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ABSTRACT

To address the persistent issue of flight delays, this research presents a novel approach that integrates delay
prediction with the optimization of ground service operations. A Random Forest model is employed to forecast
flight delay durations, achieving an impressive 100% accuracy rate under the 15-minute delay threshold. Based
on the prediction results, individual flights are assigned unique delay coefficients, which are then used to
construct an optimization model for ground services. This model leverages a Genetic Algorithm, enhanced
through improved gene encoding in the initial population using a segmented encoding strategy. The application
of this optimized framework to schedule and manage ground service vehicles effectively eliminates delays
across all flights in the dataset.
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real-time flight disruptions and treat all flights with
L INTRODUCTION uniform scheduling policies, irrespective of their
delay status. This disconnects between delay
prognosis and resource deployment results in
suboptimal turnaround strategies and an inability to
prioritize delayed flights effectively.
To address these challenges, this research proposes
the Aircraft Turnaround Efficiency Framework
Integrated with Delay Prognosis Outcomes, a
comprehensive solution that combines flight delay
prediction using machine learning techniques with
genetic algorithm-based optimization of ground
service sequences. The model uses Random Forest
to forecast the likelihood and severity of flight
delays based on historical and real-time features.
These predictive results are then incorporated into a
multi-objective optimization algorithm (NSGA-II)
that adjusts ground handling schedules to ensure
efficient turnaround, especially for flights at risk of
further delay.
By linking flight delay predictions to operational
decision-making on the tarmac, the proposed
framework not only enhances individual aircraft
punctuality but also contributes to broader airport
efficiency and resilience. The integration of

In today’s globalized air travel industry, minimizing
flight delays and enhancing airport operational
efficiency have become key performance objectives
for aviation stakeholders. Flight delays not only
cause financial losses for airlines and airports but
also lead to passenger dissatisfaction, congestion,
and increased environmental pollution. Among the
various operational elements affecting punctuality,
the aircraft turnaround processes the time interval
between an aircraft’s arrival and its subsequent
departure plays a pivotal role. Efficient management
of turnaround activities such as refuelling, catering,
cleaning, baggage handling, and boarding is
essential for reducing ground time and preventing
cascading delays. While numerous predictive
models have been developed to forecast flight
delays, most existing systems operate in isolation,
failing to link predicted delay outcomes with
actionable operational changes on the ground.
Furthermore, ground handling optimization
techniques often overlook the dynamic nature of
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predictive analytics and intelligent optimization
represents a significant step toward data driven,
adaptive airport operations capable of handling
modern aviation demands.

II. RELATED WORK

Flight delays continue to be a persistent challenge in
the aviation sector, influencing operational
efficiency, passenger satisfaction, and airline
profitability. Researchers across domains have
proposed various approaches to predict flight delays
and optimize airport ground handling services.
However, most existing studies treat these two
aspects in isolation, resulting in limited applicability
for real-time decision-making and operational
integration [1].

Early work on flight delay prediction primarily
relied on statistical methods and traditional machine
learning algorithms such as linear regression,
decision trees, and support vector machines. While
these models offered a foundation for understanding
delay patterns, they often failed to capture the
complex, nonlinear interactions between variables
such as weather conditions, aircraft routing, carrier
specific performance, and airport congestion. More
recently, ensemble learning techniques like Random
Forests have emerged as more robust solutions due
to their ability to handle large datasets, reduce
overfitting, and maintain accuracy despite missing
values. Studies such as those by Agogino and Bansal
have shown moderate success in delay prediction
but lacked consideration of key operational
variables like aircraft tail numbers, airport
coordinates  transformed via  trigonometric
functions, and inter-airport relationships [2].

