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Abstract - The need of precisely identifying head impacts 

and putting in place efficient safety measures has been 

underlined by numerous research investigations.. This study 

addresses this critical need by leveraging Logistic Regression, 

a simpler yet highly effective data collected from piezoelectric 

sensors installed on a model of a simulated cranium using a 

machine learning technique. We process normalized sensor 

data using Logistic Regression in a methodical manner with the 

goal of precisely identifying impact sites. The model achieves 

an impressive accuracy of 90%, demonstrating its capability to 

perform well in real-time applications that require quick, 

interpretable, and computationally efficient predictions. 

Rigorous evaluation the model's performance is highlighted by 

employing k-fold cross-validation, while feature importance 

analysis identifies an optimal sensor placement strategy. This 

strategy may reduce model complexity, potentially leading to 

more efficient implementations without compromising 

predictive accuracy. The strong performance of Logistic 

Regression, coupled with its simplicity and interpretability, 

underscores its potential as an ideal solution for head impact 

detection in safety-critical environments .The results aid in the 

creation of intelligent safety systems, which combine machine 

learning and wearable technologies to boost safety and 

decision-making in both industrial and sporting settings. 
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1. INTRODUCTION  

 
Head impact detection plays a critical role in enhancing safety 

protocols, especially in environments such as sports, industrial 

settings, and military operations, where individuals are at risk of 

experiencing head injuries. Accurate detection of head impacts 

is essential for initiating timely interventions that can mitigate 

the severity of injuries, improve safety measures, and guide 

medical responses [1]. This paper aims to address this challenge 

by applying machine learning techniques to information 

gathered from piezoelectric sensors installed on a model of a 

head. The sensors capture dynamic force measurements during 

impact events, which are then processed to pinpoint the precise 

position and severity of the hit Traditional methods of impact 

detection often rely on simplistic thresholding techniques or 

mechanical sensors, which can be limited in accuracy and 

adaptability.  In contrast, models for machine learning like 

logistic regression ,offer a effective method for deciphering 

intricate patterns from the sensor and make more precise 

predictions. This study aims to achieve high classification 

accuracy and real-time decision-making through the application 

of Logistic Regression, while simultaneously preserving 

interpretability and computing economy [2].  The study explores 

the potential for combining wearable technology and machine 

learning techniques to create smart, flexible safety solutions that 

improve head impact detection and advance safety technologies 

in general. In the end, our research opens the door to more 

efficient, data-driven approaches to head injury prevention and 

mitigation, especially in high-risk settings where safety is 

crucial. 

 

In this work, a machine learning-based system for precise head 

impact detection is developed and evaluated using data gathered 

from piezoelectric sensors installed on a model of a simulated 

head. The primary focus is on employing Logistic Regression as 

the machine learning algorithm to analyze normalized sensor 

data and identify impact locations with high precision. This 

study looks into the feasibility of using machine learning 

techniques, specifically Logistic Regression, to improve 

traditional mechanical or threshold-based systems, which often 

struggle with accuracy and flexibility in dynamic environments 

.The system's scope includes data preparation, feature 

extraction, model training, and performance evaluation utilizing 

methods like k-fold cross-validation to ensure generalization 

and robustness.  [3]. In order to improve sensor placement 

techniques and maybe reduce model complexity while 

preserving or even boosting predictive accuracy, the research 

also highlights the significance of feature importance analysis 

[4]. Because the system was created with real-time performance 

in mind, it can be used in settings with constrained processing 

power, like wearable technology or portable security systems. 

By focusing on both the performance and efficiency of Logistic 

Regression, By providing a workable method for head impact 

detection in sports, industrial settings, and other high-risk 

contexts, the article also seeks to advance the field of intelligent 

safety systems. Essentially, the scope encompasses the creation 

of the head impact detection system as well as its possible 

incorporation into practical applications, which will ultimately 

improve safety protocols and provide faster, more precise 

decision-making to reduce head injuries [5–6]. 

 

The goal is to use Logistic Regression to data from piezoelectric 

sensors put on a simulated head model in order to create a 

machine learning-based system for precise head impact 

detection.The primary goal is to accurately determine impact 

locations and intensities by using sensor data processing to 

consistently detect head impacts.The goal of the study is to 

provide a dependable solution for real-time head impact 

detection by using Logistic Regression to achieve high 
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classification accuracy (targeting 90% or above).  By fulfilling 

these goals, the study hopes to aid in the creation of intelligent 

safety systems that use machine learning and wearable 

technologies to improve general safety and decision-making. 

