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Abstract— Effective communication poses a persistent challenge for 

the deaf and hard-of-hearing population, often requiring human 

interpreters to bridge the gap. This research introduces an 

innovative Human Sign Language Recognition System (HSLRS) 

designed to overcome these barriers through advanced 

computational methods. By employing deep learning frameworks, 

the system integrates convolutional neural networks (CNNs) for 

spatial feature extraction and recurrent neural networks (RNNs) 

for temporal sequence analysis, adeptly interpreting the nuanced 

gestures of sign language. Experimental results reveal high 

accuracy in distinguishing complex sign patterns and robust real-

time recognition capabilities, validated across diverse datasets. This 

work advances the domains of computer vision and human-

computer interaction, offering significant implications for 

enhancing accessibility and promoting inclusivity in educational, 

professional, and social contexts. 

keywords—Sign language, Deep learning, Real time recognition, 

Computer Vision , Accessibility  

I.  INTRODUCTION 

Sign language serves as a vital communication tool for 
individuals who are deaf, hard of hearing, or mute, allowing them 
to convey information and interact meaningfully with others. 
Despite its importance, a significant barrier exists for widespread 
understanding, as most people lack the specialized knowledge to 
interpret sign language. Traditionally, human interpreters have 
been employed to facilitate communication, but this approach 
can be costly and logistically challenging, limiting the 
accessibility of sign language in everyday settings.[18] 

Advances in technology have given rise to various 
approaches for Sign Language Recognition (SLR), including the 
use of wearable IoT sensors, data gloves, and vision-based 
systems. While data gloves and wearable sensors can provide 
reliable recognition accuracy, they require users to wear 
additional hardware that may interfere with natural movement, 
making them impractical for everyday communication. Vision 
based SLR, on the other hand, utilizes computer vision and deep 
learning to interpret gestures without additional devices, offering 
a non-invasive and convenient solution. 

Recent developments in artificial intelligence and computer 
vision have enabled the use of Convolutional Neural Networks 
(CNNs) for feature extraction in SLR. CNNs excel in image-
based recognition tasks, yet their computational demands pose 
challenges for real-time applications. Addressing these 
limitations, this study proposes a lightweight, computer vision-
based SLR model designed to support real-time communication. 

Leveraging the American Sign Language (ASL) alphabet and 
commonly used phrases,  

 

Fig. 1.    Sign Language  gestures signs 

this model provides an accessible solution for communication 
across different user groups, including deaf, mute, and visually 
impaired individuals. 

In addition to CNNs, Long Short-Term Memory (LSTM) 
networks are integrated into our framework to improve the 
temporal accuracy of gesture recognition. While CNNs 
effectively extract spatial features from individual frames, 
LSTMs specialize in handling sequential data, allowing them to 
capture the dynamic nature of sign language gestures over time. 
By leveraging an LSTM layer after the CNN, our model can 
analyse the flow of gestures in a video sequence, distinguishing 
similar signs based on subtle temporal differences. This 
combination of CNN and LSTM provides a robust solution that 
maintains high accuracy even in complex, multi-frame gestures. 

Our system, built on Mediapipe for feature extraction and a 
random forest classifier for gesture recognition, is designed for 
efficiency and ease of deployment. By integrating speech-to-text, 
text-to-speech, and autocompletion features, the framework 
enhances usability, enabling seamless communication without 
the need for interpreters.[6] The following sections will discuss 
related work, outline the methodology, and evaluate the model’s 
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performance, highlighting its potential to improve accessibility in 
real-time communication scenarios. 

II. LITERATURE REVIEW 

Over the past decade, significant advances have been made in 
the field of Human Sign Language Recognition (HSLR), 
particularly with the evolution of wearable sensors, computer 
vision, and deep learning techniques. Between 2014 and 2018, 
wearable sensor-based systems were predominant in the research 
landscape. These systems utilized data gloves and 
electromyography (EMG) sensors to capture hand gestures. For 
instance, a wearable data glove with optical sensors was 
proposed, which demonstrated promising accuracy in 
recognizing hand gestures for sign language translation [1]. 
Similarly, another study focused on using EMG sensors to 
capture muscle activity in the hand for prosthetics and sign 
language gesture recognition, providing accurate gesture 
recognition [2]. These approaches, while accurate, required 
cumbersome hardware setups, limiting their widespread 
application. 

