
 International Journal of Scientific Research in Engineering and Management (IJSREM)

 Volume: 09 Issue: 05 | May - 2025 SJIF Rating: 8.586 ISSN: 2582-3930

© 2025, IJSREM | www.ijsrem.com DOI: 10.55041/IJSREM47014 | Page 1

Hand Gesture Recognition System using Thermal Images

Aishwarya Bhandari R

Department of Information Science &

Engineering

Malnad College of Engineering

Hassan, India

aishwaryabhandari05@gmail.com

Monika B S

Department of Information Science &

Engineering

Malnad College of Engineering

Hassan, India

monikabsecomm@gmail.com

Ashika R

Department of Information Science &

Engineering

Malnad College of Engineering

Hassan, India

ashikaramesh626@gmail.com

Rakshitha D

Department of Information Science &

Engineering

Malnad College of Engineering

Hassan, India

rakshithadoddegowda@gmail.com

Mr. Krishna Swaroop A

Assistant Professor

Department of Information Science &

Engineering

Malnad College of Engineering

Hassan, India

ksa@mcehassan.ac.in

Abstract— Hand gesture detection is a pivotal technology in

advancing human-computer interaction, offering intuitive and

touch-free control across various applications. This paper

presents the development of a robust hand gesture detection

system utilizing Convolutional Neural Networks (CNNs),

leveraging their ability to automatically extract and learn

spatial hierarchies of features from input images. The proposed

system processes hand images and accurately classifies various

gestures, addressing challenges associated with traditional

recognition methods that require extensive feature engineering

and complex pre-processing.

The primary objective of this research is to enable seamless

interaction between users and devices through hand gestures,

enhancing accessibility in domains such as gaming, assistive

technology, and virtual reality. A labeled dataset of hand gesture

images is used to train and optimize the CNN model to achieve

high accuracy and low latency in real-time predictions. The

performance of the system is further enhanced by implementing

efficient CNN architectures and optimizing the model for low-

power devices, thereby expanding its practical applications. The

proposed system demonstrates the potential to provide a more

natural, flexible, and immersive interaction experience across

diverse digital environments.

Keywords— Machine learning, Deep learning, Hand Gesture,

image processing, Convolutional neural networks, Thermal images

I. INTRODUCTION

A key technology in human-computer interaction, hand

gesture detection allows for touchless, intuitive control of a

variety of devices. It is a quickly expanding field of study that

has drawn a lot of interest because it has the potential to

completely transform user interfaces across several

industries. More immersive and natural-feeling alternatives

are gradually replacing the conventional means of

interaction, which depend on tangible tools like keyboards,

mice, and touchscreens. Hand gestures give users a more

fluid and natural way to interact with devices, giving them

more dynamic and adaptable control over them.

The capabilities of hand gesture detection systems have been

further improved with the introduction of Convolutional

Neural Networks (CNNs). Because CNNs can automatically

learn spatial hierarchies of features directly from raw input

images, they are a type of deep learning model that is

especially useful for image and video recognition tasks.

CNNs are now the best architecture for hand gesture

recognition systems because they do not require laborious

manual feature extraction and pre-processing procedures.
This project focuses on developing a hand gesture detection

system using CNNs to classify various hand gestures. The

system is designed to function under different environmental

conditions, such as varying lighting, background noise, and

hand orientation, making it adaptable and robust for practical

use. By leveraging the deep learning capabilities of CNNs,

this project aims to provide a more natural, flexible, and

immersive way to interact with devices.

II. LITERATURE SURVEY

The selected papers present diverse approaches to hand

gesture recognition using thermal or infrared imaging

technologies, focusing on real-time performance and

adaptability to various environments. Paper [1] introduces a

low-cost, low-latency system using a 32×24 thermal imager

and 2D CNN with Temporal Convolutional Networks,

optimized for embedded hardware but limited to basic

gestures due to its low resolution. Paper [2] builds upon this

with a high-resolution thermal camera and Deep CNN,

enhancing accuracy in low-light and thermal-variable

settings, although it's sensitive to temperature shifts. Paper

[3] utilizes Leap Motion's infrared imagery with CNNs,

providing high accuracy in low-light environments but is

limited in gesture complexity due to sensor constraints.

