Higher Education in India: Issues Related to Access, Equity, Efficiency, Quality and Internationalisation

Dr. Tripti Sharma

Assistant Professor, Department of Political Science

G. M. N. College , Ambala Cantt

drtriptisharmagmn@gmail.com

Gurpreet Singh Bhatia

Assistant Professor (Management)

GGN Institute of Management and Technology Civil Lines Ludhiana

bhatia.gsin@gmail.com

Simranpreet kaur

Assistant professor

Department of Management Studies

CKD Institute of Management and Technology

Tarn taran, Punjab

kaursimranpreetsach@gmail.com

Abstract

India's higher education system, the second-largest in the world with 46.5 million students enrolled across 58,643 institutions in 2025, stands at a critical juncture of transformation and challenge. This comprehensive research paper examines five interconnected dimensions defining contemporary Indian higher education: access, equity, efficiency, quality, and internationalization. Drawing from the latest 2025 data including the National Education Policy 2020 implementation status, NITI Aayog reports, Parliamentary Committee findings, and QS World Rankings analysis, this study reveals persistent challenges alongside emerging opportunities. The Gross Enrollment Ratio (GER) has reached 32.5% for the 18-23 age group—significantly below the NEP 2020

target of 50% by 2035—while regional disparities show Chandigarh achieving 64.8% GER compared to Bihar's 25.5%. Equity gaps persist across gender, caste, region, and socioeconomic status, with women from Scheduled Castes and Scheduled Tribes facing compounded disadvantages. Efficiency concerns center on a catastrophic faculty shortage with 56.18% of professor positions vacant at premier institutions and student-faculty ratios reaching 30:1 against recommended 15:1. Quality challenges include research integrity crises with 32 Indian universities flagged for academic misconduct, NAAC accreditation controversies involving bribery scandals, and over 34,000 colleges operating without accreditation. Internationalization efforts under NEP 2020 show promise with foreign universities establishing campuses, yet India attracts only 50,000 international students annually while sending 1.3 million students abroad. This paper provides evidence-based analysis of systemic barriers, examines State Public Universities serving 81% of students as critical yet underfunded infrastructure, and offers comprehensive recommendations for transforming Indian higher education into a globally competitive, inclusive, and quality-driven system capable of leveraging India's demographic dividend.

Keywords: higher education India, access equity quality, NEP 2020, gross enrollment ratio, faculty shortage, internationalization, NAAC accreditation, research integrity, State Public Universities, educational policy

1. Introduction

1.1 The Scale and Significance of Indian Higher Education

India's higher education landscape represents both extraordinary potential and formidable challenges. With approximately 46.5 million students enrolled across nearly 60,000 institutions as of 2025, India operates the world's second-largest higher education system after China. This massive ecosystem has grown exponentially—universities increased from 760 in 2014-15 to 1,338 by 2025, representing 76% growth in just a decade. The sector encompasses diverse institutional types: 495 State Public Universities (SPUs) with 46,000 affiliated colleges, 23 Indian Institutes of Technology (IITs), 20 Indian Institutes of Management (IIMs), 31 National Institutes of Technology (NITs), central universities, deemed universities, and thousands of private institutions.

This expansion reflects India's recognition that higher education constitutes the foundation for economic development, social mobility, and global competitiveness. With the world's largest youth population—a demographic advantage extending through 2045—India possesses unprecedented opportunity to convert demographic potential into economic prosperity through strategic investment in higher education. The Indian diaspora's global success—constituting one-third of Silicon Valley's workforce and leading 25% of startups—demonstrates the capabilities of India's educated talent when provided appropriate opportunities.

1.2 The National Education Policy 2020: Vision and Reality

The National Education Policy (NEP) 2020 represents India's most comprehensive attempt to transform higher education since independence. Released after three decades since the previous policy (1986, modified 1992), NEP 2020 articulates ambitious goals: increasing GER to 50% by 2035, establishing India as a global study destination, integrating vocational education, promoting multidisciplinary learning through four-year undergraduate programs, dismantling the rigid separation between arts, science, and commerce, and raising public investment in education to 6% of GDP.

NEP 2020's vision emphasizes five foundational pillars: **access** (ensuring all qualified students can pursue higher education), **equity** (eliminating disparities based on gender, caste, geography, and socioeconomic status), **quality** (maintaining rigorous academic and research standards), **affordability** (keeping education financially accessible), and **accountability** (ensuring institutional transparency and performance).

However, five years into implementation, significant gaps persist between policy aspirations and ground realities. While structural reforms including Academic Bank of Credits (ABC), four-year undergraduate programs, and regulatory restructuring proceed, fundamental challenges around access, equity, faculty shortages, quality assurance, and research integrity threaten to undermine transformative potential.

1.3 Research Objectives and Structure

This paper provides comprehensive analysis of Indian higher education across five critical dimensions—access, equity, efficiency, quality, and internationalization—examining current status, persistent challenges, and pathways forward. The analysis draws from 2025 data including NITI Aayog's report on State Public Universities, Parliamentary Committee findings on faculty shortages, QS World Rankings performance analysis, research integrity investigations, NAAC accreditation reviews, and All India Survey on Higher Education (AISHE) statistics.

Section 2 examines access challenges including GER gaps and regional disparities. Section 3 analyzes equity dimensions across gender, caste, geography, and socioeconomic status. Section 4 investigates efficiency concerns centered on faculty shortages and resource constraints. Section 5 explores quality issues including accreditation controversies, research integrity crises, and infrastructure deficits. Section 6 examines internationalization efforts, opportunities, and barriers. Section 7 focuses on State Public Universities as the system's backbone. The paper concludes with integrated recommendations for systemic transformation.

