HOMOMORPHISM OF IMAF NORMAL SUBGROUP

S.Balamurugan¹, Bharathi Rameshkumar²

¹Assistant Professor, Department of Mathematics, Velammal College of Engineering and Technology (Autonomous), Madurai- 625009, Tamil Nadu, India. ORCID:0000-0002-7277-1520

²Associate Professor, Department of Mathematics, Vel Tech RangarajanDr.Sagunthala R&D Institute of Science and Technology, Avadi, Chennai, Tamil Nadu, India.

¹balasudalai@yahoo.com and ²brameshkumar@veltech.edu.in

Corresponding Author: S.Balamurugan¹, ORCID:0000-0002-7277-1520

ABSTRACT In this article an attempt has been made to study some new algebraic structures of intuitionistic multi-anti fuzzy normal subgroups under homomorphism are discussed.

Keywords Intuitionistic multi-fuzzy set (IMFS), Intuitionistic multi-anti fuzzy subgroup (IMAFSG), Intuitionistic multi-anti fuzzy normal subgroup (IMAFNSG).

Mathematics Subject Classification 20N25, 03E72, 08A72, 03F55, 06F35, 03G25, 08A05

1. INTRODUCTION

After the introduction of fuzzy set by Prof. Zadeh [11] several researches were conducted on the generalization of fuzzy set. The concept of Fuzzy group was introduced by Rosenfeld A. [6] in 1971. The concept Fuzzy groups and its level subgroups was introduced by P.S.Das [2] in 1981. Mukharjee N.P. and Bhattacharya P. [3] was introduced the concept of Fuzzy normal subgroups and fuzzy cosets in 1984. Sabu S. and Ramakrishnan T.V. [7, 8] was introduced the concept Multi-fuzzy subgroups and it was continuously developed by Muthuraj.R and Balamurugan.S [4, 5]. The idea of intuitionistic fuzzy set was introduced by K.T. Atanassov [1]. In 2011, P.K.Sharma [9] initiated the concept of intuitionistic fuzzy groups. T.K.Shinoj and Sunil Jacob John [10] was introduced the concept of intuitionistic multi-fuzzy set in the year of 2013. R.Muthuraj and S.Balamurugan [5] introduced the algebraic structure Intuitionistic multi fuzzy subgroup under

© 2023, IJSREM | <u>www.ijsrem.com</u> DOI: 10.55041/IJSREM25696 | Page 1

ISSN: 2582-3930

homomorphisms are discussed.

2. PRELIMINARIES

In this section, we site the basic or fundamental definitions that will be used in the sequel:

2.1 Definition [11]

Let X be a non-empty set. Then a **fuzzy set** $\mu: X \rightarrow [0,1]$.

