
              International Journal of Scientific Research in Engineering and Management (IJSREM) 

                        Volume: 09 Issue: 05 | May - 2025                             SJIF Rating: 8.586                                    ISSN: 2582-3930                                                                                                                                               

 

© 2025, IJSREM      | www.ijsrem.com                                 DOI: 10.55041/IJSREM47014                                       |        Page 1 
 

Hand Gesture Recognition System using Thermal Images 
 

 

Aishwarya Bhandari R 

Department of Information Science & 

Engineering 

Malnad College of Engineering 

Hassan, India 

aishwaryabhandari05@gmail.com 

Monika B S 

Department of Information Science & 

Engineering 

Malnad College of Engineering 

Hassan, India 

monikabsecomm@gmail.com 

Ashika R 

Department of Information Science & 

Engineering 

Malnad College of Engineering 

Hassan, India 

ashikaramesh626@gmail.com 

Rakshitha D 

Department of Information Science & 

Engineering 

Malnad College of Engineering 

Hassan, India 

rakshithadoddegowda@gmail.com 

Mr. Krishna Swaroop A 

Assistant Professor 

Department of Information Science & 

Engineering 

Malnad College of Engineering 

Hassan, India 

ksa@mcehassan.ac.in 

 

 

Abstract— Hand gesture detection is a pivotal technology in 

advancing human-computer interaction, offering intuitive and 

touch-free control across various applications. This paper 

presents the development of a robust hand gesture detection 

system utilizing Convolutional Neural Networks (CNNs), 

leveraging their ability to automatically extract and learn 

spatial hierarchies of features from input images. The proposed 

system processes hand images and accurately classifies various 

gestures, addressing challenges associated with traditional 

recognition methods that require extensive feature engineering 

and complex pre-processing. 

The primary objective of this research is to enable seamless 

interaction between users and devices through hand gestures, 

enhancing accessibility in domains such as gaming, assistive 

technology, and virtual reality. A labeled dataset of hand gesture 

images is used to train and optimize the CNN model to achieve 

high accuracy and low latency in real-time predictions. The 

performance of the system is further enhanced by implementing 

efficient CNN architectures and optimizing the model for low- 

power devices, thereby expanding its practical applications. The 

proposed system demonstrates the potential to provide a more 

natural, flexible, and immersive interaction experience across 

diverse digital environments. 

Keywords— Machine learning, Deep learning, Hand Gesture, 

image processing, Convolutional neural networks, Thermal images 

I. INTRODUCTION 

A key technology in human-computer interaction, hand 

gesture detection allows for touchless, intuitive control of a 

variety of devices. It is a quickly expanding field of study that 

has drawn a lot of interest because it has the potential to 

completely transform user interfaces across several 

industries. More immersive and natural-feeling alternatives 

are gradually replacing the conventional means of 

interaction, which depend on tangible tools like keyboards, 

mice, and touchscreens. Hand gestures give users a more 

fluid and natural way to interact with devices, giving them 

more dynamic and adaptable control over them. 

The capabilities of hand gesture detection systems have been 

further improved with the introduction of Convolutional 

Neural Networks (CNNs). Because CNNs can automatically 

learn spatial hierarchies of features directly from raw input 

images, they are a type of deep learning model that is 

especially useful for image and video recognition tasks. 

CNNs are now the best architecture for hand gesture 

recognition systems because they do not require laborious 

manual feature extraction and pre-processing procedures. 
This project focuses on developing a hand gesture detection 

system using CNNs to classify various hand gestures. The 

system is designed to function under different environmental 

conditions, such as varying lighting, background noise, and 

hand orientation, making it adaptable and robust for practical 

use. By leveraging the deep learning capabilities of CNNs, 

this project aims to provide a more natural, flexible, and 

immersive way to interact with devices. 

