- 

optimized synthesis 

rules. 

Promotes reaction 

reusability and avoids 

experimental redund 

ancy. 

AI in Chemistry 

Education & 

Training 

Gasteiger & Zupan, 

(1993); 

Kim et al., (2019); 

Wishart et al., (2018) 

Developed ML 

education platforms 

and digital databases. 

Prepares next- gen 

chemists for green, data- 

driven innova 

tion. 
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friendly synthesis pathways. These tools align synthesis planning with green chemistry principles by evaluating 

synthetic routes using green metrics such as atom economy, energy consumption, toxicity, and hazardous 

reagent use. Parallel advancements in sequence-to- sequence (seq2seq) models and GNNs, led by researchers 

like Schwaller et al., (2019)and Coley et al., (2019), have significantly improved reaction prediction and 

condition optimization. These models accurately forecast reaction yields, by- product profiles, and optimal 

parameters, enabling smarter experimental design and minimizing waste. 

 

Complementary approaches such as Bayesian Optimization, Monte Carlo Tree Search (MCTS), and transfer 

learning— explored by Zhou, Bedard, and Gao— further enhance the precision and adaptability of reaction 

conditions. These methods allow real-time adjustments to solvents,  catalysts, temperatures, and ressures, 

reducing environmental impact and experimental redundancy. In the realm of de novo molecular design, AI has 

delivered some of its most transformative contributions to green chemistry. Researchers like Gómez- 

Bombarelli et al., (2018), Putin et al., (2018) and Zhavoronkov et al., (2019) have employed generative models 

(VAEs, GANs, RNNs) to create novel molecules tailored for green criteria, such as low toxicity, high 

biodegradability, renewable functional groups, and synthetic accessibility. 

 

These breakthroughs underscore AI’s revolutionary potential in ecologically responsible molecular discovery 

and have played a vital role in developing next- generation green pharmaceuticals, agrochemicals, and 

sustainable functional materials. Real-time, closed-loop experimentation using robotic platforms like ChemOS 

and AlphaFlow has become possible due to the digitization and automation of synthetic processes. Pioneering 

efforts by researchers such as Matsubara, Mahjour et al., (2023) and Boiko et al., (2023a) have enabled 

autonomous reaction planning and condition optimization. These systems are increasingly integrated with large 

language models (LLMs) and AI-driven laboratory protocols. 

 

These autonomous platforms exemplify the core goals of green chemistry by reducing reagent consumption, 

chemical waste, and energy use while enhancing safety, reproducibility, and process efficiency. Their 

application supports sustainable innovation across chemical domains. 

 

Artificial Intelligence has also revolutionized catalysis—an essential pillar of green synthesis—by improving 

catalyst reactivity, selectivity, recyclability, and enabling the development of metal-free alternatives. Studies by 

Yang et al., (2019), Toyao et al., (2019), Galushko et al., (2023) and Mai et al., (2022) highlight how machine 

learning and quantum-enhanced models promote atom economy and reduce toxicity through energy-efficient, 

non- toxic catalytic systems. 

 

In analytical chemistry, AI has enhanced the interpretation of spectroscopic data such as NMR, IR, and MS. 

Models developed by Schwaller et al.,(2019), McCardle, (2022) and Boiko et al., (2023a) allow real-time 

impurity detection, process control, and environmentally conscious quality assurance. 

 

These capabilities are further expanded by integration with Internet of Things (IoT) networks. As shown by 

Capella et al., (2020)and Campelo et al., (2022), IoT- connected systems enable decentralized, cloud-based 

environmental monitoring, supporting proactive compliance with sustainability regulations. 

 

Outside the lab, AI is increasingly used in environmental chemistry for tasks such as life-cycle assessment, 

wastewater analysis, and predictive pollution monitoring. Early work by Boger using neural networks, and more 

recent ensemble learning approaches by Nourani et al., (2018) demonstrate AI’s ability to simulate pollutant 

behavior and emissions with accuracy. 