2. Access to Higher Education: The GER Challenge

2.1 Current Enrollment Landscape

India's Gross Enrollment Ratio (GER)—the percentage of the 18-23 age cohort enrolled in higher education—reached 32.5% in 2025, representing gradual progress from 23.7% in 2014-15 and 28.4% in 2021-22. While this trajectory shows improvement, it remains dramatically below NEP 2020's target of 50% by 2035 and well behind global comparators: the United States (88%), United Kingdom (60%), China (54%), and Brazil (50%). At current growth rates averaging 0.5-1.0 percentage points annually, India would reach 50% GER only by 2040-2045—significantly behind schedule.

Total student enrollment stands at approximately 46.5 million (4.65 crore) across 58,643 higher education institutions. This expansion has been driven primarily by private sector growth—private institutions now constitute nearly 78% of all colleges though enrolling approximately 65-70% of students. Public institutions, while fewer in number, remain dominant in prestigious engineering, medical, and management education.

2.2 Regional Disparities in Access

GER varies dramatically across states and union territories, reflecting deep structural inequalities in educational infrastructure, economic development, and social priorities. According to 2025 NITI Aayog data, top-performing states include Chandigarh (64.8% GER), Puducherry (61.5%), Delhi (49.0%), Tamil Nadu (47.0%), Himachal Pradesh (43.1%), Uttarakhand (41.8%), and Kerala (41.3%). These "achiever" states exceed or approach the national 50% GER target through combinations of strong public university systems, vibrant private sectors, high literacy rates, and urban concentration.

Conversely, bottom-performing states show alarmingly low GER: Ladakh (24.5%), Lakshadweep (25.0%), Bihar (25.5%), Jharkhand (25.8%), Chhattisgarh (26.5%), Assam (26.2%), and Gujarat (26.8%). These states face compounded disadvantages including large rural populations, inadequate infrastructure, poverty limiting educational aspiration, weak school education foundations, and insufficient higher education institutions relative to population.

The gap between highest-performing Chandigarh (64.8%) and lowest-performing Ladakh (24.5%) represents a 40.3 percentage point differential—meaning youth in Chandigarh are 2.6 times more likely to access higher education than peers in Ladakh despite being citizens of the same nation. This geographical lottery of educational opportunity perpetuates regional inequality and prevents optimal national human capital development.

2.3 Absolute Enrollment vs. Access Rate

While states like Uttar Pradesh, Maharashtra, and Tamil Nadu show highest absolute student enrollments (70.68 lakh, 50.22 lakh, and 39.53 lakh respectively), their large populations mean moderate GER (28.8%, 34.6%, and

Volume: 09 Issue: 10 | Oct - 2025

SJIF Rating: 8.586

ISSN: 2582-3930

47.0%). Conversely, small states/UTs like Chandigarh and Puducherry achieve high GER despite modest absolute numbers. This distinction matters: states with large populations and low GER represent massive pools of untapped human potential. Bihar alone, with 25.5% GER, could add millions to enrollment if reaching national average.

2.4 Infrastructure Constraints

Access limitations stem partly from insufficient institutional capacity. While the number of higher education institutions has grown, distribution remains uneven. Many rural and remote areas lack proximate colleges or universities, forcing students to relocate—financially prohibitive for low-income families. Distance education and online learning offer partial solutions, but digital divide challenges (discussed later) limit effectiveness.

Moreover, institutional capacity constraints affect not just quantity but program diversity. Many institutions offer limited academic programs, restricting student choice and forcing migration to urban centers for specialized education. Expansion must therefore emphasize both quantitative growth and geographic/programmatic diversification.

3. Equity in Higher Education: Persistent Disparities

3.1 Gender Equity: Progress with Ongoing Gaps

India has achieved near-parity in overall higher education enrollment, with female GER reaching 28.5% compared to male GER of 28.3%, yielding a Gender Parity Index (GPI) of 1.01. This represents remarkable progress from historical gender gaps and reflects successful interventions including girls' education campaigns, scholarships, women's colleges, and changing social norms.

However, aggregate statistics mask persistent challenges. Gender gaps remain pronounced in STEM fields where women remain dramatically underrepresented. Engineering and technology programs show male dominance, while humanities and education programs skew female. This gender segregation by field has long-term career and earning implications, perpetuating occupational gender gaps and pay disparities.

Moreover, female enrollment rates vary significantly by state, social group, and rural-urban location. In conservative regions, cultural barriers including early marriage, mobility restrictions, safety concerns, and household responsibilities continue limiting female higher education access. Women from marginalized communities—particularly Scheduled Castes (SC), Scheduled Tribes (ST), and Other Backward Classes (OBC)—face compounded disadvantages.

3.2 Caste-Based Inequalities

Caste remains a powerful determinant of educational access in India despite constitutional commitments to equality and reservation policies providing affirmative action. Students from Scheduled Castes and Scheduled Tribes show lower enrollment rates, higher dropout rates, and concentration in less prestigious institutions and programs compared to forward castes.

SC/ST students constitute approximately 15% and 7.5% of India's population respectively, yet their representation in higher education—while improved through reservations—remains below proportional parity, particularly in elite institutions. More troublingly, within higher education, SC/ST students face discrimination, social exclusion, inadequate support services, and hostile campus environments that impede academic success and wellbeing.

The tragic suicides of SC/ST students at premier institutions including IITs and central universities—often linked to caste-based discrimination and institutional apathy—highlight the profound equity challenges persisting despite legal frameworks. Equity requires not merely access but inclusive environments where all students can thrive.

3.3 Socioeconomic Disparities

Economic status profoundly shapes higher education access. Students from low-income families face multiple barriers: inability to afford tuition, books, accommodation, and living expenses; need to work while studying or forego education for immediate income; lack of social capital, information, and networks guiding educational navigation; and weak school education foundations limiting competitiveness for selective institutions.