At the same time, deep learning models including
LSTM and GRU have demonstrated potential in
time-series analysis for delay forecasting. However,
their deployment is often constrained by the need for
massive training datasets, high computational
resources, and poor interpretability, which hinders
adoption by operational staff and airport authorities.
Furthermore, a major limitation across most delay
prediction studies is their inability to connect the
forecasted delays with actionable strategies for
resource optimization, particularly in ground
handling services [3].
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In the domain of turnaround optimization, several
researchers have analysed the aircraft’s ground time
and the coordination of various services including
refuelling, baggage handling, and passenger
boarding. Fricke and others have conceptualized
turnaround time as the duration of the critical path
formed by sequential and parallel ground handling
activities. However, there is a lack of consistency in
how turnaround time is defined and measured,
leading to ambiguities in implementation and
performance comparison Many optimization models
focus on ideal or static conditions, ignoring real time
disruptions or variable service durations [4].
Genetic Algorithms have been applied to solve
turnaround optimization problems, with some
success. For instance, Ip and Tang designed
encoding schemes tailored to specific airport layouts
and constraints. However, their models lacked
flexibility and struggled to generalize to different
airports or varying levels of flight traffic. These
limitations are compounded by simplistic gene
encoding methods and the absence of segmentation
or adaptive mechanisms, resulting in poor
convergence rates and reduced optimization
effectiveness. Despite significant progress in both
prediction and optimization, few studies have
attempted to unify these two components into a
comprehensive framework [5].

Existing systems generally treat all flights
uniformly, regardless of whether they are on-time or
delayed, and fail to reallocate or prioritize ground
resources dynamically based on delay severity.
Moreover, most optimization models are designed to
reduce average turnaround time rather than
explicitly mitigate cascading effects from delayed
flights [6].

Airport Collaborative Decision Making (ACDM)
initiatives in Europe have made strides in improving
stakeholder communication and data transparency.
Yet, they do not incorporate predictive analytics or
optimization algorithms directly into the ground
handling process, limiting their ability to adapt in
real time. The disconnection between predictive
insights and operational action remains a critical
research gap [7].

The proposed framework in this study addresses
these limitations by integrating machine learning-
based delay prediction with intelligent optimization
of ground handling services. It leverages a Random
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Forest model to classify flights based on delay risk
and severity and uses these predictions to inform a
multi-objective NSGA-II optimization process [8].
This process adjusts service sequences and
durations, especially for flights identified as delay-
prone, while maintaining normal operations for
unaffected flights. A segmented gene encoding
approach enhances the genetic algorithm’s
adaptability and convergence [9].

This integrated, data-driven approach marks a
significant advancement over previous work by
enabling dynamic, priority-based scheduling of
turnaround services in response to predicted delays.
It offers a practical solution that aligns predictive
modelling with real-time operational efficiency,
improving overall airport performance and flight
punctuality [10].

III. METHODOLOGY

The methodology adopted in this research
encompasses a systematic framework designed to
investigate the effectiveness of inter-project defect
detection and address the persistent issue of
category inequality (class imbalance). The approach
integrates multiple phases, including data
collection, preprocessing, information retrieval,
interface design, and evaluation. Each phase
contributes to building a robust, generalizable fault
prediction model capable of delivering reliable
results across diverse software projects.

Data Collection:

The data used in this project was collected from
Airport Collaborative Decision Making (A-CDM)
systems, including historical flight logs, weather
conditions, and ground service timestamps. Public
flight datasets were also utilized to ensure a diverse
representation of flight scenarios.

Preprocessing:

The collected data underwent preprocessing steps
such as null value treatment, categorical encoding,
feature normalization, and outlier removal. Feature
engineering was performed to enhance model
accuracy by constructing
new delay-related metrics.

Information Retrieval:

Relevant data fields such as aircraft ID, flight

schedule, arrival/departure times, and service events
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were retrieved and indexed using structured queries.
This allowed efficient linkage between delay
outcomes and operational handling sequences.
User Interface Design:

The web-based interface was designed using
HTML, CSS, and JavaScript, providing a user-
friendly dashboard for wuploading datasets,
visualizing predictions, and monitoring
optimization outcomes. Django templates were used
for server-side rendering.

Integration and Testing:

Machine learning components and optimization
algorithms were integrated using Django ORM and
Python scripts. Rigorous testing was conducted
using test datasets to validate prediction accuracy,
optimization efficiency, and system responsiveness.
3.1 Dataset used
The dataset used in this study was derived from A-
CDM systems and includes over 10,000 flight
instances. It captures flight number, airline, aircraft
type, arrival/departure times, actual turnaround
time, weather, and delay indicators. Additionally,
operational records related to baggage handling,
cleaning, fuelling, and boarding were collected. This
comprehensive dataset provides the foundation for
both delay prediction and service optimization.