 

2. LITERATURE SURVEY 

 

In order to understand detector data, similar as that attained 

from piezoelectric detectors deposited on a simulated head 

model, machine literacy algorithms like Random Forest( RF) 

and Extreme Gradient Boosting( XG Boost) are constantly used 

in head impact discovery. In order to determine the class mode 

for bracket tasks, Random Forest, an ensemble learning fashion, 

builds a large number of decision trees during training[7]. It's 

extensively used because it can handle high- dimensional data 

and mimic complex connections without overfitting. In a 

analogous tone, XG Boost is another well- liked machine 

literacy system that has a strong character for delicacy. By 

combining the prognostications of several weak learners and 

perfecting them over duplications, it builds a model using a 

grade boosting frame. With great delicacy in relating impact 

events, both of these models have been used to pinpoint the 

position and inflexibility of head impacts. These models can 

manage the nonlinear correlations between detector readings 

and impact spots in the environment of brain injury discovery, 

adding the system's delicacy. The being systems also profit from 

ways similar ask-foldcross-validation to assess the models' 

performance and insure their robustness across different 

datasets [8]. also, point significance analysis is extensively 

employed to determine the optimal detector point, reducing 

system complexity while maintaining vaticination accuracy It 

has been demonstrated that these machine literacy models 

perform better than conventional threshold- grounded ways, 

offering real- time impact discovery systems that are more 

adaptable, scalable, and secure. These systems are generally 

employed in sports, where timely and accurate head impact 

discovery is pivotal for safety and in sectors where workers may 

be exposed to dangerous impact circumstances. 

 

 

3. PROPOSED SYSTEM 

 

For head impact detection, the suggested method makes use 

of Logistic Regression, a straightforward yet powerful machine 

learning approach.  Based on input sensor data, the linear 

classification model known as logistic regression calculates the 

likelihood of a binary outcome in this case, whether or not a 

head hit has occurred. This model is a great option for 

deployment in resource-constrained situations, like wearable 

technology, because it is computationally efficient and 

appropriate for real-time applications.  The interpretability of 

logistic regression is one of its main benefits; it offers distinct 

insights into how the input features affect the prediction, which 

is essential in applications involving safety. Despite being a 

simpler model compared to more complex algorithms like 

Random Forest or XGBoost, Logistic Regression can still 

achieve high accuracy, especially when the data is well-

preprocessed and the relationships between features are 

relatively linear[18].The suggested system seeks to offer a 

dependable, interpretable, and real-time solution for head 

impact detection that guarantees effective deployment without 

sacrificing performance. 

 

 
 

Figure 1: System Architecture 

 

  The following modules are used to apply regression:  

 1) Data Gathering  

 2) Data Preparation 

 3) The process of feature engineering 

 4) Model Creation 

 5) Model Assessment and Performance Indicators 

 6) Forecast 

  

• Data accession: The first stage of any machine learning 

composition is data accession. In order to train and 

assess the model, it entails collecting raw data. Data for 

a bracket challenge similar as head impact discovery 

may appear from a number of sources, similar as tests, 

simulations, orpre-existing datasets. 

• Data preprocessing: To guarantee that the raw data is 

in a state that can be used for model training, data 

medication is an essential step. The data needs to be 

gutted, reused, and arranged before being fed into the 

machine literacy model. First, as it could dispose the 

model's performance, managing missing or deficient 

data is essential. Missing variables can be imputed 

using styles like mean insinuation or more complex 

strategies like KNN insinuation. Outliers, or extreme 

values that diverge significantly from other 

compliances, should also be controlled because they 

can have an impact on the model. 

• Feature Engineering: point engineering involves 

creating fresh variables from the raw data in order to 

ameliorate the model's performance. In order to prize 

features that more directly reflect the underpinning 

patterns in the data, sphere moxie is constantly 

employed in this step. For case, in an impact discovery 

script, deduced features like the mean, friction, or peak 

values during particular time frames may be reckoned 

using raw time- series data from detectors. 

• Model Development: The machine literacy model is 

created once the data has been preprocessed and 

material characteristics have been recaptured. A 

popular bracket approach that performs well in 

situations where categorical result vaticination is the 

end is logistic retrogression. It finds the best- fitting 

direct decision border between the classes by 

calculating the parameters ( portions) that maximize 

the liability of the observed data. During training, the 

model is fed the pre-processed data, and an 

optimization approach( similar grade descent) is used 

http://www.ijsrem.com/


          International Journal of Scientific Research in Engineering and Management (IJSREM) 

                        Volume: 09 Issue: 06 | June - 2025                           SJIF Rating: 8.586                                  ISSN: 2582-3930                                       

 

© 2025, IJSREM      | www.ijsrem.com                                 DOI: 10.55041/IJSREM49512                                                |        Page 3 

to minimize the logistic loss function. In a double 

bracket task, this will mean figuring out the probability 

that an case will belong to one of the two classes. 