II. LITERATURE SURVEY 

The selected papers present diverse approaches to hand 

gesture recognition using thermal or infrared imaging 

technologies, focusing on real-time performance and 

adaptability to various environments. Paper [1] introduces a 

low-cost, low-latency system using a 32×24 thermal imager 

and 2D CNN with Temporal Convolutional Networks, 

optimized for embedded hardware but limited to basic 

gestures due to its low resolution. Paper [2] builds upon this 

with a high-resolution thermal camera and Deep CNN, 

enhancing accuracy in low-light and thermal-variable 

settings, although it's sensitive to temperature shifts. Paper 

[3] utilizes Leap Motion's infrared imagery with CNNs, 

providing high accuracy in low-light environments but is 

limited in gesture complexity due to sensor constraints. 

 

Paper [4] explores a CNN and Deep Belief Network-based 

system for healthcare, integrating fuzzy logic for dynamic 

gesture recognition, with high real-time accuracy but limited 

scalability. Paper [5] proposes a resource-efficient model 

using a 24×32 thermal sensor with Spiking Neural Networks 

and Sparse Segmentation, delivering high accuracy and 

energy efficiency, although it's geared towards automotive 

use and constrained by sensor limitations. Lastly, Paper [6] 

shifts focus to gesture-based control for virtual mouse 
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systems in unconventional environments, employing 

OpenCV and MediaPipe for high-accuracy, contactless 

interaction, yet faces issues with varying lighting and gesture 

set limitations. 

III. PROBLEM DEFINITION 

Because hand gesture recognition systems rely on manual 

feature extraction and are sensitive to environmental factors 

like lighting, background, and user-specific characteristics, 

they have historically had difficulty adapting to real-world 

scenarios. 

The goal of our project is to create a vision-based hand 

gesture recognition system that can accurately identify 

gestures using thermal images. The suggested system should 

provide a natural, glove-free user experience for controlling 

computer applications while being robust against changes in 

lighting, background complexity, and hand orientation. 

IV. OBJECTIVE OF THE PROJECT 

This project's main goal is to create a CNN based hand 

gesture detection system that enables users to operate devices 

with hand gestures. The system ought to achieve the 

following particular objectives: 

• Gesture Classification: Identify different hand gestures from 

input images with accuracy. 

• Adaptability: The system should work in a range of 

scenarios, such as those with varying backgrounds, lighting, 

and hand orientations. 

• Low Latency: Make sure the CNN model operates 

effectively on low-power devices by optimizing it for quick 

inference. 

• Useful Application: The system ought to be appropriate for 

a variety of uses, such as virtual reality, gaming, assistive 

technology, and Internet of Things (IoT) control. 

Through touch-free and gesture-based controls, this project 

aims to improve user interaction, increase accessibility, and 

open up new possibilities for immersive experience. 

V. METHODOLOGY 

1. Data Collection and Preprocessing: 

• Data Collection: To begin, We Collected a dataset of 
hand gesture photos representing the different gestures the 
system needs to recognize. To guarantee model robustness, 
this dataset is generated by taking pictures of hand gestures in 
a variety of lighting scenarios, from different perspectives, 
and against different backgrounds. 

• Data Augmentation: Rotation, scaling, flipping, 
brightness adjustment, and cropping are examples of data 
augmentation techniques used to enhance model 
generalization. This makes the training data more varied and 
aids the CNN model in learning to identify gestures in a 
variety of real-world situations. 

• Data preprocessing: Every picture is resized to a 
predetermined input size that works with the CNN design. In 
order to standardize the images and facilitate quicker and more 
reliable model training, color normalization and scaling are 
also used. 

2. CNN Model Design and Architecture Selection: 

• Architecture Selection: A CNN architecture, such as 
MobileNetV2 or ResNet, that strikes a balance between 
accuracy and efficiency is chosen for this project. With fewer 

parameters, these architectures are renowned for their capacity 
to recognize spatial hierarchies in images, which qualifies 
them for real-time applications. 

• Model Design: To enable the model to distinguish 
between various gesture classes, a softmax output layer and a 
few fully connected layers are added to the selected CNN 
architecture. Another option is transfer learning, in which a 
previously trained model is adjusted using the gesture dataset 
to increase accuracy and speed of convergence. 

• Hyperparameter tuning: To attain the best model 
performance, hyperparameters like learning rate, batch size, 
and number of epochs are adjusted. Methods such as grid 
search or random search are used to identify the best for the 
hyperparameter training. 