While public institutions charge relatively modest fees—NITI Aayog reports SPU fees average 60% lower than private institutions—even these costs prove prohibitive for poorest families when combined with opportunity costs and living expenses. Scholarship programs exist but are insufficient in coverage and value. Moreover, quality higher education increasingly concentrates in expensive private institutions inaccessible to economically disadvantaged students.

The result is that higher education disproportionately benefits middle and upper-middle class families, perpetuating rather than disrupting socioeconomic inequality. True equity demands not merely non-discrimination but proactive support ensuring economically disadvantaged students can access and succeed in higher education.

3.4 Urban-Rural Divides

Higher education remains predominantly urban, with most quality institutions concentrated in cities and towns. Rural students—comprising majority of India's youth—face geographic barriers to access. Those who do enroll

often attend local colleges with limited resources, infrastructure, and faculty quality compared to urban institutions.

This urban-rural gap intersects with other inequalities: rural areas disproportionately include SC/ST populations, economically disadvantaged families, and areas with weak school education. The cumulative effect creates a geography of educational opportunity where birth location powerfully predicts higher education prospects.

3.5 Regional Inequalities

Beyond intra-state urban-rural gaps, inter-state disparities create regional inequalities. As noted, states like Chandigarh, Tamil Nadu, and Kerala provide much greater higher education access than Bihar, Jharkhand, and Assam. Students born in low-GER states face double disadvantage: fewer local opportunities and financial barriers to interstate migration.

Northeastern states face particular challenges including geographic isolation, limited institutions, political instability, poor connectivity, and socio-cultural factors. Addressing regional inequality requires targeted investments in underserved states and special provisions for disadvantaged regions.

4. Efficiency and Resource Constraints: The Faculty Crisis

4.1 The Magnitude of Faculty Shortages

India's higher education system faces a catastrophic faculty shortage threatening academic quality, student learning, and institutional reputation. According to a 2025 Parliamentary Standing Committee report, 28.56% of total sanctioned teaching positions (18,940 posts) across IITs, NITs, IIMs, IISERs, and central universities remain vacant. More alarmingly, vacancies concentrate at senior levels: 17.97% of assistant professor posts, 38.28% of associate professor posts, and a staggering 56.18% of professor positions lie empty.

This problem extends beyond elite institutions. State public universities face even worse shortages—over 40% of faculty positions remain vacant according to NITI Aayog's 2025 report. In some states, the situation approaches crisis: Rajasthan reports 1,597 vacant positions out of 2,512 sanctioned posts across 16 universities, with five state universities operating without a single permanent faculty member. Maharashtra shows 7,000 vacancies out of 53,178 sanctioned positions, with more than 60% of posts vacant at universities including Mumbai, Pune, and Kolhapur.

The resulting student-faculty ratios reach 30:1 in many SPUs—double the recommended 15:1 ratio. Students receive inadequate mentorship, oversized classes preclude interactive learning, research supervision suffers from faculty overload, and institutional governance becomes dominated by administrative burden rather than academic leadership.

4.2 Causes of Faculty Shortages

Multiple factors create and perpetuate faculty shortages:

Limited PhD Pipeline: India produces insufficient PhDs to meet faculty demand. With low doctoral enrollment—just 1.5% of higher education students pursue PhDs—and long completion times, the pipeline cannot replenish retiring faculty. Students avoid PhDs due to opportunity costs (foregone earnings during 4-6 year programs), limited financial support (stipends often below living wages), uncertain career prospects, and alternative opportunities in industry and abroad.

Uncompetitive Compensation: Academic salaries, especially in public institutions bound by government pay scales, cannot compete with private sector or international opportunities. IIMs and IITs struggle to recruit despite prestige because compensation lags global standards. A PhD graduate can earn significantly more in industry or foreign universities than Indian academic positions.

Slow Recruitment Processes: Bureaucratic recruitment procedures taking 12-24 months from advertisement to appointment discourage candidates who accept alternative offers during delays. Complex approval requirements across multiple administrative levels create bottlenecks.

Reservation Backlog: While reservations for SC/ST/OBC faculty are constitutional imperatives, many positions remain vacant due to claimed unavailability of qualified candidates from reserved categories. However, critics argue insufficient outreach, discriminatory selection processes, and inadequate pipeline development contribute more than genuine scarcity.

Reliance on Contractual/Part-Time Faculty: Rather than fill permanent positions, institutions increasingly employ contractual or Clock Hour Basis (CHB) faculty paid Rs 400-800 per lecture with no benefits, job security, or professional development. This "cost-saving" perpetuates instability and undermines quality.

4.3 Impact on Quality and Rankings

Faculty shortages directly impair educational quality and institutional performance. The QS World University Rankings 2026 highlighted that 63% of Indian universities declined in faculty-student ratio scores. IIT Delhi, India's highest-ranked institution at 123, scored only 21.9 out of 100 on this metric. Even top IITs performed poorly: IIT Madras (21.3), IIT Roorkee (9.5), IIT Guwahati (10.2).

Faculty shortages limit research productivity, reduce publication quality, constrain supervision capacity for graduate students, and weaken institutional governance. When faculty spend all time teaching large classes, research and innovation suffer. This affects India's global reputation and competitiveness in knowledge economy.

IJSREM | e Jeunal | boots

Volume: 09 Issue: 10 | Oct - 2025 SJIF Rating: 8.586 **ISSN: 2582-3930**

5. Quality Challenges: Credibility in Crisis

5.1 The Research Integrity Scandal

Indian higher education faces a severe research integrity crisis threatening institutional credibility globally. In 2025, Science Chronicle's research integrity index flagged 32 Indian universities as "red flag" institutions based on retraction rates, publication misconduct, and questionable research practices. This investigation revealed systemic manipulation of academic metrics through predatory journals, citation rings, authorship-for-sale schemes, and fabricated research.