• Model Evaluation and Performance Metrics: To make 

sure the Logistic Retrogression model can effectively 

generalize to new data, it's pivotal to assess its 

performance after training. Dividing the dataset into 

training and test sets is one of the original evaluation 

stages. The test set is also used to assess how well the 

model performs on data that has not been seen ahead. 

The most abecedarian performance statistic is 

delicacy, which shows the proportion of accurate 

prognostications the model makes. 

• Vaticination: Using the learned model to read fresh, 

untested data is the last phase. At this point, the model 

can be used in practical operations. The model should 

be prepared to make prognostications on incoming 

data, whether it be batch or real- time data, after it has 

been trained and assessed. For illustration, in head 

impact discovery, the model would read the probability 

of a head impact and, if one were linked, pinpoint the 

impact's position. 

 

4. EXPERIMENTAL PROCESS 

 

• RANDOM FOREST with XGBOOST 

 

Both Random Forest and XG Boost( Extreme Gradient 

Boosting) are extremely effective ensemble knowledge ways 

that are constantly used for type and regression problems. still, 

their working propositions differ, which may have an impact on 

how well they perform depending on the specifics of the 

problem. Using bootstrap slice, sometimes appertained to as 

arbitrary slice with relief, Random Forest is a collection of 

decision trees that are trained on various arbitrary subsets of the 

data. likewise, each tree split avoids overfitting and decreases 

correlation between trees by only taking into account a arbitrary 

sample of features. Following training, Random Forest 

aggregates each tree's affair to give prognostications using either 

regression averaging or maturity voting for type. Random 

Forest's strength, ease of use, and capacity to manage a range of 

data types including continuous and categorical variables are its 

main advantages. It also provides a point connection metric that 

makes it easier to understand which attributes are most vital to 

the projections. still, as the number of trees rises, Random Forest 

can come computationally ferocious and may not be suitable to 

handle datasets with largely imbalanced or complex point 

relations( 19). On the other hand, XG Boost uses grade boosting, 

which is a fashion that fixes the crimes of former models by 

training models one after the other. The procedure uses a grade 

descent fashion to minimize the loss function for each new 

model( constantly a decision tree) that focuses on the 

residuals( crimes) from the former model. In XG Boost," 

extreme" refers to a range of sophisticated styles, analogous as 

regularization, which reduces overfitting, and a sparsity-alive 

strategy, which is better at managing missing variables.When 

compared to Random Forest, XG Boost's boosting fashion 

produces hastily convergence and generally advanced 

predictive delicacy, especially for big or largely dimensional 

datasets. 

 

• LOGISTIC REGRESSION  

 

The suggested approach, logistic regression, is a 

straightforward but effective machine knowledge model that is 

constantly applied to challenges involving double and multi- 

class categorization. It describes the probability of a categorical 

dependent variable using one or further independent factors. A 

direct equation's outgrowth is colluded to a probability value 

between 0 and 1 by the logistic function, constantly known as 

the sigmoid function. This value can also be threshold to give 

double vaticinations. The recommended system is logistic 

regression, a simple yet important machine knowledge model 

that is considerably used for double and multi- class type 

problems. It describes the probability of a categorical 

dependent variable using one or further independent factors. 

The logistic function, also called the sigmoid function, maps 

the result of a direct equation to a probability value between 0 

and 1. The performing model is a great option for issues 

demanding precise, computationally effective prognostications 

since it's simple to understand and performs well in real- time 

operations.( 21). 

