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Abstract— Today, cloud technology continues to evolve. Using 

cloud services allows you to get financial benefit so Still, many 

companies and users are in no hurry to transfer their 

infrastructure to the cloud due to incompletely resolved problems 

related to the security of data storage and processing. In the case 

of storing and processing open data, a cloud provider gets access 

to the data, and an attacker can also gain by hacking an account. 

In the case of encrypted data transmission to the cloud, 

confidentiality will be preserved only in data storage tasks, since 

data processing will require a decryption task. The use of 

homomorphic ciphers allows the processing of encrypted data 

without violating their privacy. Homomorphic encryption is 

actively beginning to be used in machine learning tasks to 

transfer and ensure the confidentiality of resource-intensive 

operations for training a neural network in the cloud. The article 

offers a review and comparison of existing methods of 

homomorphic encryption for machine learning tasks. 
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I. INTRODUCTION 

Cloud storage and data processing systems are widely used 
in the design of the IT infrastructure of enterprises and are 
becoming more widespread in society. Cloud technology is 
convenient for organizing the interaction of users and 
information service providers, as well as automatic data 
collection, processing, storage, and dissemination systems. 
However, an important task at the development stage of any 
cloud data processing system is to ensure confidentiality. The 
main problem, in this case, is the inability to guarantee 
customer confidentiality of data, since any cloud service 
provider can be compromised as a result of hacking or 
technical failure. 

The purpose of encryption is to ensure the confidentiality of 
data processes. As a result, new functions were obtained that 
allow delegating computations for an unreliable computer. For 
this goal, we want to provide an untrusted cloud provider with 
only an encrypted version of the data processing. The cloud 
provider will perform calculations on this encrypted data, 
therefore, not knowing anything about its real value. It will 
send back the result of data processing the encrypted, and we 
will decrypt it. 

For this reason, the encryption scheme should represent a 
specific structure. Consider the main approaches to 
constructing encrypted data processing schemes based on 
homomorphic encryption, see Section II. Section III presents 

the main unresolved issues and future work. 

II. METHODS REVIEW 

The cloud is an excellent platform for creating or placing 

pre-trained models because it offers cheap data storage, almost 
zero deployment cost, and high computing services [1]. 
However, it has some disadvantages that entail problems that 
need to be addressed. One of the main issues of cloud 
technology is the issue of data privacy. When using DLaaS, the 
user uploads his data to the cloud, which, in turn, evaluates the 
model according to the input data and sends the results back to 
the user. At each stage of this process, attackers have many 
opportunities for data theft. 

As an example, suppose there is a financial service provider 
who claims to own a model that can be used to predict the 
market value of a particular class of companies with a high 
degree of accuracy. A service provider, ideally, would like to 
monetize its service by placing it in the cloud and providing 
paid forecasts to its customers. But a situation may occur in 
which a potential client may not want to use the service and 
share their confidential data with the cloud, despite the 
potential profit. An ideal solution to this problem is to protect 
both the model and personal data. This solution should require 
minimal participation of the client in the calculations, except 
for entering data and receiving the result of work. Also, the 
solution should be effective and have high performance. 

There are at least three possible methods to tackle the 
problem above 

1. Trusted Computing Base (TCB) [2], the use of hardware 
primitives for performing calculations in an isolated 
environment, for example, INTEL Software Guard Extensions 
(SGX) or AMD Secure Encrypted Virtualization (SEV); 

2. Multi-Party Computation (MPC), which are algorithmic 
solutions that use cryptography to jointly evaluate a particular 
function between several parties without revealing the personal 
input of any party; 

3. Fully homomorphic encryption (FHE), allows you to 
process data without decrypting it. 

TCB solutions are highly efficient and suitable for the 
cloud computing paradigm. However, today, there are attacks 
on, TCB which some programs allow for obtaining 
information [3, 4, 5]. MPC solutions require a significant 
amount of communication between the parties. On the other 
hand, FHE- based solutions are similar to MPC solutions 
except that they are not interactive., i.e., do not require 
constant communication between the parties. However, they 
are computationally expensive. Providing computer resources 
is a more straightforward task than providing a secure 
connection, so FHE is better suited to solving the problem than 
MPC. 

Machine learning based on FHE while maintaining 

http://www.ijsrem.com/


          International Journal of Scientific Research in Engineering and Management (IJSREM) 

                          Volume: 07 Issue: 12 | December - 2023                    SJIF Rating: 8.176                               ISSN: 2582-3930                                                                                                                                               

 

© 2023, IJSREM      | www.ijsrem.com                                                                                                                              |        Page 2  

confidentiality was previously reviewed by Graepel et al. [6], 
and Aslett et al. [7]. Following them, Dowlin et al. [8] 
proposed CryptoNets, the first neural network based on 
encrypted data, providing a deep learning method in which the 
output phase allows for maintaining confidentiality. After the 
publication of this work, works appeared [9–13] in which many 
cryptographic methods were used to achieve similar goals. 
The main disadvantage of these FHE-based solutions is the 
high computational cost. For example, CryptoNets took 570 
seconds to evaluate an FHE-friendly model on encrypted 
samples from the MNIST dataset at a security level (80 bits). 