2.2 Definition [5, 10]

Let $A = \{ \langle x, \mu_A(x), \nu_A(x) \rangle : x \in G \}$, where $\mu_A(x) = (\mu_{A_1}(x), \mu_{A_2}(x), \mu_{A_3}(x), \dots \mu_{A_k}(x))$ and $\nu_{_{A}}(x) = (\nu_{_{A_{_{1}}}}(x), \nu_{_{A_{_{2}}}}(x), \nu_{_{A_{_{3}}}}(x)...\nu_{_{A_{_{k}}}}(x)) \text{ such } \quad \text{that} \quad 0 \\ \leq \mu_{_{A_{_{1}}}}(x) + \nu_{_{A_{_{1}}}}(x) \leq 1, \quad \forall x \in G, \ \mu_{_{A_{_{1}}}}: G \rightarrow [0,1] \text{ and } \\ = (0,1) \text{ and } \quad 0 \leq \mu_{_{A_{_{1}}}}(x) + \nu_{_{A_{_{1}}}}(x) \leq 1, \quad \forall x \in G, \ \mu_{_{A_{_{1}}}}: G \rightarrow [0,1] \text{ and } \\ = (0,1) \text{ and } \quad 0 \leq \mu_{_{A_{_{1}}}}(x) + \nu_{_{A_{_{1}}}}(x) \leq 1, \quad \forall x \in G, \ \mu_{_{A_{_{1}}}}: G \rightarrow [0,1] \text{ and } \\ = (0,1) \text{ and } \quad 0 \leq \mu_{_{A_{_{1}}}}(x) + \nu_{_{A_{_{1}}}}(x) \leq 1, \quad \forall x \in G, \ \mu_{_{A_{_{1}}}}: G \rightarrow [0,1] \text{ and } \\ = (0,1) \text{ and } \quad 0 \leq \mu_{_{A_{_{1}}}}(x) + \nu_{_{A_{_{1}}}}(x) \leq 1, \quad \forall x \in G, \ \mu_{_{A_{_{1}}}}: G \rightarrow [0,1] \text{ and } \\ = (0,1) \text{ and } \quad 0 \leq \mu_{_{A_{_{1}}}}(x) + \nu_{_{A_{_{1}}}}(x) \leq 1, \quad \forall x \in G, \ \mu_{_{A_{_{1}}}}: G \rightarrow [0,1] \text{ and } \\ = (0,1) \text{ and } \quad 0 \leq \mu_{_{A_{_{1}}}}(x) + \nu_{_{A_{_{1}}}}(x) \leq 1, \quad \forall x \in G, \ \mu_{_{A_{_{1}}}}: G \rightarrow [0,1] \text{ and } \\ = (0,1) \text{ and } \quad 0 \leq \mu_{_{A_{_{1}}}}(x) + \nu_{_{A_{_{1}}}}(x) + \nu_{_{A_{_{1}}}}(x) = 1, \quad \forall x \in G, \ \mu_{_{A_{_{1}}}}: G \rightarrow [0,1] \text{ and } \\ = (0,1) \text{ and } \quad 0 \leq \mu_{_{A_{_{1}}}}(x) + \nu_{_{A_{_{1}}}}(x) = 1, \quad \forall x \in G, \ \mu_{_{A_{_{1}}}}: G \rightarrow [0,1] \text{ and } \\ = (0,1) \text{ and } \quad 0 \leq \mu_{_{A_{_{1}}}}(x) = 1, \quad \forall x \in G, \ \mu_{_{A_{_{1}}}}: G \rightarrow [0,1] \text{ and } \\ = (0,1) \text{ and } \quad 0 \leq \mu_{_{A_{_{1}}}}(x) = 1, \quad 0 \leq \mu_{_{A_{_{$ $\nu_{A_1}: G \to [0,1]$ for all i = 1, 2, ..., k. Here, $\mu_{A_1}(x) \ge \mu_{A_2}(x) \ge \mu_{A_3}(x) \ge ... \ge \mu_{A_k}(x)$, for all $x \in G$. That is, μ_{A_1} 's are decreasingly ordered sequence. Then the set A is said to be an intuitionistic multi-fuzzy set (IMFS) with dimension k of G.

2.3 Remark

Note that since we arrange the membership sequence in decreasing order, the corresponding nonmembership sequence may not be in decreasing or increasing order.

2.4 Definition [4, 5]

A mapping f from a group G_1 into a group G_2 is said to be a **homomorphism** if for all $a, b \in G_1$, f(ab) =f(a)f(b).

2.5 Theorem [5]

Let $f: G_1 \rightarrow G_2$ be an onto, homomorphism of groups G_1 and G_2 . If $A = \{ \langle x, \mu_A(x), \nu_A(x) \rangle : x \in G_1 \}$ is intuitionistic multi-anti subgroup of G_1 . fuzzy then an $f(A) = \{ \langle y, \mu_{f(A)}(y), \nu_{f(A)}(y) \rangle / y \in G_2$, where $y = f(x) \}$ is also an intuitionistic multi-anti fuzzy subgroup of G_2 , if μ_A has inf property; ν_A has sup property and μ_A , ν_A are f-invariants.