With the advent of deep learning techniques, computer 
vision-based systems gained prominence for sign language 
recognition. One study applied deep learning methods to 
recognize mouth shapes for sign language translation, marking a 
significant leap in the integration of AI into HSLR systems [3]. 
Another study further advanced the field by introducing a neural 
network-based approach to translate sign language into text, 
integrating multiple neural networks for improved performance 
[4]. These early efforts laid the foundation for incorporating deep 
learning into HSLR but highlighted the need for better handling 
of temporal and continuous sign data. 

 The shift towards leveraging large-scale datasets and pre-
trained models emerged as a solution to dataset limitations. One 
study applied transfer learning using deep convolutional 
networks to improve sign language recognition accuracy, 
particularly for languages with limited annotated datasets [5]. 
The use of transfer learning enabled models to generalize across 
various datasets, improving performance and reducing training 
time. 

A key development in vision-based systems was the 
introduction of Google Mediapipe in 2020. Mediapipe's real-time 
hand tracking system allowed for efficient processing of hand 
landmarks, making it suitable for mobile applications [6]. 
Mediapipe’s efficiency was further utilized in research, where 
simpler classifiers, such as Random Forests, were integrated to 
optimize real-time applications on mobile devices. 

Further research into the spatial-temporal features of sign 
language recognition led to more complex architectures. One 
study explored the use of 3D convolutional networks (3D-CNNs) 
with attention mechanisms to improve large-vocabulary sign 
language recognition, capturing both spatial and temporal aspects 
of gestures [7]. This approach demonstrated enhanced 
performance for recognizing a broader range of signs. 

 In 2022, a study conducted a comprehensive review of 
Transformer models in sign language recognition, identifying 
their advantages in handling long-term dependencies and   

capturing sequential relationships in sign language [8]. 
Transformers, with their self-attention mechanism, provided a 
novel and efficient approach to HSLR, offering potential 
improvements in accuracy and scalability. 

Additional multimodal approaches have been explored to 
improve the robustness and accuracy of recognition systems. One 
study proposed an RGB-D-based system that combined RGB and 
depth data, using convolutional neural networks (CNNs) to 
enhance recognition in varying lighting conditions and hand 
postures [9]. By incorporating depth information, the system 
improved the understanding of hand gestures, especially in 
complex settings.  

Lastly, an audio-visual fusion model was introduced that 
integrated both visual and auditory cues for enhanced recognition 
of sign language, particularly for sign languages that involve 
vocal expressions or sound-based cues [10]. This approach 
leveraged the combination of gesture and audio data, resulting in 
better comprehension and communication in certain sign 
language contexts. 

 

Summary of Literature Survey : 

 

Research in HSLR has evolved significantly over the past 
decade, with early systems primarily relying on wearable sensors 
and data gloves. Studies such as those by Li et al. (2015) and 
Zhou et al. (2016) used data gloves and EMG sensors to detect 
hand and arm movements, achieving decent accuracy but facing 
limitations in user comfort and practicality due to intrusive 
hardware. 

The development of computer vision and deep learning 
introduced non-invasive, vision-based HSLR approaches. Koller 
et al. (2017) and Camgoz et al. (2018) applied Convolutional 
Neural Networks (CNNs) and hybrid CNN-RNN architectures, 
allowing for recognition of both static and dynamic gestures. 
Transfer learning, as explored by Zhao et al. (2020), improved 
recognition accuracy by adapting pre-trained models, though it 
was still limited by dataset availability. 

To optimize for real-time applications, lightweight systems 
emerged, like Google Mediapipe (2020), which used efficient 
CNN models paired with simpler classifiers (e.g., Random 
Forests) to balance speed and accuracy. Further advancements 
with sequential modeling, such as Huang et al. (2019) using 
CNN-LSTM models and Min et al. (2022) exploring 
Transformers, significantly enhanced the capture of gesture 
sequences, though at high computational costs. 