Also, this scheme requires large open text (t ≈ 280), which 
should have been decomposed using the Chinese remainder 
theorem (CRT) into two smaller (240) modules. Besides, the 
scheme (YASHE) that they used is not recommended because 
of the attack on it described in [14]. 

Krizhevsky et al. [15] proposed the AlexNet scheme and 
showed the advantages of convolutional neural networks 
(CNN) implemented on GPU in image classification problems. 
For the practical implementation of homomorphic 
convolutional neural networks (HCNN), many problems still 
have to be solved. This works as follows. Encryption masks 
the input, called plaintext, a random error taken from some 
distribution, which leads to encrypted text that does not reveal 
anything about what it encrypts. For decryption, a secret key is 
used to filter noise and extract plain text. During the 
calculations, the noise in the ciphertexts grows in a controlled 
manner. Still, at some point, it increases to such an extent that 
no further calculations can be performed without errors during 
decryption. 

Research in the field of deep learning, which preserves 
confidentiality, can be divided into two parts: the former use 
homomorphic encryption, and the latter combines it with 
secure multi-party computing (MPC) methods. The systems 
CryptoNets, Dowlin, et al. [8], FHE-Dinn, Bourse, et al. [16], 
and E2DM, Jiang et al. [11] use only fully homomorphic 
encryption to solve this problem. Dowlin et al. [8] were the 
first to propose using FHE as the basis for designing neural 
networks for deep learning while maintaining confidentiality 
that can work on encrypted data. They proposed using 
polynomial approximations of the most common ReLU 
activation function and using union layers only during the 
training phase to reduce the depth of their neural network 
chain. However, they used the YASHE scheme from Bos et al. 
[17], which is no longer safe due to the attack proposed by 
Albrecht et al. [14]. Also, they need a sizeable clear text of 
more significant than 80 bits to accommodate the result of 
their neural network. This makes it very difficult to scale to 
deeper networks, as the intermediate layers in these networks 
will quickly reach several hundred bits. 

Bourse et al. [16] proposed a new type of neural network 
called Discretized Neural Networks (Dinn) to output 
encrypted data. The weights and input data of traditional CNNs 
are divided into elements lying at −1,1, and the fast boot 
TFHE scheme proposed by Chilotti et al. [14] was used to 
double the function of neuron activation. Each neuron 
calculates the weighted sum of its inputs, and the activation 
function is a sign function of sign (z), which displays the sign 
of the input z. Although this method can be applied to arbitrary 
deep networks, it does not have a sufficient accuracy of 
96.35% on a lower-performance MNIST dataset. 

Jiang et al. [11] proposed a new matrix multiplication 

method with FHE and evaluated a neural network on a dataset. 
They also considered the possibility of packing the entire 
image into one ciphertext compared to the approach of Dowlin 
et al. [8], which put only one pixel in the ciphertext but 
evaluate large sets of images at a time. They achieved good 
performance, rating 64 images in just under 29 seconds, but 
with worse performance. 

Some of the main limitations of simple FHE-based 
solutions are the need to approximate non-polynomial 
activation functions and long computation times. To solve 
these problems, Liu et al. [13] proposed the MiniONN method. 
They take commonly used protocols in deep learning and turn 
them into forgotten protocols. Using MPC, they can evaluate 
neural networks without changing the learning phase, while 
maintaining accuracy, since approximation is not required for 
activation functions. However, MPC has its drawbacks. In this 
parameter, for each calculation, a connection is required 
between the data owner and the model owner, which leads to 
the use of networks with high bandwidth. 

Juvekar et al. [12] developed GAZELLE, in which, instead 
of using FHE, they use alternating approaches of an additively 
homomorphic encryption scheme for levels of convolution type 
and distorted chains for levels of activation and association. 
Thus, communication complexity is reduced compared to 
MiniONN but is still significant. 

One of the promising approaches for ensuring the 
confidentiality of data processed in the cloud is homomorphic 
encryption. Homomorphic encryption is meant a method of 
encrypting data that allows it to be processed in an encrypted 
form without decryption, which ensures confidentiality. For 
example, machine learning methods for processing encrypted 
confidential data: personal, medical, and commercial data have 
a high potential for practical application. At the same time, 
FHE schemes that support the addition and multiplication of 
encrypted numbers and allow to implementation of a wide 
range of algorithms for processing sensitive data deserve 
special attention. 

Significant results in the development of the theory of 
completely homomorphic encryption schemes were achieved 
by Craig Gentry in 2009 [18]. Gentry proposed a method for 
constructing an FHE based on an arbitrary homomorphic 
cipher. However, the methods proposed by Gentry have two 
significant drawbacks that do not allow their use in practice: 
large redundancy and high computational complexity. 