 

Machine learning-augmented quantum simulations are also emerging as a low- energy alternative to traditional 

quantum chemical computations. Research by Westermayr & Marquetand, (2020) and Grisafi et al., (2018) 

explores their role in modeling photocatalytic and excited-state processes, helping to reduce computational and 

environmental costs. These advancements are supported by the availability of high-quality, FAIR- compliant 

datasets from resources such as PubChem, ChEMBL, Reaxys, and CAS Content. As noted by Villalba et al., 

and Wilkinson et al., (2016), such robust data infrastructure ensures cross-platform integration, model 

reliability, and reproducibility. 
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Finally, there is a growing emphasis on interpretable and ethical AI in chemistry. In high-stakes applications, 

researchers like Rudin, Azodi et al., (2020), and Pavel et al., (2022), advocate for explainable AI (XAI) and 

human-in-the-loop systems. These approaches ensure that AI-driven decisions are not only technically sound 

but also aligned with principles of safety, transparency, and environmental responsibility.Recent frameworks by 

Ivanenkov et al., (2023); and Walters & Murcko, (2020) support AI as a systemic catalyst for the concepts of 

the circular economy. Sustainability is now integrated into all phases of the chemical value chain, from molecule 

discovery to end-of-life product recovery, thanks to AI's influence on resource reuse, life-cycle optimisation, 

and design for degradation. 

 

3. Methodology 

 

This study uses a methodical, literature- based approach to examine how the Twelve Principles of Green 

Chemistry and Artificial Intelligence (AI) might work together to support sustainable chemical synthesis. As a 

conceptual overview, the study maps current trends, thematic intersections, and application areas at the junction 

of AI and green chemistry by synthesising information from peer- reviewed publications, technology reports, 

and open-access data platforms. 

 

Using top scientific databases such as Scopus, Web of Science, PubMed, SpringerLink, IEEE Xplore, and 

ScienceDirect, a thorough literature review was carried out. Authoritative databases like ChEMBL, PubChem, 

USPTO, and ZINC provided more data and case studies, especially to put AI models (e.g., GNNs, VAEs, 

QSAR/QSPR, and retrosynthetic transformers) in perspective when working with chemical data. With a focus 

on contemporary work (2015–2024) pertinent to AI applications in chemical synthesis, sustainability, and 

environmental technologies, the inclusion criteria were centred on literature published between 2000 and 2024. 

The technical and ethical foundation for assessing sustainability relevance was the Twelve Principles of Green 

Chemistry, which were put out by Anastas and Warner. 

 

A three-phase conceptual framework guided the analysis: 

 

• Technology Mapping: AI tools and models were categorised based on their main chemical function, 

including environmental monitoring, catalyst design, reaction condition optimisation, 

property prediction, and retrosynthesis planning. The capabilities of well-known platforms in sustainable 

synthesis design, including IBM RXN, AiZynthFinder, Chemistry42, AlphaFold, SYNTHIA, and ChemOS, 

were profiled. 
 

 

• Theme Categorisation: Using manual coding and co-occurrence analysis of important phrases, the 

literature was arranged into theme clusters. Significant intersections were identified, such as data-driven 

synthesis design, autonomous labs, AI in solvent selection and catalysis, and environmental lifecycle 

assessment. 
 

 

• Sustainability Alignment Assessment: Each AI application was qualitatively assessed based on its 

contribution to green chemistry metrics such as atom economy, waste   minimization, solvent sustainability, 

energy efficiency, and toxicity reduction. Consideration was also given to technology readiness levels and 

degree of AI integration (rule- based, ML, or hybrid). 

 

This study critically interprets existing models, such as transformer-based retrosynthetic predictors, generative 

neural networks, and machine learning classifiers for eco-toxicity, to assess their applicability, scalability, and 

environmental alignment, even though no new models or experiments were carried out. ChemDraw, BioRender, 

Adobe Illustrator, and VOS viewer were among the visualisation technologies used to create: 

 

• Conceptual diagrams illustrating pathways between AI and green chemistry; bibliometric maps of 

research trends; and infographics summarising the contributions of AI to certain green principles. 

https://ijsrem.com/


      
          International Journal of Scientific Research in Engineering and Management (IJSREM) 

                      Volume: 09 Issue: 09 | Sept - 2025                                SJIF Rating: 8.586                                      ISSN: 2582-3930                                                                                                        

  

© 2025, IJSREM      | https://ijsrem.com                                                                                                                    |        Page 13 
 

 

The article also summarises conceptual case findings from top published research. These consist of: 

 

1. Tools for transformer-based retrosynthesis that reduce dangerous intermediates 

2. Generative models that forecast low-toxicity, biodegradable compounds 

3. Reaction parameter optimisation via reinforcement learning 

4. Self-governing lab systems that facilitate instantaneous synthesis improvement 

 

The importance of AI in sustainable design was further supported by a qualitative analysis of each instance using 

recognised green chemistry metrics (such as energy usage, E-factor, and EcoScale). All things considered; this 

literature-based technique offers a systematic, reproducible framework for examining the ways in which AI 

technologies are changing environmentally friendly chemical practices. It provides a technological and moral 

road map for upcoming studies at the nexus of green chemistry and artificial intelligence by bridging conceptual 

findings with applied significance. 