Universities identified as problematic include both public and private institutions across states, indicating systemic rather than isolated issues. The scandal has prompted international scrutiny—Nature journal reported that India plans to penalize universities with excessive retractions by withholding government funding and downgrading accreditation status.

The root causes are multiple: **Publish-or-Perish Pressure** where promotion and tenure depend on publication volume, incentivizing quantity over quality; **Weak Research Ethics Infrastructure** with inadequate training, oversight, and enforcement; **Predatory Journal Proliferation** where thousands of fake journals with Indian addresses charge publication fees without peer review; **Ranking Gaming** where universities manipulate metrics to improve ranking positions artificially; and **Insufficient Funding** forcing researchers to accept questionable co-authorships or fabricate data rather than conduct rigorous research.

This crisis has profound consequences. International collaborations are jeopardized when foreign institutions question Indian research credibility. Indian journals struggle with legitimacy issues even when maintaining standards. Most importantly, genuine researchers suffer reputational damage by association, and India's aspirations for global knowledge leadership are undermined.

5.2 NAAC Accreditation Controversies

The National Assessment and Accreditation Council (NAAC), India's primary quality assurance body established in 1994, has faced mounting credibility concerns. NAAC assesses institutions across seven criteria—curricular aspects, teaching-learning, research, infrastructure, student support, governance, and institutional values—awarding grades from A++ to C.

However, several scandals have damaged NAAC's reputation:

Bribery Allegations: Multiple investigations uncovered cases where institutions allegedly paid bribes to NAAC assessors for favorable grades. In some instances, universities with minimal infrastructure and phantom faculty received high grades following suspicious assessor visits.

Metric Manipulation: Institutions game NAAC metrics by inflating faculty numbers, creating fake publication records, staging elaborate shows during assessor visits, and submitting fraudulent documentation. The self-assessment report (SAR) format enables such manipulation when verification is inadequate.

Inconsistent Assessments: Similar institutions receive dramatically different grades, suggesting assessor subjectivity and lack of standardization. Some observers note that well-connected institutions or those hiring "NAAC consultants" receive better outcomes than those relying solely on genuine achievements.

Low Coverage: Despite NAAC's mandate, over 34,000 colleges (approximately 60% of all colleges) remain unaccredited. This raises questions about both institutional readiness and NAAC's capacity to assess the vast higher education ecosystem.

These controversies prompted the 2025 budget announcement of NATAA (National Assessment, Accreditation, and Administrative Authority) to replace UGC and AICTE, though implementation details remain unclear. The need for credible, transparent, and rigorous quality assurance has never been more urgent.

5.3 Infrastructure Deficits

Beyond faculty and research integrity, physical infrastructure challenges constrain quality:

Inadequate Libraries: Many institutions, especially state universities and affiliated colleges, maintain libraries with outdated books, limited journal subscriptions, poor digital resources, and insufficient seating. Students lack access to contemporary scholarship essential for quality education.

Laboratory Shortages: Science and engineering programs suffer from equipment shortages, obsolete technology, inadequate consumables budgets, and overcrowded labs. Students graduate without hands-on experience with modern instrumentation.

Digital Infrastructure Gaps: The COVID-19 pandemic exposed severe digital divides. Many institutions lacked learning management systems, video conferencing capabilities, and online assessment tools. Students from economically disadvantaged backgrounds had limited internet access and devices. While improvements have occurred, significant gaps persist.

Classroom Quality: Oversized classes, inadequate ventilation, poor acoustics, broken furniture, and lack of audio-visual aids characterize many public institutions. Physical learning environments directly affect educational experience.

Hostels and Amenities: Insufficient hostel capacity forces students into unsafe private accommodation. Many campuses lack adequate canteens, medical facilities, sports infrastructure, and recreational spaces. These deficits particularly affect students from distant locations and economically disadvantaged backgrounds.

Volume: 09 Issue: 10 | Oct - 2025

SJIF Rating: 8.586

ISSN: 2582-3930

5.4 Curriculum Rigidity and Relevance

Indian higher education has long been criticized for rigid, outdated curricula disconnected from contemporary

knowledge and market needs:

Discipline Silos: Traditional separation of arts, science, and commerce prevents holistic education. NEP 2020's

multidisciplinary vision aims to address this, but implementation faces institutional inertia and resource

constraints.

Industry Disconnect: Curricula, especially in technical fields, lag industry evolution by years. Graduates lack

skills employers demand, necessitating extensive corporate training or rendering graduates unemployable.

Pedagogy: Lecture-based transmission education dominates over active learning, critical thinking, problem-

solving, and experiential learning. Examinations emphasize rote memorization over analytical capabilities.

Language Barriers: English-medium instruction advantages urban, elite students while disadvantaging rural

and vernacular-medium school graduates. However, vernacular higher education faces challenges including

limited textbook availability and reduced mobility.

Innovation Deficit: Curriculum updates require approval through multiple bureaucratic layers, delaying

incorporation of emerging fields and contemporary developments.

NEP 2020's emphasis on multidisciplinary education, choice-based credit systems, skill integration, and flexible

learning pathways addresses these concerns conceptually, but ground-level implementation remains nascent.

6. Internationalization: Aspirations and Realities

6.1 The Internationalization Vision

NEP 2020 positions internationalization as strategic priority, aiming to attract 500,000 international students by

2035 and establish India as a global study destination. The policy facilitates foreign universities opening Indian

campuses, encourages international collaborations, promotes student and faculty exchanges, and emphasizes

credit transfer arrangements.

Recent developments show progress: Australia's Deakin University and Wollongong University announced

Indian campuses in GIFT City, Gujarat. Several foreign universities are exploring Indian presence. The

Academic Bank of Credits (ABC) enables credit transfer within India and potentially internationally.

India's higher education internationalization aligns with broader soft power and economic objectives.

