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Abstract:- In this thesis, we show that the traditional 

idea of hashing goes far be-yond near-neighbor search and 

there are some striking new possibilities. We show that 

hashing can improve state of the art large scale learning 

algorithms, and it goes beyond the conventional notions of 

pairwise similarities. Despite being a very well studied topic 

in literature, we found several opportunities for 

fundamentally improving some of the well know textbook 

hashing algorithms. In particular, we show that the 

traditional way of computing minwise hashes is 

unnecessarily expensive and without loosing anything we 
can achieve an order of magnitude speedup. We also found 

that for cosine similarity search there is a better scheme than 

SimHash. In the end, we show that the existing locality 

sensitive hashing framework itself is very restrictive, and we 

cannot have efficient algorithms for some important 

measures like inner products which are ubiquitous in 

machine learning. We propose asymmetric locality sensitive 

hashing (ALSH), an extended frame- work, where we show 

provable and practical efficient algorithms for Maximum 

Inner Product Search (MIPS). Having such an efficient 

solutions to MIPS directly scales up many popular machine 
learning algorithms 

  

INTRODUCTION  

 

 What is Hashing? 

 Hashing Algorithm are the functions that generate a fixed 

length result . 

For instant, think of paper documents that you keep 

crumpling to the point where you aren’t even able to read its 

content anymore. Its almost impossible to restore the 

original data or file input without knowing what the starting 

Data was.We could discuss if it is secured algorithm. Ever 

input number is Individual .  

 

  Hashing Algorithm Explained 

A hash function algorithm is designed to be a one-way 

function, Infeasible to invert. However in recent years 

several Hashing algorithms have been compromised. This 

happened to MD5 , for example  a widly know function 

designed to be cryptographic hash function , which is know  

 

 
Fig1: Hashing Algorithm Example with a simple hash function 

 

very easy to reverse that we could only use for verifying 

data   against unintentional corruption  . 

Its easy to find out what the ideal cryptographic function 

should be like : 

1. It should be fast to compute the hash value for any 

kind of data. 

2. It should be impossible to regenerate a message 

from its value  

3. It should be infeasible to find two message with  
same hash like collision. 

4. Every change to a message, even a smallest one , 

should change the hash value. It should be 

completely different. Its called the Avalanche 

Effect. 

 

 
. 

Fig2: Shows how any small changes can affect the whole hash 

function 

 

 Hashing Algorithm Example  

We’re sending file to our friend. Its very important file and 

we have to ensure that it delivered only in one piece, that 

where our Hashing Function comes in. But first ,lets see 

how our file transfer will look without it. 

Step 1: User1 sends file to User2. 

 

http://www.ijsrem.com/
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Fig3: Example without Hashing Function 

 

 We can figure out some trivial ideas. You could, for 

instance , call user2 and you could check file content 

together.But then what’s the point in sending ? Checksum 

are our godsend here. 

 

 

 
 

 

Fig4: Example with Hash Algorithm 

 

 

Before sending a file, User1 uses a hashing 

algorithm to generate a checksum for a file. Then 

he/she sends it alongside the file itself. User2 receives 

both the file and the checksum. Now he/she can use 

the same hashing algorithm on the received file. 

What’s the point? We already know that a hash is 

individual (so there can’t be any other file with the 

same hash) and has to be always the same for an 

individual file. No matter how many times you use the 

hash algorithm, it will always give you the same result. 

So now, User2 can compare both hashes. If they’re the 

same, it means it’s generated from the same file. There 

is no way that any other file has the same hash and there 

is no chance for a hash to be different for the same file. 

      This way, User2 can verify if the file isn’t in any 

way corrupted. Easy? Certainly. A lot of downloading 

services use checksums to validate the integrity of their 

files. Thanks to that, you can find out if your 

downloaded file isn’t corrupted. 

 

 

Popular Hashing Algorithms 
 

     MD5 

 

Before we go any further – MD5 is completely broken! 

 

If you ever learned any programming language and it 

was some time ago, you surely know this algorithm. It’s 

one of the most widely known. 

 

This hash algorithm used to be widely used and is still one 

of the most widely known hashing algorithms. But despite 

initially being designed to be used as a cryptographic 

algorithm function, it is no longer considered safe to use 

for cryptographic purposes, as it is compromised. In 

particular, it is possible to quickly generate collisions on 

ordinary computers. 