 

 

5. Applications of AI in Green Chemistry 

 

Artificial Intelligence (AI) is revolutionizing sustainable chemical synthesis by integrating machine learning 

(ML), cheminformatics, natural language processing (NLP), generative modeling, and robotics across all stages 

of the chemical value chain. This includes molecular design, reaction optimization, property prediction, solvent 

selection, autonomous experimentation, and green manufacturing. 

 

In reaction optimization, AI models such as recurrent neural networks (RNNs) and Bayesian optimization 

accurately predict optimal parameters like temperature, pH, and catalyst selection. This improves yields while 

reducing energy use, waste, and hazardous by-products. Deep learning and search algorithms—like Monte Carlo 

Tree Search and Proof Number Search— underpin platforms such as IBM RXN, SYNTHIA, AiZynthFinder, 

and ASKCOS, which generate low-step, environmentally friendly synthetic routes that prioritize atom economy 

and minimize cost and reagent use. 

 

Computer-Assisted Synthesis Design (CASD) tools are now sophisticated enough to challenge expert chemists 

in evaluating the feasibility and scalability of synthetic routes. Simultaneously, AI supports greener chemistry 

by predicting toxicity, volatility, and biodegradability to assist in solvent replacement and safer chemical 

selection. Autonomous laboratories like ChemOS and AlphaFlow, which combine robotic platforms with real-

time self-optimization, allow for closed-loop, high-throughput experimentation. These systems significantly 

reduce trial-and-error cycles, reagent use, and operational inefficiencies—advancing the goals of green 

chemistry. 

 

Beyond synthesis planning and execution, AI enhances the prediction of molecular properties such as HOMO-

LUMO gaps, solubility, melting points, toxicity, and environmental persistence. This enables efficient pre-

screening and helps avoid wasteful syntheses, particularly in data- scarce fields. Generative models—such as 

variational autoencoders (VAEs), generative adversarial networks (GANs), and graph neural networks 

(GNNs)—trained on databases like ZINC, QM9, and ChEMBL are used to design new compounds that meet 

green criteria, including low toxicity, synthetic accessibility, and biodegradability. 

 

Although simulating complex phenomena like stereochemistry remains challenging, advanced GNNs and 

sequence-to-sequence models are advancing environmentally conscious reaction prediction. These innovations 

rest on a solid chemoinformatics foundation, which includes digital representations such as SMILES, InChI, 

molecular fingerprints, and graph-based encodings, supported by datasets like CAS, Reaxys, ChEMBL, and the 

Cambridge Structural Database (CSD). 

 

AI also supports virtual screening, QSAR/QSPR modeling, and environmental impact prediction. 

Analytical tasks—including high- resolution mass spectrometry, GC, HPLC, NMR, and IR—are increasingly 
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automated using AI, enabling real-time impurity detection and product validation while minimizing chemical 

waste and reprocessing. AI's influence extends beyond the lab. Educational programs, such as the IIT Madras 

Pravartak initiative, train chemists in tools like RDKit, Chemprop, and Python to apply AI in green synthesis 

and property modeling. Workshops on technologies like AlphaFold2 and autonomous synthesis systems bridge 

the gap between traditional training and digital research. 

 

In food chemistry, multimodal AI models enhance contaminant detection, traceability, and eco-compliance 

while reducing reliance on chemical reagents. Digital twins, IoT-enabled process monitoring, predictive 

toxicology, NLP tools for sustainability data extraction, and quantum simulations of reaction energetics are 

among over twenty AI-powered technologies advancing green innovation. 