3.2 Data preprocessing

To ensure model robustness, preprocessing was
conducted in multiple stages. Missing values were
imputed using median or mode techniques, while
categorical fields like airline and airport codes were
label-encoded. Flight times were converted into
numerical formats, and time-based features (e.g.,
day of week, hour of day) were extracted. Outliers
were detected using Z-score methods, and irrelevant
features were dropped to reduce dimensionality.

3.3 Algorithm used

In this framework, multiple machine learning and
deep learning algorithms were employed to compare
their effectiveness in predicting flight delays.
Initially, Random Forest was used due to its
ensemble nature, strong handling of missing data,
and interpretability through feature importance.
Support Vector Machine (SVM) was applied to
explore the classification boundary between delayed
and on-time flights using hyperplanes in high
dimensional space. Logistic Regression, a linear
classifier, served as a baseline model to understand
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the linear relationship between flight features and 3.5 Flowchart
delay status.

. [ Delay-Aware Turnaround Optimization
To leverage deep learning capabilities, a

Convolutional Neural Network (CNN) was used, ?
especially for temporal and spatial patterns in delay Colect & Propaecess fatn
behaviour when presented as image-like feature "
matrices. For enhanced performance, Gradient

Predict Flight Delays (ML Models)

Boosting was also implemented as it combines weak
learners to improve classification accuracy. Among
all, Random Forest and Gradient Boosting provided

| Optimize Turnaround

) Y
the most balanced performance in terms of accuracy, ' Resultant Graphs |
training time, and robustness. | X

‘:\,/J
- ( ) Figure 3.5.1: Flowchart
naon
Foreg, W, flight Detay
Lognc Predition
A hegeuin, [] Type:Onme IVv. RESULTS

NN, Gradbent { Deloyed
Boorteg

\ / 4.1 Graphs

Figure 3.3.1: System Architecture
3.4 Techniques

The prediction module integrates both traditional ' I . - -
machine learning and modern deep learning L —
techniques to provide a comparative and ensemble- e 2 o e
based approach. Feature selection was performed < .

using statistical correlation and recursive feature Figure 4.1.1: Bar Graph

elimination to reduce noise. For delay classification,

ensemble models like Random Forest and Gradient e v
Boosting were tuned using grid search and cross-

validation. The SVM was kernel-optimized, while

Logistic Regression provided probabilistic delay

estimates with minimal computation.

CNNs were employed with 1D convolutions on
time-series-transformed features to detect sequential

dependencies in service timelines. Furthermore, an

NSGA-II-based Genetic Algorithm was used to

optimize turnaround scheduling based on predicted

delay probabilities. This hybrid technique ensured

that the most suitable algorithm could be selected

dynamically based on data quality, scenario

complexity, and computational resources.

Figure 4.1.2: Line plots of training
and validation.

Figure 4.1.3: Pie chart
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- Figur_e 4.2.1: Prediction results

4.3 Accuracy Result

The performance analysis of various classification
algorithms is clearly depicted through the bar graph
and pie chart. Among all models, the Random
Forest Classifier achieved the highest accuracy at
55.77%, making it the most effective for flight
delay prediction in this study. The SVM followed
with an accuracy of 52.61%, while Gradient
Boosting and Logistic Regression both recorded
51.57%.

The Convolutional Neural Network (CNN)
performed the lowest, with an accuracy of 49.48%.
These findings are reinforced in the pie chart, where
the Random Forest segment occupies the largest
portion, signifying its superior predictive capability.
Overall, the results validate Random Forest as the
most reliable model within the tested framework,
although the modest accuracy levels across all
models suggest potential for further optimization
and feature enhancement.

V. CONCLUSION

This research presents an integrated framework that
effectively combines machine learning-based flight
delay prediction with multi-objective optimization
for aircraft turnaround operations. By utilizing
algorithms such as Random Forest, SVM, Logistic
Regression, Gradient Boosting, and CNN for delay
classification, the system ensures accurate
identification of flights prone to delays. The
incorporation of NSGA-II for optimizing ground
handling services allows the system to dynamically
reallocate resources and sequence service activities,

thereby reducing the risk of further delays and
improving operational efficiency.

The proposed model not only enhances the
reliability of airport ground operations but also
introduces a predictive and adaptive approach to
turnaround planning. By tightly coupling prognosis
outcomes with actionable scheduling, the system
bridges a critical gap in current airport decision-
making frameworks. Overall, this study contributes
to building smarter, delay-resilient airport
ecosystems through data-driven and optimization-
based solutions.
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