 

 

5. RESULTS AND DISCUSSION 

 

TABLE I: Accuracy Evaluation of Prediction 

Models 
 

 
 Metric of 

performance  

Random forest XG Boost 

 MSE    0.2368   0.2390 

 RMSE   0.4965   0.4875 

MAE   0.0354  0.0159 

R2  0.9577 0.9596 

 

Vaticination delicacy is indicated by how near the data points 

are to the line of concinnity. The maturity of the prognosticated 

values nearly match the factual bones , according to an analysis 

of the scatterplots( numbers 9 and 10) for the RFR and XG 

Boost models. This graphical representation not only gives an 

intuitive sense of the prophetic power of the model, but it also 

confirms the preliminarily indicated performance pointers. The 

confusion matrix of the XG Boost model, on the other hand, 

shows performance that's further slightly spread throughout all 

detector regions. The model appears to have a better 

understanding of the underpinning patterns in the data since its 

prognostications more nearly match the factual detector 

readings. A more invariant performance across training and 

testing datasets is also suggested by fresh examination of the 

XG Boost model. This thickness is cheering since it shows that 

the model is less likely to overfit and more likely to produce 

accurate prognostications when applied to fresh, untested 

data.Of particular interest is the RFR, a retrogression- grounded 

variant of RF that forms the base of our study. Given the 

complexity and implicitnon-linearity of our detector data, RFR 

is plainly the stylish choice. The methodology included 

recycling a dataset of colorful detector readings that were 

separated into regions similar as the forepart, back, crown, left, 

right, and top state was placed at 42 to insure uniformity across 

trials and make the results replicable. The detector readings 

made up the model's characteristics, and the target variable was 

the detector areas, which were converted into numerical values 
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for model comity. To take into consideration the craft of the 

dataset, our particular RFR model was set up with a number of 

hyper parameters. To balance prognosticated delicacy with 

computational effectiveness, ten retrogression trees were used. 

                       

    

𝑓SE(𝑥) = 
 1/k 

∑𝐾 𝑡 (𝑥), 

                                k=1                 (1) 

 
 

where fkSE (x) is the forecast generated by the ith decision tree 

in the test for a specific sensor reading x acquired from the 

piezoelectric sensors attached on the simulated head model, and 

fkSE (x) is the combined regression model's prediction of the 

Random Forest model based on sensor data. Every tree evaluates 

the sensor data on its own and makes an impact location 

prediction. The ensemble's total number of trees is denoted by 

the parameter K. Each tree helps forecast the impact site in this 

study, and the ensemble chooses the impact explanation that 

seems the most likely. 

Our main attention is on the crucial aspect of sensor orientation 

and how it significantly affects the accuracy and effectiveness 

of the model. To maximize the effectiveness of any prediction 

model, sensors must be positioned strategically. We intend to 

learn more about the ideal sensor site by examining feature 

importance produced by two well-known machine learning 

approaches, RFR and XGBoost. RFR and XGBoost have 

fundamentally distinct computational foundations for feature 

importance. The average impurity reduction brought about by 

splits on a certain feature across all trees is utilized by RFR to 

calculate significance. 

 

TABLE II: FOR RFR and XGBOOST MODELS, 

COMPARITIVE OVERVIEW OF SENSOR 

IMPORTANCE STATISTICS.  

 

Metric RFR XGBoost 

Mean 0.041857 0.041857 

Standard deviation 0.134540 0.134540 

25% quartile 0.012416 0.001840 

Count 26.000000 26.000000 

Median 0.032124 0.002540 

75% quartile 0.031526 0.031435 

Maximum 0.523732 0.272515 

Minimum 0.002725 0.002430 

 

 

 

 
 

Figure 2.Characteristic Value from XGBoost framework 
 

 
 

Figure3. Characteristic Value from RFR framework 
 

The output screen as the application is used for the head 

impact are as follows. 

 

      

                                                    4.(a) 
 

 
   4.(b)                              

Figure 4.(a) (b) Introduction screens of the application 

http://www.ijsrem.com/
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                    5.(c)    

 
                  5.(d)      

 

Figure (c) (d) Login and Input screens of the application 

respectively 

               

 

6. CONCLUSIONS 

 

In conclusion, this paper demonstrates the effectiveness of 

Logistic Regression for accurately detecting head impacts using 

sensor data, achieving high performance with 90% accuracy. The 

simplicity, interpretability, and computational efficiency of 

Logistic Regression make it a promising solution for real-time 

safety applications, especially in environments where rapid 

decision-making is critical. The model is well-suited for use in 

sports and industrial settings where head injuries must be 

identified quickly to stop additional damage by utilizing a 

methodical approach that includes data preprocessing, feature 

engineering, and thorough evaluation.  Although the model's 

performance is already strong, it might be made much more 

accurate and flexible in the future by adding more sophisticated 

feature engineering, fine-tuning model parameters, and 

integrating real-time learning.  The results of the study contribute 

to the broader goal of developing intelligent safety systems that 

reduce the risks of head impacts and improve overall protective 

measures in a range of high-risk environments by utilizing 

wearable technology and machine learning to improve safety and 

decision-making. 
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