 

When MD5 is used to hash passwords directly, there is an 

even easier way to break it... Google. By typing the hash in 

the search box, there's a good chance you'll receive its 

before-state within milliseconds! Now let’s look at this 

example: 

 

You could think you are secure if your passwords are stored 

as MD5 hashes, but if somebody gets access to your database, 

he/she can just type the hash to Google and get its real value! 

 

 

http://www.ijsrem.com/
https://en.wikipedia.org/wiki/MD5
https://www.gohacking.com/what-is-md5-hash/
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The CMU Software Engineering Institute considers MD5 

essentially “cryptographically broken and unsuitable for 

further use”. It was accepted for many years, but it’s now 

mainly used for verifying data against unintentional 

corruption 

 

    SHA-family 

 

Secure Hash Algorithm is a cryptographic hash function 

designed by the United States’ NSA. SHA-0 (published in 

1993) has been compromised many years ago. SHA-1 

(1995) 

produces a 160-bit (20-byte) hash value. It’s typically 

rendered as a 40 digits long hexadecimal number. It has 

been compromised in 2005 as theoretical collisions were 

discovered, but its real “death” occurred in 2010 when 

many organizations started to recommend its replacement. 

 

The big three – Microsoft, Google, and Mozilla — have 

stopped accepting SHA-1 SSL certificates in 2017 on their 

browsers, after multiple successful attacks. SHA-1 was 

built on principles similar to those used in the design of the 

MD4 and MD5. It has a more conservative approach, 

though. 

 

Safer, for now, is SHA-2. SHA-2 includes several 

important changes. Its family has six hash functions with 

digests: SHA-224, SHA-256 or 512 bits: SHA-224, SHA-

256, SHA-384, SHA- 512, SHA-512/224, SHA-512/256. 

 

There are numerous reasons why you should move to 

SHA-2 if you haven't yet. We also find some useful 

resources that can help you with this move. 

 

As a bottom line, SHA-2 is a lot more complicated and is 

still considered safe. However, SHA-2 shares the same 

structure and mathematical operations as its predecessor 

(SHA-1) — so it's likely that it will be compromised in the 

near future. As so, a new option for the future is SHA- 3. 

 

SHA-3 (Secure Hash Algorithm 3) designed Guido Bertoni, 

Joan Daemen, Michaël Peeters and Gilles Van Assche. 

Their algorithm Keccak won the NIST contest in 2009 and 

has been adopted as an official SHA algorithm. It was 

released by NIST on August 5, 2015. One of SHA- 3's 

requirements was to be resilient to potential attacks that 

could compromise SHA-2. 

 

Keccak is significantly faster than SHA-2 (from 25% to 

80%, depending on implementation). It uses the sponge 

construction. The data is first “absorbed” into the “sponge” 

and the result is “squeezed” out. While absorbing, message 

blocks are XORed into a subset of the state. Then it’s 

transformed as one element. While squeezing, output 

blocks are read from this element, but alternated with state 

transformations. 

A key aspect of SHA-3 is that it was designed to easily 

replace SHA-2 in applications that currently use that 

variant. As so, the transition from SHA-2 to SHA-3 should 

be analyzed in regards to the required security level and the 

overhead (refactoring/testing) — that greatly depend on the 

application's structure and architecture. 

 

Probabilistic Hashing Techniques For Big Data 

 
 

Background: Classical Locality Sensitive Hashing (LSH) 

 

In this technique, we briefly review Locality Sensitive 

Hashing (LSH) families and their applications in sub-linear 

time near neighbor search. We refer readers to [36] for 

detailed description of existing works in LSH literature. This 

thesis provides several new fundamental results and 

improvements in the LSH do- main. The concepts described 

in this chapter will be heavily referred through- out the course 

of this thesis. The Near-Neighbor Search Problem Near-

neighbor search or similarity search is one of the fundamental 

problems in computer science.  