3. Model Training: 

• The dataset is divided into training, validation, and test 
sets, and the model is trained using the labelled hand gesture 
images. Since cross-entropy loss works well for multi-class 
classification tasks, it is utilized as the loss function. The 
model learns to correctly identify each gesture class by 
iteratively adjusting its weights during training in order to 
minimize the loss. 

• Checkpoints and Early Stopping: Depending on how well 
the model performs on the validation set, early stopping is 
applied to avoid overfitting. In order to preserve the top- 
performing model, checkpoints are also saved at regular 
intervals. 

4. Evaluation and testing: 

• Following training, the model's accuracy, precision, 
recall, and F1 score for each gesture class are assessed using 
the test set. To examine performance in greater detail, ROC 
curves and confusion matrices can be produced. 

5. Model Optimization: 

• The model is optimized using methods like quantization 
and pruning, which lower the model's size and computational 
load, in order to achieve real-time performance. This makes it 
possible to use the model on devices with limited resources, 
like smartphones or embedded systems, without sacrificing 
accuracy. 

• Framework Selection: Frameworks such as TensorFlow 
Lite or ONNX are used to transform the trained model into a 
format appropriate for embedded and mobile environments, 
thereby facilitating deployment across various platforms. 

6. Deployment and User Interface Design: 

• Integration with User Interface: A user interface is 
developed to enable users to interact with the system and view 
gesture detection results. This interface could be a 
straightforward computer or mobile application that displays 
predictions while the user makes gestures. 

7. Evaluation and Iterative Improvement: 

• User Testing and Feedback: Following deployment, the 
system is put through user testing to get input on response 
time, accuracy, and usability. This input is crucial for 
improving the model and implementing any changes that are 
required to boost performance. 

• Continuous Improvement: The model and interface are 
further enhanced in response to user feedback and any 
identified flaws. This could entail improving the interface for 
a more user-friendly experience, modifying hyperparameters, 
or retraining the model with more data. 

http://www.ijsrem.com/
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2.Non Functional Requirements: 
 
 

 

 

Fig 1. Methodology 

 

 

VI. SOFTWARE REQUIREMENT 

1. Functional Requirements: 

Functional requirements outline the precise features and 

operations that the system must have. 

These specifications outline the required functionalities and 

expected behaviour. 

1. Gesture Recognition: Using real-time camera input, the 

system ought to be able to identify hand gestures. 

Different hand gestures should be categorized by the system 

into pre-established groups (e.g., open hand, fist, point, 

wave). 

2. CNN Model Training: Labelled hand gesture datasets 

should be supported by the system for CNN model training. 

The model should be able to learn hand gestures in a variety 

of backgrounds, lighting conditions, and angles. 

3. Preprocessing of Input Images: Before sending input 

images to the CNN model, the system should preprocess them 

to guarantee correct scaling, normalization, and noise 

reduction. Image augmentation methods such as flipping, 

scaling, and rotation should be applied during training to 

improve robustness. 

4. Gesture feedback: The system should give real-time 

feedback on gestures that are detected. These gestures can be 

used to control a device or application (e.g., moving a cursor, 

controlling media) or visualized (on-screen display). 

5. System Deployment: For Internet of Things applications, 

the system should be able to deploy on a variety of platforms, 

including desktop PCs and edge devices like the Raspberry 

Pi or Jetson Nano. 

6. User Interface: To configure the hand gesture detection 

settings, such as training modes, gesture classifications, and 

other parameters, the system should have an intuitive user 

interface. 

The system's overall quality attributes, limitations, and 

operational features are defined by non-functional 

requirements. 

1. Performance The accuracy of the system's gesture 

classification is high (above 90%). 

The processing speed should be low enough (less than 100 

ms per frame) to allow for real-time performance. 

2. Scalability: The system should be able to accommodate 

more hand gestures as required, either by adding more 

gestures to the vocabulary or by simply retraining users. 