Finally, multimodal approaches, including Lee et al. (2020) 
with RGB-D sensors and Kim et al. (2023) with audio-visual 
fusion, have shown promise in improving recognition robustness. 
However, these require specialized hardware and are limited in 
certain settings. Overall, this body of research highlights a trend 
toward more accessible, accurate, and non-invasive solutions, 
although challenges in real-time processing, cost, and scalability 
remain. Future efforts focus on lightweight, adaptive models that 
can support multiple sign languages and integrate seamlessly into 
real-world applications. 

 

 

 

 

                        TABLE 1. COMPARATIVE ANALYSIS 

                         OF RELATED WORK 
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 III.   

 

 

PROPOSED FRAMEWORK FOR HUMAN  

   SIGN  LANGUAGE RECOGNITION SYSTEM 

 

 

 

Figure  2 shows the development of Human sign language 
recognition system involves several critical stages to ensure 
accuracy and efficiency. The process begins with data 

        YEAR  APPROACHES 

USED 

MODEL 

ARCHITECTURE 

ACCURACY SHORTCOMINGS 

A. 2015 
Data Gloves 

with Optical 

Sensors 

Sensor-based 

Glove System 

~90% Intrusive hardware, requires 

precise sensor placement, 

limits natural hand 

movement, lacks scalability 

B. 2016 
EMG Sensors 

on Arm 

EMG Sensor 

System 

~85% Invasive setup, high 

dependency on correct 

sensor positioning, 

challenging for real-world 

use 

C. 2017 
Vision-Based 

System 

CNN 88% (static 

signs) 

Limited to static gestures, 

computationally intensive, 

lacks temporal 

understanding for dynamic 

signs 

D. 2018 
Vision-Based 

System 

CNN + RNN 

(LSTM) 

92%  

High computational cost, 

challenging to deploy on low-

power devices, latency in real-

time applications 
 

E. 2019 
Vision-Based 

System 

CNN-LSTM 

Hybrid 

93% 

(continuous) 

High computational 

demand, challenges in real-

time applications, requires 

large datasets for training 

F. 2020 
Vision-Based 

with Transfer 

Learning 

Pretrained CNN ~90% Limited by pre-existing 

datasets, requires large-

scale data for fine-tuning, 

not ideal for continuous 

signing 

G. 2020 
Vision-Based 

Hand Tracking 

Lightweight 

CNN + RF/SVM 

~85-90% Lower accuracy than 

deeper networks, struggles 

with complex gestures, can 

be affected by lighting 

conditions 

H. 2020 
RGB-D System 

(Depth and 

RGB Cameras) 

RGB-D based 

CNN 

~91% Requires specialized 

cameras, affected by 

lighting and depth 

inconsistencies, hardware 

limitations 

I. 2022 
Vision-Based 

System 

Transformer 94% Computationally expensive, 

memory-intensive, not 

optimized for mobile or 

low-resource devices 

J. 2023 
Audio-Visual 

Fusion 
Audio Encoder  

& Visual Encoder 

 
 

89% Limited to gestures with 

audio cues, challenging in 

silent sign recognition, less 

practical for standard 

HSLR 
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collection, where a high-quality dataset is curated. This dataset 
may include publicly available sign language datasets or custom-
collected data through video recordings. A well-structured 
dataset is fundamental to training a robust model. 

Following data acquisition, preprocessing is conducted to 
enhance data quality. This stage includes hand and body 
detection to focus on essential features while minimizing 
background interference. Additionally, noise reduction 
techniques are applied to remove irrelevant elements, ensuring 
improved model generalization. 

For model selection, deep learning architectures such as 
Convolutional Neural Networks (CNNs) and Long Short-
Term Memory (LSTM) networks are commonly utilized. 
CNNs excel at extracting spatial features from images, while 
LSTMs capture temporal dependencies in sequential data, 
making them particularly effective for sign language recognition. 

During the training phase, the model undergoes 
optimization to enhance performance. Training is conducted on 
a Graphics Processing Unit (GPU) to accelerate computation 
and facilitate faster convergence. The model's effectiveness is 
then assessed through evaluation metrics, including accuracy, 
precision, recall, and F1-score, which provide insights into 
classification performance. Additionally, real-time 
performance is evaluated to ensure the system's practical 
applicability in real-world scenarios. 