To eliminate these shortcomings, leveled homomorphic 
encryption schemes have been proposed that allow you to 
operate for adding encrypted numbers as many times as you 
like, and the number of operations to multiply encrypted 
numbers is a limited number of times. This approach allowed 
us to reduce the redundancy of encrypted data of homomorphic 
encryption schemes. However, the problem of effective 
implementation of the schemes is open. 

The basis of modern fully homomorphic ciphers is the NP- 
difficult task of Learning With Errors (LWE) and its variant, 
which has important practical applications - learning with 
errors in the polynomial ring (RLWE). In LWE-based 
encryption schemes, a small error is added to the encrypted 
message, which is eliminated during the decryption process. 
Depending on the method of adding errors to the ciphertext, 
two important types of modern homomorphic encryption 
schemes based on RLWE can be distinguished: BGV [19] and 
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BFV [20]. These schemes are included in the developed 
standard of homomorphic encryption [21] and are the basis of 
many FHE schemes with various properties. For example, a 
fully homomorphic encryption scheme for approximate 
numbers by Cheon et al. [22] is based on the BGV approach, 
which is more efficient than peers and has a controlled increase 
in encryption errors. 

However, the computational complexity and redundancy 
of encryption schemes make them inapplicable in practice at 
the moment. This is because, to achieve the required level of 
cryptographic scheme strength (more than 128 bits of semantic 
power), RLWE-based ciphers, according to the introduced 
standards of homomorphic encryption [21], require 
computations with large degrees polynomials (more than 4096) 
with significant coefficients (several hundreds of bits). 
General-purpose processors are ineffective for such tasks since 
the maximum level of parallelism is required. The creation of 
specialized accelerators (mathematical coprocessors) will solve 
the issue of the effectiveness of homomorphic encryption 
schemes and will expand the range of their applicability. One 
of the main objectives of the proposed project is to develop a 
computing strategy that applies to a data center equipped with 
similar hardware accelerators. 

 

III. FURTHER WORK 

The main task of such accelerators is to implement 
operations in a ring of large polynomials with significant 
coefficients. The key approaches for this are the use of the 
Number-Theoretic Algorithms (NTA) as a variant of the 
discrete Fourier transform in finite fields to accelerate the 
multiplication of polynomials and a system of residual classes 
to accelerate the work by performing arithmetic operations in 
parallel. The Residue Number System (RNS) is a non-
positional number system in which numbers are represented as 
residues by dividing them into pre-selected, mutually simple 
modules. This representation allows you to simultaneously 
perform the operations of multiplication and addition of 
numbers to the residue ring without transferring data between 
bits (residues), speeding up calculations with multi-bit 
numbers. An important feature of RNS is the possibility of 
homomorphic data processing. Adaptation of homomorphic 
encryption algorithms for acceleration using RNS (BEHZ 2016 
and HPS 2018 for BFV, HEAX for CKKS 2017) allowed us to 
create several fairly effective practical implementations, 
including both Microsoft SEAL software and hardware HEAX 
solutions. RNW is actively used in a variety of cryptographic 
algorithms, including homomorphic ciphers based on problems 
other than RLWE [23], and allows significant acceleration to 
be achieved. 

However, many operations in the RNS cannot be 
implemented effectively. These include non-modular 
operations – operations that, in one form or another, require 
an estimate of the positional value of a number, which leads to 
inter-module interactions and cannot be implemented in 
parallel. Such operations, such as scaling, dividing, and 
comparing numbers in magnitude, are considered complex in 
RNS and require a separate study. In various cases, when 
used for homomorphic encryption, such operations can, on 
the one hand, reduce the performance of operations and, on 
the other hand, lead to the accumulation of additional errors 
in the ciphertext. At the moment, effective methods for 
calculating positional characteristics have been developed 

that apply to a wide class of algorithms and allow the 
development of universal devices based on RNS. 

Further optimization of homomorphic encryption 
algorithms using RNS requires taking into account the features 
of the implementation of algorithms of this type on specific 
platforms (FPGA, ASIC). Currently, RNS is applied to already 
developed schemes that do not take into account the features of 
this number system. The combination of parameters of 
encryption schemes and parameters of RNS to achieve 
maximum performance is currently a poorly studied problem 
that affects the choice of specific approaches to the 
implementation of algorithms in RNS and the organization of 
homomorphic calculations. Within the framework of the 
project, it is planned to develop new methods for 
homomorphic encryption using RNS, combining, on the one 
hand, the possibility of efficient hardware implementation, and 
on the other, efficient algorithms for performing non-modular 
operations in RNS, as well as direct and inverse conversion to 
RNS. 

To achieve this result, careful consideration of the 
compatibility parameters of homomorphic encryption schemes 
and algorithms in RNS is required. It is necessary to develop 
generalized models of homomorphic ciphers in RNWE-based 
RNWEs, which allow for a detailed analysis of the developed 
algorithms and take into account all the features of devices 
operating in RNWEs. The maximum effect can be achieved 
when developing a specialized homomorphic encryption 
scheme adapted for the use of RNS. It is necessary to take into 
account the trends in the development of homomorphic ciphers 
for approximate calculations that have great potential for 
practical application. 
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