International students generate revenue, build long-term diplomatic connections (many foreign leaders studied

in the US/UK), enhance campus diversity, and create global awareness of Indian institutions.

6.2 Current International Student Flows

India's international student numbers remain modest relative to system size and aspirations. Approximately 50,000 international students study in India annually—dramatically below NEP targets. Major source countries include Nepal, Afghanistan, Bhutan, and African nations. Students primarily pursue medical education (due to lower costs than Western countries) and to lesser extent engineering and management.

Conversely, India sends approximately 1.3 million students abroad annually—second only to China in outbound student numbers. Popular destinations include the United States (275,000 Indian students, second-largest international student cohort), Canada, United Kingdom, Australia, and Germany. These students pursue degrees perceived as higher quality, offering better employment prospects, and providing pathways to immigration.

This negative international student balance represents both lost revenue (estimated at \$28 billion annually spent abroad) and reputational challenge—Indian students vote with feet that foreign education offers greater value. Reversing this flow requires demonstrable quality improvements making Indian institutions competitive alternatives.

6.3 Barriers to Internationalization

Multiple factors impede India's internationalization ambitions:

Quality Perception: Global rankings show few Indian institutions in top tiers. Only IIT Bombay and IIT Delhi rank within top 150 globally. This reputation gap discourages international students who can access higher-ranked institutions elsewhere.

Language: While English instruction exists in premier institutions, many universities and colleges primarily operate in Hindi or regional languages. This limits accessibility for international students.

Infrastructure and Campus Life: Many institutions lack the physical infrastructure, housing quality, student services, and campus amenities international students expect. Safety concerns, particularly for female international students, are noted barriers.

Bureaucratic Complexity: Visa processes, degree recognition procedures, and regulatory requirements involve complex bureaucracy discouraging international students and universities.

Limited Scholarship Support: Unlike countries offering substantial scholarships to attract international talent, India provides limited financial support for international students.

Cultural Barriers: Some international students, particularly from Western countries, perceive cultural adjustment challenges, though students from neighboring South Asian and African countries integrate more readily.

IJSREM e Jeanni

Volume: 09 Issue: 10 | Oct - 2025 SJIF Rating: 8.586 **ISSN: 2582-3930**

6.4 Internationalization Opportunities

Despite challenges, India possesses unique strengths for internationalization:

Cost Advantage: Indian higher education costs dramatically lower than Western alternatives. This attracts students from developing countries seeking quality education at affordable prices.

English Instruction: Premier institutions teach in English, providing accessibility for international students while requiring no additional language learning.

Cultural Diversity: India's multicultural society offers international students exposure to diverse traditions, languages, and perspectives—enriching educational experience.

Specific Program Strengths: Indian institutions excel in specific domains including mathematics, computer science, engineering, yoga and wellness studies, traditional medicine (Ayurveda), and Indian culture and languages. These specializations attract niche international student cohorts.

Diaspora Connections: The 32-million-strong Indian diaspora creates networks that could facilitate student flows, particularly if children and grandchildren of diaspora seek cultural connections through education.

Strategic Location: India's position in South Asia enables accessibility for students from neighboring countries facing limited domestic higher education capacity.

Realizing this potential requires strategic investments in quality, infrastructure, streamlined processes, targeted marketing, and scholarship programs positioning India as competitive alternative rather than budget option.

7. State Public Universities: The Backbone Under Strain

7.1 The Critical Role of SPUs

State Public Universities (SPUs) constitute the backbone of Indian higher education, yet they remain chronically underinvest and overlooked in policy discussions focused on elite central institutions. According to NITI Aayog's 2025 report "Expanding Quality Higher Education through States and Private Participation," SPUs are critical because:

Scale of Impact: 495 SPUs serve 81% of India's higher education students through their 46,000 affiliated colleges. In contrast, 23 IITs serve only 1% of students. Any meaningful improvement in Indian higher education quality and access must center SPUs.

Geographic Distribution: SPUs provide the only accessible higher education in most tier-2 and tier-3 cities and rural areas. They enable local access, preventing economically disadvantaged students from being excluded by relocation costs.

Affordability: SPU tuition averages 60% lower than private institutions and remains stable, ensuring affordability for middle and lower-middle class families. As economic inequality grows, accessible public education becomes more essential.

Discipline Breadth: SPUs offer comprehensive programs across arts, science, commerce, professional courses, and vocational education—providing diverse pathways unlike specialized institutions.

7.2 Crisis Conditions in SPUs

Despite their critical role, SPUs face severe challenges threatening their viability and quality:

Funding Shortfalls: State governments, facing fiscal constraints, continuously reduce higher education budgets. Many SPUs operate with budgets insufficient for basic functions—salaries consume 80-90%, leaving minimal funds for infrastructure, research, library resources, or faculty development.

Faculty Vacancies: As noted earlier, SPUs face 40-50% faculty vacancies in many states. Rajasthan, Uttar Pradesh, Bihar, and Maharashtra show particularly acute shortages. Some universities have zero permanent faculty in certain departments, relying entirely on contractual or guest faculty.

Infrastructure Decay: Campus buildings deteriorate without maintenance funds. Libraries lack contemporary resources. Laboratories have obsolete equipment. Digital infrastructure remains minimal. Hostels are overcrowded and poorly maintained.

Administrative Overload: With vast affiliated college networks, SPU administrators spend disproportionate time on exam conduct, affiliation renewals, and compliance rather than academic leadership.

Political Interference: State universities face political pressures affecting appointments, admissions, and institutional autonomy. Vice-Chancellor positions become political appointments rather than academic selections.

Low Research Output: Funding limitations, faculty shortages, and teaching loads prevent research activity. Most SPUs produce minimal research publications and attract negligible grant funding.