 

 

 

Fig. 2. Flowchart for the proposed research on Human Sign 
language recognition model 

 

   IV. METHODOLOGY 

The methodology of this research encompasses a 
comprehensive approach to developing an intelligent sign 
language recognition system, integrating advanced machine 
learning techniques with sophisticated computer vision 
technologies. The primary objective was to create an innovative 
solution for translating Indian Sign Language (ISL) and 
American Sign Language (ASL) gestures into text, with a focus 
on real-time accuracy, generalizability, and accessibility. 

The technological infrastructure underpinning this research 
was meticulously designed to support complex computational 
tasks associated with sign language recognition. Python 3.8 was 
selected as the primary programming language due to its 
extensive machine learning and data processing libraries. The 
development environment incorporated TensorFlow 2.x for 
neural network implementation, MediaPipe for advanced 
computer vision processing, and OpenCV for additional image 
manipulation capabilities. 

A. Hand Landmark Detection Methodology 

 Central to the research methodology was the implementation 
of MediaPipe, a sophisticated framework developed by Google, 
which enabled precise hand tracking and landmark extraction. 
The framework's capability to detect and map 21 three-
dimensional landmarks from a single hand provided an 
unprecedented level of accuracy in gesture recognition. Each 
landmark represents a critical point of anatomical significance, 
interconnected to create a comprehensive representation of hand 
geometry and movement.  

      The landmark detection process involved multiple 
sophisticated stages of image processing. Raw visual input 
underwent extensive preprocessing, transforming two-
dimensional image coordinates into meaningful three-
dimensional representations. This transformation was crucial in 
extracting nuanced features that could differentiate between 
complex sign language gestures with minimal computational 
overhead. 

B. Datasets Collection  

For training the ML model, we have used two ASL datasets 
from Kaggle. The symbols of a few alphabets in the ASL are very 
similar, like ’M’ and ’N.’ So, after training, our model was 
getting confused in a few alphabets and producing incorrect 
predictions. To tackle this problem, we tried mixing out two 
different datasets. It helped us in improving the accuracy of 
predictions. We even added some ISL alphabets for training that 
were manually captured using the webcam for better 
generalization and adaptibility. This was done to improve 
accuracy and make the model more flexible for future use. We 
chose ISL alphabets because they had two hand gestures for some 
alphabets which ASL was lacking. For training on words, we 
created a custom dataset while ensuring the ASL words 
requirements. 

C. Data Preprocessing 

Preprocessing represented a critical transformation stage in 

preparing the collected dataset for machine learning model 

training. The MediaPipe Holistic framework facilitated 

comprehensive preprocessing through its advanced feature 

extraction capabilities. The preprocessing methodology 

involved multiple sophisticated techniques designed to  

standardize and enhance the raw landmark data.    

 
Once the image is fed, we create a hand extractor using the 

Mediapipe framework. The images are preprocessed using the 
Mediapipe framework. The Mediapipe extracts 42 landmarks and 
their specific connections. Hence, the actual image becomes 
useless once its features are extracted. But, these features need to 
be processed before training model over them, because they are 
useless in their raw/natural form as these are mere co-ordinates 
indicating different points on hand in a certain 2D frame.  
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D. Build and Train LSTM Neural Network  

Sign language to text conversion using Long Short-Term 
Memory (LSTM) neural networks. LSTM networks are well- 
suited for sequential data processing, making them an ideal 
candidate for capturing the temporal dependencies inherent in 
sign language gestures. LSTM-based models for ISL synthesis, 
enabling the conversion of spoken language into sign language 
for improved inclusivity and accessibility. We evaluate the 
proposed approach on a diverse dataset of ISL signs, achieving 
high recognition accuracy and natural sign synthesis. The 
integration of LSTM in ISL technology holds significant 
potential for breaking down communication barriers and 
improving the quality of life for India's deaf and hard of hearing 
people. 

The research employed a Long Short-Term Memory (LSTM) 
neural network as the primary architectural framework, 
specifically chosen for its exceptional capabilities in processing 
sequential and temporal data. LSTM networks offer unique 
advantages in capturing the intricate, time-dependent nature of 
sign language gestures, enabling more accurate and context-
aware recognition. 