Paper [4] explores a CNN and Deep Belief Network-based

system for healthcare, integrating fuzzy logic for dynamic

gesture recognition, with high real-time accuracy but limited

scalability. Paper [5] proposes a resource-efficient model

using a 24×32 thermal sensor with Spiking Neural Networks

and Sparse Segmentation, delivering high accuracy and

energy efficiency, although it's geared towards automotive

use and constrained by sensor limitations. Lastly, Paper [6]

shifts focus to gesture-based control for virtual mouse

http://www.ijsrem.com/
mailto:aishwaryabhandari05@gmail.com
mailto:monikabsecomm@gmail.com
mailto:ashikaramesh626@gmail.com
mailto:rakshithadoddegowda@gmail.com
mailto:ksa@mcehassan.ac.in

 International Journal of Scientific Research in Engineering and Management (IJSREM)

 Volume: 09 Issue: 05 | May - 2025 SJIF Rating: 8.586 ISSN: 2582-3930

© 2025, IJSREM | www.ijsrem.com DOI: 10.55041/IJSREM47014 | Page 2

systems in unconventional environments, employing

OpenCV and MediaPipe for high-accuracy, contactless

interaction, yet faces issues with varying lighting and gesture

set limitations.

III. PROBLEM DEFINITION

Because hand gesture recognition systems rely on manual

feature extraction and are sensitive to environmental factors

like lighting, background, and user-specific characteristics,

they have historically had difficulty adapting to real-world

scenarios.

The goal of our project is to create a vision-based hand

gesture recognition system that can accurately identify

gestures using thermal images. The suggested system should

provide a natural, glove-free user experience for controlling

computer applications while being robust against changes in

lighting, background complexity, and hand orientation.

IV. OBJECTIVE OF THE PROJECT

This project's main goal is to create a CNN based hand

gesture detection system that enables users to operate devices

with hand gestures. The system ought to achieve the

following particular objectives:

• Gesture Classification: Identify different hand gestures from

input images with accuracy.

• Adaptability: The system should work in a range of

scenarios, such as those with varying backgrounds, lighting,

and hand orientations.

• Low Latency: Make sure the CNN model operates

effectively on low-power devices by optimizing it for quick

inference.

• Useful Application: The system ought to be appropriate for

a variety of uses, such as virtual reality, gaming, assistive

technology, and Internet of Things (IoT) control.

Through touch-free and gesture-based controls, this project

aims to improve user interaction, increase accessibility, and

open up new possibilities for immersive experience.

V. METHODOLOGY

1. Data Collection and Preprocessing:

• Data Collection: To begin, We Collected a dataset of
hand gesture photos representing the different gestures the
system needs to recognize. To guarantee model robustness,
this dataset is generated by taking pictures of hand gestures in
a variety of lighting scenarios, from different perspectives,
and against different backgrounds.

• Data Augmentation: Rotation, scaling, flipping,
brightness adjustment, and cropping are examples of data
augmentation techniques used to enhance model
generalization. This makes the training data more varied and
aids the CNN model in learning to identify gestures in a
variety of real-world situations.

• Data preprocessing: Every picture is resized to a
predetermined input size that works with the CNN design. In
order to standardize the images and facilitate quicker and more
reliable model training, color normalization and scaling are
also used.

2. CNN Model Design and Architecture Selection:

• Architecture Selection: A CNN architecture, such as
MobileNetV2 or ResNet, that strikes a balance between
accuracy and efficiency is chosen for this project. With fewer

parameters, these architectures are renowned for their capacity
to recognize spatial hierarchies in images, which qualifies
them for real-time applications.

• Model Design: To enable the model to distinguish
between various gesture classes, a softmax output layer and a
few fully connected layers are added to the selected CNN
architecture. Another option is transfer learning, in which a
previously trained model is adjusted using the gesture dataset
to increase accuracy and speed of convergence.

• Hyperparameter tuning: To attain the best model
performance, hyperparameters like learning rate, batch size,
and number of epochs are adjusted. Methods such as grid
search or random search are used to identify the best for the
hyperparameter training.

3. Model Training:

• The dataset is divided into training, validation, and test
sets, and the model is trained using the labelled hand gesture
images. Since cross-entropy loss works well for multi-class
classification tasks, it is utilized as the loss function. The
model learns to correctly identify each gesture class by
iteratively adjusting its weights during training in order to
minimize the loss.

• Checkpoints and Early Stopping: Depending on how well
the model performs on the validation set, early stopping is
applied to avoid overfitting. In order to preserve the top-
performing model, checkpoints are also saved at regular
intervals.

4. Evaluation and testing:

• Following training, the model's accuracy, precision,
recall, and F1 score for each gesture class are assessed using
the test set. To examine performance in greater detail, ROC
curves and confusion matrices can be produced.