7.3 The Affiliation Model's Limitations

SPUs operate through an affiliation model where the university affiliates thousands of colleges, sets curriculum, conducts examinations, and awards degrees, while colleges provide instruction. This model, inherited from colonial period, shows severe limitations:

Quality Control Challenges: Universities cannot effectively monitor teaching quality across thousands of dispersed colleges. Variation in college quality is enormous—some provide excellent education while others are degree mills.

DSREM Le Journal

Volume: 09 Issue: 10 | Oct - 2025 SJIF Rating: 8.586

Curriculum Centralization: Universities set rigid curricula for all affiliated colleges, preventing innovation, local adaptation, or responsiveness to emerging fields.

Examination Burden: Conducting exams for hundreds of thousands of students consumes enormous administrative resources, creates examination malpractice challenges, and delays result announcements.

Identity Dilution: Students identify with their college rather than university, limiting university community and peer learning across colleges.

NEP 2020's vision for moving toward graded autonomy and clusters seeks to address these limitations by granting high-performing colleges degree-granting autonomy and creating federated college clusters, but implementation faces political and administrative resistance.

7.4 Revitalizing SPUs: NITI Aayog Recommendations

NITI Aayog's 2025 report outlines comprehensive strategy for SPU revitalization:

Increased Funding: States must increase higher education budgets to at least 1% of GSDP. Central government should provide matching grants incentivizing state investments.

Faculty Recruitment Drives: Fast-track recruitment to fill vacancies within 1-2 years. Simplify procedures, improve compensation, and create "visiting professor" positions attracting retired faculty and industry experts.

Infrastructure Modernization: Rs 5,000-10,000 crore investment program to upgrade SPU infrastructure including digital systems, laboratories, libraries, and campuses.

Autonomy and Accountability: Grant greater autonomy to SPUs in academic, administrative, and financial matters while implementing robust accountability frameworks through transparent performance metrics.

Academic Leadership: Ensure merit-based Vice-Chancellor selections through independent search committees. Provide VC training and support.

Reduce Affiliation Burden: Transition high-performing colleges to autonomous status. Create university college clusters. Consider liberalized private university licensing reducing SPU affiliation load.

Research Ecosystem: Establish state-level research funding agencies. Create SPU research centers of excellence. Incentivize faculty research through workload policies and recognition.

Implementing these recommendations requires political will, sustained funding commitments, and systemic reforms across state governments—a significant challenge given higher education's low political priority in most states.

8. Policy Recommendations: A Roadmap for Transformation

ISSN: 2582-3930

8.1 Expanding Access

Infrastructure Investment: Establish 500 new multi-disciplinary colleges in underserved districts, particularly in states with GER below 30%. Prioritize rural and tribal areas.

Online and Distance Education: Strengthen the National Prgramme on Technology Enhanced Learning (NPTEL), SWAYAM, and distance education programs. Invest in digital infrastructure enabling quality online education.

Financial Support: Expand scholarship coverage and quantum for economically disadvantaged students. Create income-contingent loan programs enabling students to defer repayment until employed.

Alternative Pathways: Recognize prior learning, vocational training, and work experience for higher education entry and credit, creating flexible pathways especially for adult learners.

Regional Balancing: Establish specialized central institutions (IITs, NITs, IIMs, AIIMS) in low-GER states catalyzing regional ecosystem development.

8.2 Advancing Equity

Targeted Interventions: Design programs specifically addressing SC/ST, OBC, minority, female, and first-generation student needs including mentorship, academic support, and psychosocial counseling.

Inclusive Campus Culture: Mandatory anti-discrimination training, grievance redressal mechanisms, caste-discrimination monitoring, and consequences for discriminatory behavior.

Scholarship Expansion: Increase post-matric scholarship budgets and streamline disbursement. Ensure scholarships cover full costs including living expenses, books, and materials.

Regional Equity: Special funding packages for low-performing states contingent on reform commitments. Central assistance for SPU development in backward states.

Gender-Sensitive Infrastructure: Women's hostels, safe transportation, anti-harassment policies, and women's studies centers addressing gender-specific barriers.

8.3 Improving Efficiency

Emergency Faculty Recruitment: National mission to fill all vacant positions within three years. Simplify recruitment procedures, increase compensation, and create visiting faculty programs.

PhD Pipeline Expansion: Increase PhD stipends to competitive levels. Expand fellowship programs. Partner with industry for funded PhD positions. Reduce PhD completion time through structured programs.

Resource Optimization: Shared facilities across institutions, industry partnerships for equipment access, and PPP models for infrastructure development.

Administrative Rationalization: Leverage technology for administrative automation. Reduce bureaucratic approval layers. Empower institutional leadership with greater autonomy.

Performance Management: Link funding to performance metrics including faculty-student ratios, research output, student outcomes, and equity indicators.

8.4 Ensuring Quality

Strengthen Quality Assurance: Implement the proposed NATAA with transparent processes, adequate staffing, technology-enabled assessment, and severe penalties for fraud. Ensure all institutions achieve accreditation within five years.

Research Integrity: Mandatory research ethics training for all faculty and PhD students. Establish institutional ethics committees. Create national database tracking retractions and misconduct. Penalize institutions with persistent integrity issues.

Curriculum Reform: Establish interdisciplinary curriculum development teams. Mandate regular reviews incorporating industry and alumni input. Encourage experimentation and innovation in teaching-learning.

Pedagogy Transformation: Faculty development programs on active learning methodologies. Incentivize pedagogical innovation. Reduce class sizes enabling interactive teaching.

Industry Linkages: Mandatory industry internships, industry advisory boards, joint research projects, and faculty-industry exchange programs ensuring curriculum relevance.

8.5 Advancing Internationalization

Marketing and Branding: Coordinate international marketing campaign showcasing Indian higher education strengths. Leverage diaspora networks. Host international education fairs.