The system should work with a variety of devices, including 

low-power edge devices and powerful workstations. 
3. Reliability: The system should be able to recognize gestures 
with few errors in a variety of environmental settings, 
including different backgrounds and lighting. 
It should run constantly without crashing or needing to be 
restarted frequently. 
The system should be easy to use, with a straightforward 
interface that allows users to interact with gestures, 
particularly in real-world applications like gaming or Internet 
of Things control. The model should be simple and shouldn't 
require the user to go through complicated setup procedures. 
5. Robustness: Make sure the system can withstand a range of 
hand gesture shapes, rotations, and speeds without 
experiencing appreciable performance degradation by making 
it resistant to noise and image distortions. 
6. Security: If the system is used on mobile or Internet of 
Things devices, it should guarantee the safe handling of user 
data, and adhere to data protection regulation. 

 
7. Portability: The system must be able to run on a variety of 
hardware platforms, such as embedded systems, mobile 
devices, and desktop computers. 

 

2.1 Hardware Requirements: 

 

The hand gesture detection system's hardware specifications 

are crucial for ensuring accuracy, real-time processing, and 

effective operation across a range of devices. 

1. Hardware for computing: 

• CPU: A multi-core processor with a high clock speed (Intel 

i5/i7 or an AMD equivalent) that can effectively handle 

demanding CNN calculations. 

• GPU: For CNN model training and providing real-time 

performance during inference, a high-performance GPU 

(NVIDIA GTX 1060 or higher, or equivalent) is required. 

CNNs are computationally costly, particularly when it comes 

to training. Model training will be substantially accelerated 

by GPUs. 

• RAM: For seamless model training and managing numerous 

data inputs, a minimum of 8GB of RAM is required, but 

16GB is advised. 

• Storage: o A 500GB Solid State Drive (SSD) for storing 

trained models and datasets. 

The system should also have adequate room for storing 

different configurations and preprocessing images. 

• Thermal Camera: o A high-resolution camera that records 

hand gestures and provides input for real-time detection, 

ideally with a resolution of 1080p or higher. 

To clearly record gesture movements in a range of lighting 

conditions, it should have an adjustable frame rate. 

http://www.ijsrem.com/
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2. Power Supply: When operating the system on portable or 

edge devices, a steady power source is essential for 

continuous operation. 

 

2.2 Software Requirements: 

 

The software specifications guarantee the system's efficient 

development, training, and deployment while preserving its 

adaptability. 
1. Languages used for programming: 

• Python: The main programming language used to 

implement the CNN model and manage training, real-time 

inference, and image processing. 

Python libraries like PyTorch or TensorFlow/Keras will be 

used to build and train the CNN model, while OpenCV will 

be used for image processing. 

2. Frameworks and Libraries: 

• TensorFlow/Keras or PyTorch: Deep learning frameworks 

for training, inferring, and creating models. 

TensorFlow/Keras is frequently chosen for production-level 

deployment, whereas PyTorch is widely used for prototyping 

and research. 

• OpenCV: Used for pre-processing image data for CNN, 

real-time image processing, and webcam hand gesture 

capture. 

• NumPy and Pandas: For managing array operations, data 

manipulation, and dataset storage. 

• Scikit-learn: For hyperparameter tuning, model 

performance evaluation, and other machine learning tasks. 

• Matplotlib/Seaborn: For displaying performance plots, 

validation outcomes, and model training metrics. 

3. Operating System: 

macOS, Linux (Ubuntu is recommended), or Windows: The 

environment for development and deployment determines the 

option. Linux is frequently the best option for research and 

development because of its improved GPU support and 

compatibility with machine learning libraries. 

• Linux-based operating systems, such as JetPack (for the 

NVIDIA Jetson Nano) or Raspbian (for the Raspberry Pi), are 

utilized for deployment on edge devices. 

4. Development Environment: 

• Integrated Development Environment (IDE): o Visual 

Studio Code or PyCharm for Python development, which 

offers superior support for OpenCV, TensorFlow, and Keras. 

• Jupyter Notebook (Optional): For testing and assessing 

models. 

 
Fig 2. Class Diagram 

• HandGesture: Represents a hand gesture, holding 

information like gesture ID and name. It includes the 

recognizeGesture() method for recognizing the gesture. 