2.6 Theorem [5]

Let G_1 and G_2 be any two groups. Let $f: G_1 \to G_2$ be a homomorphism of groups. If $B = \{ \langle y, \mu_B \rangle \}$ (y), $v_B(y) > : y \in G_2$ is an IMAFSG of G_2 , then $f^{-1}(B) = \{ \langle x, \mu_{f^{-1}(B)}(x), v_{f^{-1}(B)}(x) \rangle : x \in G_1 \}$ is also an IMAFSG of G₁.

DOI: 10.55041/IJSREM25696 © 2023, IJSREM www.ijsrem.com Page 2

3. Properties of an intuitionistic multi-anti fuzzy normal subgroup of a group under homomorphism

In this section, we discuss the properties of an intuitionistic multi-anti fuzzy normal subgroup of a group under homomorphism.

3.1 Theorem

Let $f: G_1 \to G_2$ be onto, homomorphism of groups. If $A = \{ < x \ , \ \mu_A(x), \ \nu_A(x) > : \ x \in G_1 \}$ is an IMAFNSG of G_1 , then $f(A) = \{ < y, \mu_{f(A)}(y), \nu_{f(A)}(y) > / \ y \in G_2$, where $y = f(x) \}$ is also an IMAFNSG of G_2 if μ_{Δ} has inf property; ν_A has sup property and μ_{Δ} , ν_A are f-invariants.

Proof: Clearly, f(A) is an IMAFSG of G_2 .

Let A be an IMAFNSG of group G₁.

Let $y_1, y_2 \in G_2$.

Since f is onto, there exist elements $x_1, x_2 \in G_1$ such that $f(x_1) = y_1$ and $f(x_2) = y_2$.

Since A is an IMAFNSG of G_1 , $\mu_{\Lambda}(x_1x_2) = \mu_{\Lambda}(x_2x_1)$ and $\nu_{\Lambda}(x_1x_2) = \nu_{\Lambda}(x_2x_1)$.

Also, $y_2y_1 = f(x_2)f(x_1) = f(x_2x_1)$, since f is a homomorphism.

Now,
$$\mu_{f(A)}(y_1y_2) = \mu_{f(A)}(f(x_1)f(x_2))$$

 $= \mu_{f(A)}(f(x_1x_2))$, since f is a homomorphism.
 $= \mu_{A}(x_1x_2)$,
 $\leq \max\{\mu_{A}(x_1), \mu_{A}(x_2)\}$
 $= \max\{\mu_{f(A)}f(x_1), \mu_{f(A)}f(x_2)\}$
 $= \mu_{f(A)}(y_2y_1)$, since f is a homomorphism.

That is,
$$\mu_{f(A)}(y_1y_2) = \mu_{f(A)}(y_2y_1), \forall y_1, y_2 \in G_2.$$

Also,
$$V_{f(A)}(y_1y_2) = V_{f(A)}(f(x_1)f(x_2))$$

= $\psi_{f(A)}(f(x_1x_2))$, since f is a homomorphism.

© 2023, IJSREM | <u>www.ijsrem.com</u> DOI: 10.55041/IJSREM25696 | Page 3

$$\begin{split} &= \boldsymbol{\nu}_{A}(x_{1}x_{2}) \\ &\geq \min\{\,\boldsymbol{\nu}_{A}(x_{1})\,,\,\boldsymbol{\nu}_{A}(x_{2})\,\} \\ &= \min\{\,\boldsymbol{\nu}_{f(A)}f(x_{1})\,,\,\boldsymbol{\nu}_{f(A)}f(x_{2})\,\} \\ &= \boldsymbol{\nu}_{f(A)}f(x_{2}x_{1}) \\ &= \boldsymbol{\nu}_{f(A)}(y_{2}y_{1})\,,\,\text{since f is a homomorphism.} \end{split}$$

That is, $\, {f v}_{{\rm f}(A)}(\, y_1 y_2) \, = {f v}_{{\rm f}(A)}(\, y_2 y_1 \,), \, \forall \, y_1, y_2 {\in} G_2.$

Hence, f(A) is an IMAFNSG of G_2 .