Scholarship Programs: Create India Education Trust offering scholarships to international students from target countries. Prioritize students from South Asia, Africa, and Southeast Asia.

Streamline Regulations: Simplify student visa processes. Create single-window clearance for foreign university campuses. Fast-track degree equivalence recognitions.

Quality Improvements: Focus internationalization efforts on improving domestic quality rather than superficial internationalization. Global competitiveness requires genuine quality enhancement.

Strategic Partnerships: Facilitate twinning programs, joint degrees, faculty exchanges, and collaborative research with reputed foreign universities.

8.6 Funding and Governance

Increase Public Investment: Achieve NEP 2020's target of 6% of GDP for education with significant allocation to higher education. Establish dedicated cess or surcharge ensuring sustained funding.

State-Central Coordination: Create higher education mission mode approach with matching grants incentivizing state investments and reforms.

Private Sector Engagement: Enable PPP in infrastructure, research funding through corporate social responsibility, and philanthropy through tax incentives.

Institutional Autonomy: Grant greater autonomy to well-performing institutions in academic, administrative, and financial matters while maintaining accountability through transparent metrics.

Regulatory Rationalization: Implement NEP 2020's vision of light-touch regulation focusing on outcomes rather than inputs. Reduce compliance burden enabling institutions to focus on academics.

9. Emerging Opportunities and Innovations

9.1 Technology-Enabled Learning

Digital technology offers transformative potential for Indian higher education:

Massive Open Online Courses (MOOCs): SWAYAM platform offers 5,000+ courses from premier institutions. Expanding course offerings, improving quality, and integrating into degree programs can democratize quality education access.

Blended Learning: Combining online content delivery with in-person discussion and mentorship optimizes both scale and interaction. This model suits India's resource constraints while maintaining quality.

Adaptive Learning Systems: AI-powered platforms personalizing learning to individual pace and style can address diverse student preparation levels—a critical challenge in mass higher education.

Virtual Laboratories: Computer simulations and remote-access laboratories can partially address equipment shortages enabling experiential learning in resource-constrained institutions.

Learning Analytics: Data-driven insights on student engagement, learning patterns, and outcomes enable proactive interventions preventing dropout and improving success rates.

9.2 Industry-Academia Collaboration

Deeper industry engagement can address employability challenges:

Volume: 09 Issue: 10 | Oct - 2025

SJIF Rating: 8.586

ISSN: 2582-3930

Apprenticeship Embedded Degrees: Programs integrating extended industry apprenticeships with academic learning prepare students for workplace while providing practical experience.

Corporate-Sponsored Chairs: Industry funding for faculty positions in emerging domains brings industry expertise into academia while providing research support.

Innovation and Incubation Hubs: Campus incubators supported by industry mentorship, seed funding, and market access convert student innovations into startups generating employment.

Skill Development Integration: Embedding industry-recognized certification programs within degree structures enhances employability while providing alternative credentials.

9.3 Alternative Credentials

Beyond traditional degrees, alternative credentials are gaining acceptance:

Stackable Microcredentials: Academic Bank of Credits enables students to accumulate credits from multiple institutions and modalities, creating flexible learning pathways especially beneficial for working adults.

Industry Certifications: Recognition of professional certifications for academic credit reduces duplication and validates industry-relevant skills.

Competency-Based Assessment: Moving from time-based degrees to competency-based credentials focuses on demonstrated capabilities rather than seat time, enabling faster pathways for capable students.

9.4 Internationalization at Home

For students unable to study abroad, internationalization-at-home strategies provide global exposure:

Virtual Exchange: Online collaborative courses where Indian students work with international peers on projects provides intercultural competence without travel costs.

International Faculty: Attracting international faculty—even for short-term teaching or research—brings global perspectives to campuses.

Global Curriculum Content: Incorporating international case studies, global issues, and comparative perspectives into curricula internationalizes learning experiences.

10. Conclusion

10.1 The Stakes

India's higher education system stands at a crossroads. The demographic dividend—a young population creating potential for rapid economic growth—can only be realized if youth receive quality education developing

productive capabilities. Conversely, failure to educate this generation creates demographic disaster—masses of unemployed, frustrated youth creating social instability.

Higher education is not merely about individual mobility; it constitutes critical infrastructure for national development. Innovation-driven economic growth requires research capabilities. Complex governance demands informed citizenry. Climate change, public health crises, and technological disruption require educated problem-solvers. Global competitiveness depends on knowledge production and human capital.

India's aspiration for Viksit Bharat (Developed India) by 2047 cannot be achieved without transforming higher education into a world-class system characterized by universal access, genuine equity, optimal efficiency, uncompromising quality, and meaningful internationalization.

10.2 Progress and Persistent Challenges

The analysis reveals both progress and persistent challenges. Access has expanded—GER increasing from 23.7% in 2014-15 to 32.5% in 2025. Gender parity has been achieved in aggregate enrollment. Institutional numbers have grown. NEP 2020 provides comprehensive reform vision. Technology offers new possibilities. International engagement is increasing.

Yet fundamental challenges persist. The 32.5% GER remains dramatically below the 50% target and global comparators. Regional disparities mean birth location determines educational access. Equity gaps across caste, class, gender, and geography persist. The 56% faculty vacancy rate in top institutions and worse in SPUs threatens quality. Research integrity crises damage credibility. NAAC controversies undermine quality assurance. Infrastructure deficits constrain learning. Curriculum rigidity limits relevance. Internationalization remains aspirational for most institutions.

Most critically, State Public Universities serving 81% of students face crisis conditions—funding shortfalls, faculty vacancies, infrastructure decay, and political interference. Without revitalizing SPUs, improvements in elite institutions cannot address systemic quality and access challenges.