 

The Near-Neighbor Search Problem 

 

 

Near-neighbor search or similarity search is one of the 

fundamental problems in computer science. this problem, we 

are typically given a giant collection C ⊂ RD and a query q ∈ 

RD. The task is to search for point x ∈ C which minimizes (or 

maximizes) the distance (or similarity) with the query q, i.e., 

we are interested in x=arg min Dist(x,q)  

http://www.ijsrem.com/
https://sites.google.com/site/itstheshappening/
https://it.slashdot.org/story/15/10/09/1425207/first-successful-collision-attack-on-the-sha-1-hashing-algorithm
https://en.wikipedia.org/wiki/SHA-2
https://www.entrustdatacard.com/blog/2014/october/sha-2-care
https://www.infoworld.com/article/2879073/security/all-you-need-to-know-about-the-move-to-sha-2-encryption.html
https://www.infoworld.com/article/2879073/security/all-you-need-to-know-about-the-move-to-sha-2-encryption.html
https://keccak.team/index.html
https://www.slideshare.net/gecaccavale/sha3-keccak-sponge-function
https://www.slideshare.net/gecaccavale/sha3-keccak-sponge-function
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Classical LSH Algorithm 

 
To be able to answer queries in sub-linear time, the idea 

behind the LSH al- gorithm is to create hash tables from the 

given collection C which we are in- terested in searching. 

The hash table construction is one time costly operation 

which makes further querying efficient. The hash tables are 

generated using the locality sensitive hash family. 
 

Table 1 Table L 

 

 

 

 

 

 

 

 

 

 

We assume that we have an access to the appropriate 

locality sensitive family H for the similarity search problem 

of interest. The classical (K, L) parameter- ized LSH 

algorithm, which we also refer to as bucketing algorithm, 

works as follows. We generate L different meta-hash 

functions. Each of these meta-hash functions is formed by 

concatenating K sampled hash values from H. 

Bj(x) =[hj1(x); hj2(x); ...; hjK(x)], 

 

 

Non-Linear Learning In Linear Time Via Hashing 

 

With the advent of the Internet, many machine learning 

applications are faced with very large and inherently high-

dimensional datasets, resulting in challenges in scaling up 

training algorithms and storing the data. Especially in the 

context of search and machine translation, corpus sizes used 

in industrial practice have long exceeded the main memory 

capacity of single machine. For example, discusses training 

sets with 1011 items and 109 distinct features, requiring 

novel algorithmic approaches and architectures. 

 

 

 

As a consequence, there has been a renewed 

emphasis on scaling up machine learning techniques. 

In this chapter we show that locality sensitive hashing 

techniques which are used for efficient indexing, for sub-

linear time near-neighbor search, also lead to very efficient 

and practical large scale learning algorithms. In particular, 

we show that a locality sensitive hashing family directly 

leads to kernel features for the associated similarity function. 

These kernel features can then be used for approximate 

learning with (non-linear) kernels in linear time, which 

otherwise is quadratic and proh expensive. 

 

MINHASH or SIMHASH? 

Locality Sensitive Hashing (LSH)) scheme is tightly 

coupled with the underlying hash function which in turn is 

defined with respect to a similar- ity measure. An LSH 

scheme for one similarity measure cannot be used in gen- 

eral for a different similarity measure. Therefore, it is taken 

for granted that the two popular hashing schemes MinHash 

and SimHash, defined in section, are incomparable and the 

choice between them is based on whether the desired notion 

of similarity is resemblance or cosine similarity. 

In this chapter, we show that for sparse binary data, 

which is usually of interest over the web, there is actually a 

fixed choice among these two hashing schemes. Our 

theoretical and empirical results show a counter-intuitive 

fact that for sparse data MinHash is the preferred choice 

even when the desired measure is cosine similarity. 

Although the decade old concept of LSH comes with a rich 

theoretical analysis, there is no machinery to mathematically 

compare two LSH schemes for different similarity 

measures. By showing that MinHash is prov- ably superior 

to SimHash for retrieval with cosine similarity, we provide 

the first evidence that two LSHs for different similarity 

measures can be compared. 

 

MinHash and SimHash for Sparse Binary Data 

Current web datasets are typically very sparse and 

extremely high dimensional, mainly due to the wide 

adoption of the “Bag of Words” (BoW) representations for 

documents and images. In BoW or shingle representations, 

it is known that the word frequency within a document 

follows power law, indicating that most of the words occur 

rarely in the document. In “BoW” representations most of 

the higher order shingles in the document occur only once. 
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It is often the case that just the presence or absence 

information suffices in practice]. Thus, high dimensional 

web data are almost always binary or binary like. The most 

information is in the sparsity structure of a vector rather 

than the magni- tude of its components. Many leading 

search companies use only sparse binary representations in 

their large data systems. Furthermore, there are many 

empirical studies which suggest that binary quantizations 

of datasets achieve good performance in practice. All these 

factors lead to an increased emphasis on techniques which 

are capable of exploiting binary datasets. 