3.2 Theorem

Let G_1 and G_2 be any two groups. Let $f: G_1 \to G_2$ be a homomorphism of groups. If $B = \{ \langle y, \mu_B(y), \mu_B(y) \rangle \}$ $\nu_B(y) > : y \in G_2$ } is an IMAFNSG of G_2 , then $f^{-1}(B) = \{ \langle x, \mu_{f^{-1}(B)}(x), \nu_{f^{-1}(B)}(x) \rangle : x \in G_1 \}$ is also an IMAFNSG of G₁.

Proof: Clearly, f⁻¹(B) is an IMAFSG of G₁.

Let B be an IMAFNSG of G₂.

For any $x, y \in G_1$,

$$\begin{split} \mu_{f^{\text{-l}}(B)}(xy) &= \mu_{\text{B}}(f(xy)) \\ &= \mu_{\text{B}}(f(x)f(y) \text{), since } f \text{ is a homomorphism.} \\ &= \mu_{\text{B}}(f(y)f(x) \text{), since } B \text{ is an IMAFNSG of } G_2. \\ &= \mu_{\text{B}}(f(yx) \text{), since } f \text{ is a homomorphism.} \end{split}$$

Therefore, $\mu_{f^{\text{-}1}(B)}(xy) = \mu_{f^{\text{-}1}(B)}(yx), \, \forall \, x, y \in G_1.$

For any $x, y \in G_1$,

$$\mathbf{v}_{f^{-1}(B)}(xy) = \mathbf{v}_{B}(f(xy))$$

$$= \mathbf{v}_{B}(f(x)f(y)), \text{ since } f \text{ is a homomorphism.}$$

$$= \mathbf{v}_{B}(f(y)f(x)), \text{ since } B \text{ is an IMAFNSG of } G_{2}.$$

$$= \mathbf{v}_{B}(f(yx)), \text{ since } f \text{ is a homomorphism.}$$

© 2023, IJSREM DOI: 10.55041/IJSREM25696 www.ijsrem.com Page 4

SJIF Rating: 8.176 ISSN: 2582-3930

Therefore, $\boldsymbol{\gamma}_{f^{\text{-}1}(B)}(xy) = \ \boldsymbol{\gamma}_{f^{\text{-}1}(B)}(yx), \ \forall \ x, \, y \in G_1.$

Hence, $f^{-1}(B)$ is an IMAFNSG of G_1 .

3.3 Theorem

Let G_i (for i=1, 2, 3, 4) be groups. Let $f: G_1 \times G_2 \to G_3 \times G_4$ be an onto homomorphism of groups. Let A and B be any two IMAFNSG's of G_1 and G_2 respectively. Let $f_1: G_1 \to G_3$ and $f_2: G_2 \to G_4$ be onto homomorphisms of groups. If $A \times B$ is an IMAFNSG of $G_1 \times G_2$, then $f(A \times B)$ is also an IMAFNSG of $G_3 \times G_4$ if $A \times B$ have inf property and also $A \times B$ is f-invariant.

Proof: It is clear.

3.4 Theorem

Let G_i (for i = 1, 2, 3, 4) be groups. Let $f: G_1 \times G_2 \to G_3 \times G_4$ be a homomorphism of groups. Let C and D be any two IMAFNSG's of G_3 and G_4 respectively. Let $f_1: G_1 \to G_3$ and $f_2: G_2 \to G_4$ be homomorphisms of groups. If C×D is an IMAFNSG of $G_3 \times G_4$, then $f^{-1}(C \times D)$ is also an IMAFNSG of $G_1 \times G_2$.

Proof: It is clear.

3.5 Theorem

Let G_i (for i=1, 2, 3, 4) be groups. Let A and B be any two IMAFNSG's of G_1 and G_2 respectively. Let f_1 : $G_1 \to G_3$ and f_2 : $G_2 \to G_4$ be onto homomorphisms of groups. Let $f: G_1 \times G_2 \to G_3 \times G_4$ be an onto homomorphism of groups such that $f((u, v)) = (f_1(u), f_2(v))$. If $A \times B$ is an IMAFNSG of $G_1 \times G_2$, then $f(A \times B) = f_1(A) \times f_2(B)$ if $A \times B$ have inf property and also $A \times B$ is f-invariant.