10.3 The Path Forward

Transforming Indian higher education requires sustained commitment across multiple dimensions:

Political Priority: Higher education must become first-tier political priority with visible accountability. Chief Ministers and education ministers must champion reform as Bihar's Nitish Kumar once prioritized school education.

Funding Commitment: Achieving 6% of GDP for education overall with substantial higher education allocation requires political will to increase revenues and reprioritize spending.

Volume: 09 Issue: 10 | Oct - 2025 SJIF Rating: 8.586

Systemic Reform: Piecemeal initiatives are insufficient. Comprehensive reform addressing access, equity, efficiency, quality, and internationalization simultaneously through coordinated policy action is necessary.

Stakeholder Engagement: Reform must engage faculty, students, administrators, industry, civil society, and international partners—not be imposed top-down.

Evidence-Based Policy: Rigorous data collection, research on what works, and adaptive learning from implementation experience should guide policy evolution.

Long-Term Commitment: Higher education transformation requires decades, not election cycles. Multi-party consensus protecting reforms from political oscillation is essential.

10.4 A Vision for 2047

As India approaches its centenary of independence in 2047, higher education must embody the nation's aspirations. The vision should include:

- Universal Access: 50%+ GER with equitable access across regions, castes, genders, and socioeconomic groups
- **World-Class Quality:** 25 Indian universities in global top 200, 100 in top 500, with research output and innovation matching developed nations
- Equity and Inclusion: Elimination of caste-based discrimination, gender equity in all fields, regional balance, and socioeconomic diversity
- Global Integration: India as top-five study destination attracting 500,000+ international students annually while retaining domestic talent
- **Economic Impact:** Higher education driving innovation, entrepreneurship, and knowledge economy with graduates meeting 21st-century skill demands
- **Social Impact:** Educated citizenry capable of democratic participation, informed decision-making, and addressing societal challenges
- Cultural Renaissance: Universities as centers of intellectual discourse, cultural production, and value cultivation

This vision is achievable but requires immediate, sustained, and comprehensive action. The alternative—continued drift, incremental improvements, and systemic neglect—will squander India's demographic dividend and condemn generations to unfulfilled potential.

ISSN: 2582-3930

10.5 Final Reflection

Indian higher education's challenges are neither unprecedented nor insurmountable. Other nations—South Korea, China, Singapore—transformed education systems within 2-3 decades through strategic investment and reform. India possesses advantages they lacked: democratic traditions, linguistic diversity, entrepreneurial culture, strong diaspora networks, and existing institutional foundations.

What is required is collective recognition that higher education is not a luxury or elite concern but fundamental infrastructure determining national destiny. Faculty, administrators, policymakers, students, industry, and citizens must act as stakeholders in transformation.

The demographic dividend is a closing window. India's youth population advantage extends through 2045—just two decades away. Higher education transformation must accelerate now to convert demographic potential into realized prosperity. The choice is stark: invest in higher education and unlock tremendous potential, or perpetuate mediocrity and squander generational opportunity.

The stakes could not be higher. The time for decisive action is now. India's future—and the futures of millions of young people—depend on getting higher education right.

References

NITI Aayog. (2025). Expanding quality higher education through states and private participation. February 2025.

Government of India. (2025). Economic Survey 2024-25: Higher education institutions grow by 13.8%, GER rises to 28.4%. January 31, 2025.

Ministry of Education. (2025). India's rise in education excellence. Press Information Bureau, March 31, 2025.

Parliamentary Standing Committee on Education. (2025). Report on faculty shortages in Indian universities. April 2025.

India Today. (2025). 56% professor posts vacant in IITs, IIMs, NITs, says parliamentary report. April 1, 2025.

University World News. (2025). Over 56% of professorial jobs in top universities lie vacant. April 2, 2025.

Times of India. (2025). State public universities grappling with faculty shortages, poor infrastructure: NITI Aayog. February 10, 2025.

Deccan Herald. (2025). Faculty vacancies blunt India's global edge. September 1, 2025.

Poets & Quants. (2025). Faculty shortages restrict growth at India's top business schools. March 10, 2025.

QS. (2025). India Summit 2025 report. September 21, 2025.

The Federal. (2025). QS rankings: Why there is good news and bad news for Indian universities. June 18, 2025.

Times Higher Education. (2025). India's universities must address growing credibility problems. April 8, 2025.

Science Chronicle. (2025). A research integrity index shining light on how Indian universities have gamed publishing metrics. June 11, 2025.

Nature. (2025). India to penalize universities with too many retractions. July 31, 2025.

Policy Circle. (2025). India's research publications boom masks quality crisis in universities. August 2, 2025.

Sabrang India. (2025). Alarming decline in quality of research & teaching in Indian universities. January 2, 2025.

Luneblaze. (2025). Is NAAC losing its credibility? March 27, 2025.

Luneblaze. (2025). The story of NAAC – India's higher education quality guardian. August 15, 2025.

IERJ. (2025). Equity and inclusion in higher education. July 14, 2025.

Economic Times Education. (2025). India's higher education: A global leader in internationalization. July 21, 2025.

Lingaya's Vidyapeeth. (2025). Internationalization of higher education in India in 2025. March 20, 2025.

NAFSA. (2022). Internationalizing Indian higher education. April 12, 2022.

IIE. (2023). India's rapidly rising role in international education. November 21, 2023.

India Data Map. (2025). State-wise analysis of higher education enrollment in India. August 26, 2025.

Ministry of Education Facebook. (2025). Equity & inclusion in higher education: 5 years of NEP 2020. July 28, 2025.

LinkedIn. (2025). Why India should prioritize equity and skill-based education. March 14, 2025.

IJRPR. (2025). Challenges of accreditation under NAAC framework in India.

IJCRM. (2025). NAAC accreditation: Indian higher education. January 28, 2025.

Edutimes. (2025). Empty chairs, deferred dreams: Inside India's higher education faculty crisis. June 1, 2025.