 

From a conceptual perspective, chemistry presents profound challenges to AI. Unlike bounded domains like 

chess or go, chemical space includes over 10⁶⁰ possible drug-like molecules, along with NP- complete problems 

such as subgraph isomorphism, vague transformation rules, and poorly defined objectives—all constrained by 

sustainability metrics like atom economy and waste minimization. Tackling this complexity has led to 

breakthroughs in reinforcement learning, self-supervised learning, and transfer learning. AI systems now 

convert unstructured literature and chemical images into structured, machine-readable formats for downstream 

modeling and synthesis planning—building on foundational work like Lowe's USPTO dataset. 

 

Despite these advances, challenges persist in data quality, regulatory compliance, and model interpretability. 

Researchers such as Rudin, Azodi, and Pavel emphasize the importance of explainable AI (XAI) and chemist-

in-the-loop systems to ensure transparency, ethical implementation, and responsible decision-making in high-

stakes chemical applications. In the end, the combination of AI with green chemistry is transformative rather 

than just additive. While chemistry poses practical problems that spur AI innovation, AI speeds up discovery, 

minimises experimentation, and unlocks sustainable solutions across disciplines. The future of chemical 

research is being redefined by this reciprocal interaction, which will make it safer, quicker, smarter, and more 

sustainable. The worldwide chemical industry is changing into a digital, ecologically conscious ecosystem that 

is suitable for 21st-century innovation as technologies become more automated, interpretable, and morally 

based. 
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                   Table 4: AI Capabilities Aligned with Green Chemistry Principles 

6. Challenges and Limitations 

 

• Model accuracy is hampered by the availability and quality of data. 

• In high-stakes chemical applications, interpretability of AI models is still an issue. 

• Investment is needed to integrate AI with the current laboratory infrastructure. 

• Due to a lack of training data, models for retrosynthesis perform poorly when using     natural products. 

• Stereochemistry and reaction kinetics are still hard to predict. 

 

 

 

7. Future Directions and Conclusion 

 

Looking ahead, there are a number of exciting opportunities to advance sustainable synthesis through the 

combination of Artificial Intelligence (AI) and Green Chemistry. The creation of high-quality, open-access 

green chemistry datasets that follow FAIR guidelines is one of the main future areas that will allow for greater 

involvement and more reliable model training. To provide aspiring researchers the tools they need to succeed 

in this changing environment, cross- disciplinary training programs that combine data science, artificial 

intelligence, and chemical sciences are crucial. Further advancements in explainable AI (XAI) will promote 

more use of AI tools in high-stakes chemical applications, increase model transparency, and build regulatory 

confidence.  

 

Furthermore, developing AI algorithms that are specifically designed to tackle difficult problems—like 

stereochemistry, reaction kinetics, and the synthesis of natural products—will be essential to increasing the 

breadth and precision of AI-guided synthesis planning. Autonomous robotic execution systems combined with 

Green Chemistry Principle 
AI Contribution 

Atom Economy 

Reaction prediction, retrosynthetic route optimization 

Less Hazardous Synthesis Toxicity prediction using ML 

Safer Solvents and Auxiliaries Solvent selection via AI-based screening 

Energy Efficiency 
Process optimization algorithms 

Renewable Feedstocks Database mining for bio-based alternatives 

Reduce Derivatives Optimized synthetic planning 

Catalysis 
Catalyst design with generative models 

Design for Degradation Predictive modeling of environmental fate 

Real-time Analysis for 

Pollution Prevention 
AI-based sensor data analysis 

Inherently Safer Chemistry 
Risk assessment using AI classifiers 
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AI-assisted retrosynthesis platforms will further facilitate closed-loop, self- optimizing experimentation that 

lowers material consumption, boosts repeatability, and quickens discovery cycles. 

 

In summary, the combination of AI with green chemistry represents a revolutionary change in the design, 

synthesis, and application of molecules, giving efficiency, safety, and environmental sustainability first priority. 

Chemists may increase atom economy, speed up innovation in a more environmentally responsible way, and 

drastically cut waste by utilising AI's prediction and optimisation skills. The synergistic paradigm set forward 

in this study offers a guide for further research, highlighting AI's function as a strategic partner in the quest for 

sustainable chemical production rather than just as a computational tool. AI technologies are positioned to 

propel a new age of intelligent, environmentally friendly, and resilient chemical innovation as they develop 

further and become more interpretable, autonomous, and accessible. 
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