5. Model Optimization:

• The model is optimized using methods like quantization
and pruning, which lower the model's size and computational
load, in order to achieve real-time performance. This makes it
possible to use the model on devices with limited resources,
like smartphones or embedded systems, without sacrificing
accuracy.

• Framework Selection: Frameworks such as TensorFlow
Lite or ONNX are used to transform the trained model into a
format appropriate for embedded and mobile environments,
thereby facilitating deployment across various platforms.

6. Deployment and User Interface Design:

• Integration with User Interface: A user interface is
developed to enable users to interact with the system and view
gesture detection results. This interface could be a
straightforward computer or mobile application that displays
predictions while the user makes gestures.

7. Evaluation and Iterative Improvement:

• User Testing and Feedback: Following deployment, the
system is put through user testing to get input on response
time, accuracy, and usability. This input is crucial for
improving the model and implementing any changes that are
required to boost performance.

• Continuous Improvement: The model and interface are
further enhanced in response to user feedback and any
identified flaws. This could entail improving the interface for
a more user-friendly experience, modifying hyperparameters,
or retraining the model with more data.

http://www.ijsrem.com/

 International Journal of Scientific Research in Engineering and Management (IJSREM)

 Volume: 09 Issue: 05 | May - 2025 SJIF Rating: 8.586 ISSN: 2582-3930

© 2025, IJSREM | www.ijsrem.com DOI: 10.55041/IJSREM47014 | Page 3

2.Non Functional Requirements:

Fig 1. Methodology

VI. SOFTWARE REQUIREMENT

1. Functional Requirements:

Functional requirements outline the precise features and

operations that the system must have.

These specifications outline the required functionalities and

expected behaviour.

1. Gesture Recognition: Using real-time camera input, the

system ought to be able to identify hand gestures.

Different hand gestures should be categorized by the system

into pre-established groups (e.g., open hand, fist, point,

wave).

2. CNN Model Training: Labelled hand gesture datasets

should be supported by the system for CNN model training.

The model should be able to learn hand gestures in a variety

of backgrounds, lighting conditions, and angles.

3. Preprocessing of Input Images: Before sending input

images to the CNN model, the system should preprocess them

to guarantee correct scaling, normalization, and noise

reduction. Image augmentation methods such as flipping,

scaling, and rotation should be applied during training to

improve robustness.

4. Gesture feedback: The system should give real-time

feedback on gestures that are detected. These gestures can be

used to control a device or application (e.g., moving a cursor,

controlling media) or visualized (on-screen display).

5. System Deployment: For Internet of Things applications,

the system should be able to deploy on a variety of platforms,

including desktop PCs and edge devices like the Raspberry

Pi or Jetson Nano.

6. User Interface: To configure the hand gesture detection

settings, such as training modes, gesture classifications, and

other parameters, the system should have an intuitive user

interface.

The system's overall quality attributes, limitations, and

operational features are defined by non-functional

requirements.

1. Performance The accuracy of the system's gesture

classification is high (above 90%).

The processing speed should be low enough (less than 100

ms per frame) to allow for real-time performance.

2. Scalability: The system should be able to accommodate

more hand gestures as required, either by adding more

gestures to the vocabulary or by simply retraining users.

The system should work with a variety of devices, including

low-power edge devices and powerful workstations.
3. Reliability: The system should be able to recognize gestures
with few errors in a variety of environmental settings,
including different backgrounds and lighting.
It should run constantly without crashing or needing to be
restarted frequently.
The system should be easy to use, with a straightforward
interface that allows users to interact with gestures,
particularly in real-world applications like gaming or Internet
of Things control. The model should be simple and shouldn't
require the user to go through complicated setup procedures.
5. Robustness: Make sure the system can withstand a range of
hand gesture shapes, rotations, and speeds without
experiencing appreciable performance degradation by making
it resistant to noise and image distortions.
6. Security: If the system is used on mobile or Internet of
Things devices, it should guarantee the safe handling of user
data, and adhere to data protection regulation.

7. Portability: The system must be able to run on a variety of
hardware platforms, such as embedded systems, mobile
devices, and desktop computers.

2.1 Hardware Requirements:

The hand gesture detection system's hardware specifications

are crucial for ensuring accuracy, real-time processing, and

effective operation across a range of devices.

1. Hardware for computing:

• CPU: A multi-core processor with a high clock speed (Intel

i5/i7 or an AMD equivalent) that can effectively handle

demanding CNN calculations.

• GPU: For CNN model training and providing real-time

performance during inference, a high-performance GPU

(NVIDIA GTX 1060 or higher, or equivalent) is required.