Proof: Let $A \times B$ be an IMAFNSG of $G_1 \times G_2$.

Let $(u, v) \in G_1 \times G_2$. Then $u \in G_1$ and $v \in G_2$. It implies that $f_1(u) \in G_3$ and $f_2(v) \in G_4$.

Therefore, $(u, v) \in G_1 \times G_2 \Rightarrow f((u, v)) = (f_1(u), f_2(v)) \in G_3 \times G_4$. Then

© 2023, IJSREM | <u>www.ijsrem.com</u> DOI: 10.55041/IJSREM25696 | Page 5

 $\text{Therefore, } \mu_{_{f_1(A) \times f_2(B)}}(f_1(u), \, f_2(v)) = \mu_{_{f_1(A) \times f_2(B)}}(f_1(u), \, f_2(v)), \, \text{for all (} \, f_1(u), \, f_2(v) \,) \in G_3 \times G_4.$

$$\begin{split} \boldsymbol{\nu}_{f(A\times B)}(f_1(u),\,f_2(v)) &= \boldsymbol{\nu}_{f(A\times B)}(f(u,\,v)) \\ &= \boldsymbol{\nu}_{A\times B}\,(u,\,v) \\ &= \min\{\,\boldsymbol{\nu}_{A}\,(u),\,\boldsymbol{\nu}_{B}\,(v)\} \\ &= \min\{\,\boldsymbol{\nu}_{f_1(A)}\,(f_1(u)),\,\boldsymbol{\nu}_{f_2(B)}\,(f_2(v))\} \\ &= \boldsymbol{\nu}_{f_1(A)\times f_2(B)}\,(f_1(u),\,f_2(v)) \end{split}$$

 $Therefore, \ \psi_{f(A\times B)}(f_1(u), \, f_2(v)) = \psi_{f_1(A)\times f_2(B)}(f_1(u), \, f_2(v)), \, for \ all \ (\ f_1(u), \, f_2(v) \) \in G_3\times G_4.$

Hence, $f(A \times B) = f_1(A) \times f_2(B)$.

3.6 Theorem

Let G_i (for i = 1, 2, 3, 4) be groups. Let C and D be any two IMAFNSG's of G_3 and G_4 respectively. Let $f_1: G_1 \to G_3$ and $f_2: G_2 \to G_4$ be homomorphisms of groups. Let f: $G_1 \times G_2 \rightarrow G_3 \times G_4$ be a homomorphism such that $f((u, v)) = (f_1(u), f_2(v))$. If C×D is an IMAFNSG of $G_3 \times G_4$, then $f^{-1}(C \times D) = f_1^{-1}$ $^{1}(C)\times f_{2}^{-1}(D)$.

Proof: Let $C \times D$ be an IMAFNSG of $G_3 \times G_4$.

Let $(u,v) \in G_1 \times G_2$. Then $u \in G_1$ and $v \in G_2$. It implies that $f_1(u) \in G_3$ and $f_2(v) \in G_4$.

Therefore, $(u, v) \in G_1 \times G_2$.

 \Rightarrow f((u, v)) = (f₁(u), f₂(v)) \in G₃×G₄, since f is a homomorphism.

Then
$$\mu_{f^{\text{--1}}(C \times D)}(u, v) = \mu_{C \times D} f((u, v))$$

$$= \mu_{C \times D} (f_1(u), f_2(v))$$

$$= \max \{ \mu_C (f_1(u)), \mu_D (f_2(v)) \}$$

$$= \max \{ \mu_{f_1^{\text{--1}}(C) \times f_2^{\text{--1}}(D)}(u), \mu_{f_2^{\text{--1}}(D)}(v) \}$$

$$= \mu_{f_1^{\text{--1}}(C) \times f_2^{\text{--1}}(D)}(u, v)$$

Therefore, $\mu_{f^{\text{-l}}(C \times D)}(u, \, v) \; = \; \mu_{f_1^{\text{-l}}(C) \ltimes f_2^{\text{-l}}(D)}(u, \, v)$, for all $(u, \, v) \in G_1 \times G_2$.