 

MinHash an LHS for Cosin Similarity 

 

We would like to higjlight that the well known ρ value for 

MinHash and SimHash from equation which determine the 

worst case query complexity of these algorithms, are not 

directly comparable because they are in the context of 

different similarity measures i.e. resemblance and cosine 

similarity. To make the comparison possible, we fix our gold 

standard similarity measure to be the cosine similarity 

 S im = S. Theorem 2 leads to two simple corollaries: 

Corollary  If S(x, y) ≥ S 0, then we have 

 

. Σ 

Pr hmin(x) = hmin(y) = R(x, y) ≥ S(x, y)2 ≥ S 2 

π π

 0 

 

Hashability For K-Way Similarities 

Existing notions of similarity in search problems 

mainly work with pairwise similarity functions. In this 

chapter, we go beyond this notion and look at the problem 

of k-way similarity search, where the similarity function of 

interest in- volves k arguments (k ≥ 2). An example of higher 

order similarity is the 3-way Jaccard similarity which is 

defined as: 

 

R 

3way 
= 

|S 1 ∩ S 2 ∩ S 3|
,
 

|S 1 𝖴 S 2 𝖴 S 3| 

 

 

 

 

 

Importance of k-way Resemblance 

 
We list four practical scenarios where k-way resemblance 

search would be a natural choice and in the later section 

provide some empirical support. 

 

Improving retrieval quality: We are interested in finding 

images of a particular type of object, and we have two or 

three(possibly noisy) represen- tative images. In such a 

scenario, a natural expectation is that retrieving im- ages 

simultaneously similar to all the representative images 

should be more re- fined than just retrieving images similar 

to any one of them. In Section 5.1.1, we demonstrate that in 

cases where we have more than one elements to search for, 

we can refine our search quality using k-way resemblance 

search. In a dynamic 

 

Beyond pairwise clustering: While machine learning 

algorithms of- ten utilize the data through pairwise 

similarities (e.g., inner product or resem- blance), there are 

natural scenarios where the affinity relations are not 

pairwise. 

 

GoogleSets: 

(http://googlesystem.blogspot.com/2012/11/google-sets- 

still- available.html) Google Sets is among the earliest 

google projects, which allows users to generate list of 

similar words by typing only few related key- words. For 

example, if the user types “mazda” and “honda” the 

application will automatically generate related words like 

“bmw”, “ford”, “toyota”, etc. This application is currently 

available in google spreadsheet. 

Joint recommendations: Users A and B would like to 

watch a movie together. The profile of each person can be 

represented as a sparse vector over a giant universe of 

attributes. For example, a user profile may be the set of 

actors, actresses, genres, directors, etc, which she/he likes. 

On the other hand, we can represent a movie M in the 

database over the same 

  

 

CONCLUSION  

Hashing algorithms can be pretty useful. However, IT is a 

really fast-changing industry and this entropy also extends to 

hashing algorithms. 

MD5, once considered really safe now it’s completely 

compromised. Then there was SHA-1, which is now unsafe. 

The same thing will surely happen to the widely used SHA-2 

someday. 

We investigate probabilistic hashing techniques for addressing 

computational and memory challenges in large scale machine 

http://www.ijsrem.com/
http://googlesystem.blogspot.com/2012/11/google-sets-
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learning and data mining sys- tems. In this thesis, we show that 

the traditional idea of hashing goes far be- yond near-neighbor 

search and there are some striking new possibilities. We show 

that hashing can improve state of the art large scale learning 

algorithms, and it goes beyond the conventional notions of 

pairwise similarities. Despite being a very well studied topic in 

literature, we found several opportunities for fundamentally 

improving some of the well know textbook hashingalgorithms. 

In particular, we show that the traditional way of computing 

minwise hashes is unnecessarily expensive and without 

loosing anything we can achieve an order of  
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