• Preprocessing: Handles preprocessing tasks such as 

resizing, normalizing, and augmenting the images to prepare 

them for classification. 

• CNNModel: The core class that performs the model training 

and classification. It includes methods like trainModel() for 

training and classifyGesture() for classifying the gesture. 

 

VIII. ALGORITHM USED 

With a primary focus on image processing, Convolutional 

Neural Networks (CNNs) are sophisticated deep learning 

models designed for structured data analysis. By using fully 

connected layers for decision-making, pooling layers to 

lower computational complexity, and convolutional layers to 

extract features, they mimic the human visual system by 

spotting hierarchical patterns. CNNs excel in a variety of 

applications, including object detection, medical diagnostics, 

autonomous vehicles, and facial recognition, because of their 

ability to detect edges, textures, shapes, and objects. Their 

capacity to automatically extract features from unprocessed 

data, eliminating the need for feature engineering, has 

transformed computer vision and is propelling advancements 

in artificial intelligence. 

 

IX. SEQUENCE DIAGRAM 

A sequence diagram illustrates how the objects interact in a 

sequence over time, focusing on the flow of messages 

between them. 

VII. CLASS DIAGRAM 

The Class Diagram shows the structure of the system, 

detailing the classes, attributes, and their interactions. The 

primary classes in this system are Hand Gesture, 

Preprocessing, and CNN Model. 

 

 

 

 

 

 

 

 

 

Fig 3. Sequence Diagram 
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User interacts with the system by capturing an image through 

the Camera. 

• The Camera sends the captured image to the Preprocessing 

module. 

• After preprocessing, the image is sent to the CNN Model 

for classification. 

• The CNN Model sends the gesture prediction to the System. 

• The System then sends the prediction to the User Interface, 

which displays the detected gesture to the User. 

X. RESULTS 

The model was trained and tested using a dataset of 6024 

thermal images containing twelve different hand gestures. 

The overall accuracy achieved was 95.2%, indicating a strong 

performance in gesture recognition. 
 

Fig 4. Classification Report 

Comparison with RGB Images: 

Comparison with RGB-Based Gesture Recognition A 
comparative study was conducted between thermal image- 
based and RGB-based gesture recognition systems: 

 

 

Fig 5 

XI. CONCLUSION 

The implementation of a Hand Gesture Recognition System 

Using Thermal Images presents a significant advancement in 

human-computer interaction, particularly in environments 

where traditional optical methods struggle due to lighting 

conditions or background noise. By leveraging thermal 

imaging technology, this system effectively detects and 

classifies hand gestures based on temperature variations, 

enabling a robust and reliable recognition framework. 

Throughout this project, various methodologies were 

explored, including image preprocessing, feature extraction, 

and classification using deep learning models. The 

integration of convolutional neural networks (CNNs) 

significantly enhanced the accuracy and efficiency of gesture 

recognition. The experimental results demonstrated the 

feasibility of the proposed system, achieving high recognition 

rates with minimal computational overhead. 

XII. FURTHER WORK 

While the proposed system has demonstrated substantial 

promise, several areas warrant further investigation and 

improvement: 

1. Enhanced Feature Extraction: Future work could explore 

more sophisticated feature extraction techniques to improve 

the differentiation between gestures with minor thermal 

variations. 

2. Real-Time Implementation: The current model can be 

optimized for real-time applications by integrating more 

efficient architectures and utilizing hardware accelerators 

such as TensorRT or FPGA-based implementations. 

3. Extended Gesture Dataset: Expanding the dataset to 

include a more diverse range of hand gestures and individuals 

from different demographics will enhance the model’s 

generalization capability. 

4. Multi-Modal Fusion: Combining thermal imaging with 

other modalities, such as depth sensors or traditional RGB 

cameras, could improve recognition accuracy and provide 

richer contextual information. 

5. Adaptive Learning Models: Implementing adaptive 

learning techniques that adjust model parameters based on 

environmental conditions and user-specific characteristics 

can further enhance system robustness. 

6. Integration with IoT and Smart Devices: Incorporating this 

technology into IoT-based applications, such as smart homes 

or industrial automation systems, can open new avenues for 

practical deployment. 
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