$$\mbox{And} \quad \pmb{\nu}_{f^{\text{--1}}(C \times D)}(u, \, v) \quad = \, \pmb{\nu}_{C \times D} \, f(\, (u, \, v) \,)$$

© 2023, IJSREM DOI: 10.55041/IJSREM25696 www.ijsrem.com

Page 6

$$\begin{split} &= \, \boldsymbol{\nu}_{C \times D} \left(f_1(u), \, f_2(v) \right) \\ &= \, \min \, \left\{ \, \boldsymbol{\nu}_{C} \left(f_1(u) \right), \, \, \boldsymbol{\nu}_{D} \left(f_2(v) \right) \right\} \\ &= \, \min \, \left\{ \, \boldsymbol{\nu}_{f_1^{-1}(C)}(u), \, \, \boldsymbol{\nu}_{f_2^{-1}(D)}(v) \right\} \\ &= \, \boldsymbol{\nu}_{f_1^{-1}(C) \ltimes f_2^{-1}(D)}(u, \, v) \end{split}$$

Therefore, $\mathbf{V}_{f^{\text{-l}}(C \times D)}(u, v) = \mathbf{V}_{f_1^{\text{-l}}(C) \times f_2^{\text{-l}}(D)}(u, v)$, for all $(u, v) \in G_1 \times G_2$.

Hence,
$$f^{-1}(C \times D) = f_1^{-1}(C) \times f_2^{-1}(D)$$
.

4. CONCLUSION

The intuitionistic multi-fuzzy sets are plays an important role for the development of the theory of intuitionistic multi-anti fuzzy normal subgroups. In this article an attempt has been made to study some new algebraic structures of intuitionistic multi-anti fuzzy normal subgroups under homomorphism were discussed.

REFERENCES

- [1] Atanassov K.T., Intuitionistic fuzzy sets, Fuzzy Sets and Systems, 20(1986), No.1,87-96.
- [2] Das P.S., Fuzzy groups and level subgroups, Journal of Mathematical Analysis and Applications, 84 (1981), 264-269.
- [3] Mukharjee N.P. and Bhattacharya P., Fuzzy normal subgroups and fuzzy cosets, Information Sciences, 34 (1984), 225-239.
- [4] Muthuraj R. and Balamurugan S., Multi-fuzzy group and its Level subgroups, Gen. Math. Notes, Vol. 17, No.1, July, 2013, pp. 74-81.
- [5] Muthuraj.R and Balamurugan.S., "A Study on Intuitionistic Multi-Fuzzy Subgroups", Intl. Jour. of Applications of Fuzzy Sets and Artificial Intelligence (IJAFSAI), Vol. 4 (July 2014), pp.153-172.
- [6] Rosenfeld A., Fuzzy groups, Journal of Mathematical Analysis and Applications, 35 (1971), 512-517.
- [7] Sabu S. and Ramakrishnan T.V., Multi-fuzzy sets, International Mathematical Forum, 50 (2010), 2471-2476.
- [8] Sabu S. and Ramakrishnan T.V., Multi-fuzzy subgroups, Int. J. Contemp. Math. Sciences, Vol.6, 8 (2011), 365-372.
- [9] Sharma P.K., Intuitionistic Fuzzy Groups, ifrsa International Journal of Data Ware housing and Mining, Vol.1, 2011, Iss.1, 86-94.
- [10] Shinoj T.K. and Sunil Jacob John, Intuitionistic Fuzzy Multi sets, Intl. Journal of Engineering Science and Innovative Technology, Vol.2, 2013, Issue 6, 1-24.
- [11] Zadeh L.A., Fuzzy Sets, Information and Control 8, (1965), 338-353.

© 2023, IJSREM | www.ijsrem.com DOI: 10.55041/IJSREM25696 Page 7