CNNs are computationally costly, particularly when it comes

to training. Model training will be substantially accelerated

by GPUs.

• RAM: For seamless model training and managing numerous

data inputs, a minimum of 8GB of RAM is required, but

16GB is advised.

• Storage: o A 500GB Solid State Drive (SSD) for storing

trained models and datasets.

The system should also have adequate room for storing

different configurations and preprocessing images.

• Thermal Camera: o A high-resolution camera that records

hand gestures and provides input for real-time detection,

ideally with a resolution of 1080p or higher.

To clearly record gesture movements in a range of lighting

conditions, it should have an adjustable frame rate.

http://www.ijsrem.com/

 International Journal of Scientific Research in Engineering and Management (IJSREM)

 Volume: 09 Issue: 05 | May - 2025 SJIF Rating: 8.586 ISSN: 2582-3930

© 2025, IJSREM | www.ijsrem.com DOI: 10.55041/IJSREM47014 | Page 4

2. Power Supply: When operating the system on portable or

edge devices, a steady power source is essential for

continuous operation.

2.2 Software Requirements:

The software specifications guarantee the system's efficient

development, training, and deployment while preserving its

adaptability.
1. Languages used for programming:

• Python: The main programming language used to

implement the CNN model and manage training, real-time

inference, and image processing.

Python libraries like PyTorch or TensorFlow/Keras will be

used to build and train the CNN model, while OpenCV will

be used for image processing.

2. Frameworks and Libraries:

• TensorFlow/Keras or PyTorch: Deep learning frameworks

for training, inferring, and creating models.

TensorFlow/Keras is frequently chosen for production-level

deployment, whereas PyTorch is widely used for prototyping

and research.

• OpenCV: Used for pre-processing image data for CNN,

real-time image processing, and webcam hand gesture

capture.

• NumPy and Pandas: For managing array operations, data

manipulation, and dataset storage.

• Scikit-learn: For hyperparameter tuning, model

performance evaluation, and other machine learning tasks.

• Matplotlib/Seaborn: For displaying performance plots,

validation outcomes, and model training metrics.

3. Operating System:

macOS, Linux (Ubuntu is recommended), or Windows: The

environment for development and deployment determines the

option. Linux is frequently the best option for research and

development because of its improved GPU support and

compatibility with machine learning libraries.

• Linux-based operating systems, such as JetPack (for the

NVIDIA Jetson Nano) or Raspbian (for the Raspberry Pi), are

utilized for deployment on edge devices.

4. Development Environment:

• Integrated Development Environment (IDE): o Visual

Studio Code or PyCharm for Python development, which

offers superior support for OpenCV, TensorFlow, and Keras.

• Jupyter Notebook (Optional): For testing and assessing

models.

Fig 2. Class Diagram

• HandGesture: Represents a hand gesture, holding

information like gesture ID and name. It includes the

recognizeGesture() method for recognizing the gesture.

• Preprocessing: Handles preprocessing tasks such as

resizing, normalizing, and augmenting the images to prepare

them for classification.

• CNNModel: The core class that performs the model training

and classification. It includes methods like trainModel() for

training and classifyGesture() for classifying the gesture.

VIII. ALGORITHM USED

With a primary focus on image processing, Convolutional

Neural Networks (CNNs) are sophisticated deep learning

models designed for structured data analysis. By using fully

connected layers for decision-making, pooling layers to

lower computational complexity, and convolutional layers to

extract features, they mimic the human visual system by

spotting hierarchical patterns. CNNs excel in a variety of

applications, including object detection, medical diagnostics,

autonomous vehicles, and facial recognition, because of their

ability to detect edges, textures, shapes, and objects. Their

capacity to automatically extract features from unprocessed

data, eliminating the need for feature engineering, has

transformed computer vision and is propelling advancements

in artificial intelligence.

IX. SEQUENCE DIAGRAM

A sequence diagram illustrates how the objects interact in a

sequence over time, focusing on the flow of messages

between them.

VII. CLASS DIAGRAM

The Class Diagram shows the structure of the system,

detailing the classes, attributes, and their interactions. The

primary classes in this system are Hand Gesture,

Preprocessing, and CNN Model.

Fig 3. Sequence Diagram

http://www.ijsrem.com/

 International Journal of Scientific Research in Engineering and Management (IJSREM)

 Volume: 09 Issue: 05 | May - 2025 SJIF Rating: 8.586 ISSN: 2582-3930

© 2025, IJSREM | www.ijsrem.com DOI: 10.55041/IJSREM47014 | Page 5

User interacts with the system by capturing an image through

the Camera.

• The Camera sends the captured image to the Preprocessing

module.

• After preprocessing, the image is sent to the CNN Model

for classification.

• The CNN Model sends the gesture prediction to the System.

• The System then sends the prediction to the User Interface,

which displays the detected gesture to the User.

X. RESULTS

The model was trained and tested using a dataset of 6024

thermal images containing twelve different hand gestures.

The overall accuracy achieved was 95.2%, indicating a strong

performance in gesture recognition.

Fig 4. Classification Report

Comparison with RGB Images:

Comparison with RGB-Based Gesture Recognition A
comparative study was conducted between thermal image-
based and RGB-based gesture recognition systems:

Fig 5

XI. CONCLUSION

The implementation of a Hand Gesture Recognition System

Using Thermal Images presents a significant advancement in

human-computer interaction, particularly in environments

where traditional optical methods struggle due to lighting

conditions or background noise. By leveraging thermal

imaging technology, this system effectively detects and

classifies hand gestures based on temperature variations,

enabling a robust and reliable recognition framework.

Throughout this project, various methodologies were

explored, including image preprocessing, feature extraction,

and classification using deep learning models. The

integration of convolutional neural networks (CNNs)

significantly enhanced the accuracy and efficiency of gesture

recognition. The experimental results demonstrated the

feasibility of the proposed system, achieving high recognition

rates with minimal computational overhead.

XII. FURTHER WORK

While the proposed system has demonstrated substantial

promise, several areas warrant further investigation and

improvement:

1. Enhanced Feature Extraction: Future work could explore

more sophisticated feature extraction techniques to improve

the differentiation between gestures with minor thermal

variations.

2. Real-Time Implementation: The current model can be

optimized for real-time applications by integrating more

efficient architectures and utilizing hardware accelerators

such as TensorRT or FPGA-based implementations.

3. Extended Gesture Dataset: Expanding the dataset to

include a more diverse range of hand gestures and individuals

from different demographics will enhance the model’s

generalization capability.

4. Multi-Modal Fusion: Combining thermal imaging with

other modalities, such as depth sensors or traditional RGB

cameras, could improve recognition accuracy and provide

richer contextual information.

5. Adaptive Learning Models: Implementing adaptive

learning techniques that adjust model parameters based on

environmental conditions and user-specific characteristics

can further enhance system robustness.

6. Integration with IoT and Smart Devices: Incorporating this

technology into IoT-based applications, such as smart homes

or industrial automation systems, can open new avenues for

practical deployment.

XIII. REFERENCES

[1] M. Vandersteegen, W. Reusen, K. Van Beeck, and T.

Goedeme, "Low-latency hand gesture recognition with a low-

resolution thermal imager system," arXiv preprint

arXiv:2004.11623, 2020.

[2] D. S. Breland, A. Dayal, A. Jha, P. K. Yalavarthy, O. J.

Pandey, and L. Reddy, "Robust Hand Gestures Recognition

using a Deep CNN and Thermal Images," ResearchGate,

2021. [Online].

Available:

https://www.researchgate.net/publication/355220981
[3] T. Banerjee, K. V. P. Sriraksha, A. Reddy, K. S. Biradar,

R. R. Koripally, and G. Varshitha, "Hand sign recognition

using infrared imagery provided by Leap Motion Controller

and computer vision,"ResearchGate,2021.[Online].

Available:
https://www.researchgate.net/publication/356123 456

[4] M. Alonzi, H. Ansar, V. Al Mudawi, S. Alotaibi, N. A.

Almujally, and A. Alazeb, "Smart Healthcare Hand Gesture

Recognition Using CNN-Based Detector and Deep Belief

Network,"ScholarX,2021.[Online].

Available:

https://scholarx.skku.edu/handle/2021.sw.skku/107 021

[5] E. J. Candes, S. R. Mokalla, P. Molchanov, and A. Safa,

"Resource-Efficient Gesture Recognition using Low-

Resolution Thermal Camera via Spiking Neural Networks

and Sparse Segmentation," arXiv preprint arXiv:2401.06563,

2023.

[6] N. Sabrin TK and A. Karande, "Real-Time Virtual Mouse

using Hand Gestures for Unconventional Environment,"

ResearchGate, 2023. [Online]. Available:

https://www.researchgate.net/publication/375876808

http://www.ijsrem.com/
https://www.researchgate.net/publication/355220981
https://www.researchgate.net/publication/356123%20456
https://scholarx.skku.edu/handle/2021.sw.skku/107%20021
https://www.researchgate.net/publication/375876808