The neural network was systematically designed to learn and 
generalize from complex gesture sequences. By implementing a 
four-iteration testing protocol for each alphabet and word, the 
researchers ensured that the model could consistently produce 
accurate predictions within minimal computational iterations. 
This approach not only validated the model's performance but 
also established a rigorous benchmark for gesture recognition 
accuracy. 

E. Testing phase on real time data 

The testing methodology for real-time sign language 
recognition represented a critical component of the research, 
evaluating the system's practical applicability and performance 
under authentic usage conditions. Following the model training 
phase, a comprehensive real-time testing protocol was 
implemented to validate the system's effectiveness beyond 
controlled laboratory environments. 

The real-time testing framework incorporated multiple 
sophisticated evaluation strategies designed to assess the system's 
performance across diverse operational scenarios. Live video 
input from standard webcam devices was processed through the 
MediaPipe Holistic framework, extracting the critical 21 hand 
landmarks that formed the foundation of the sign language 
recognition system. This approach mirrored authentic usage 
conditions, ensuring that performance evaluations accurately 
reflected real-world applicability. 

A unique aspect of the testing methodology involved the 
implementation of a four-iteration evaluation protocol for each 
sign language gesture. This approach was specifically designed 
to assess the system's capability to produce accurate predictions 
within minimal computational iterations, an essential 
characteristic for practical sign language recognition 
applications. The underlying hypothesis posited that if the system 
could consistently produce accurate results within the first four 
iterations, its performance would remain reliable in extended 
usage scenarios. 

The testing methodology also assessed the system's 
robustness across varying environmental conditions. Controlled 
experiments in different lighting scenarios, background 
complexities, and capture distances provided comprehensive 

insights into the system's operational limitations and adaptability. 
These evaluations revealed that while the system maintained high 
accuracy under typical indoor lighting conditions, performance 
deteriorated in extreme lighting situations, indicating potential 
areas for future optimization. 

An innovative aspect of the testing approach involved the 
integration of autocorrect capabilities to enhance the system's 
practical utility. This feature leveraged natural language 
processing techniques to correct minor recognition errors, 
significantly improving the overall communication experience. 
The testing methodology evaluated both raw recognition 
accuracy and autocorrect-enhanced performance, demonstrating 
substantial improvements in effective communication 
capabilities through this hybrid approach. 

 

Fig. 3.  Live video feed of model precision 

F. Evaluation using Confusion Matrix & Accuracy 

      To test the accuracy of the proposed model a confusion 
matrix is build. We have also added the autocorrect feature to 
our model. It helps generate logically correct sentences even if 
the user misspelled 2 or 3 alphabets wrongly in a word. We 
have also implemented text to speech module to complete the 2-
way communication. This method will take audio input from the 
normal user and convert it to text that a deaf and mute person 
could read and understand. 

G. Implementation 

 
Fig. 4.   Implementation Process 

 

http://www.ijsrem.com/


             INTERNATIONAL JOURNAL OF SCIENTIFIC RESEARCH IN ENGINEERING AND MANAGEMENT (IJSREM) 

                            VOLUME: 09 ISSUE: 05 | MAY - 2025                                         SJIF RATING: 8.586                                                         ISSN: 2582-3930                                                                                                                                               

 

© 2025, IJSREM      | www.ijsrem.com                                 DOI: 10.55041/IJSREM47908                                               |        Page 6 
 

                            V.  EXPERIMENTS 

The experiments aim to compare the performance of these 
algorithms in terms of accuracy, precision, recall, F1-score, and 
real-time processing capability. The algorithms evaluated are: (1) 
a hybrid Mediapipe-LSTM-Random Forest model (our primary 
approach), (2) a Mediapipe-SVM model, and (3) a CNN-
Transformer model. Each experiment was conducted using a 
standardized dataset and evaluation protocol to ensure fair 
comparison. 

A .Implementation of Mediapipe-LSTM-Random Forest 

This approach leverages Mediapipe for real-time hand landmark 
extraction, producing 21 3D keypoints per hand. These keypoints 
are preprocessed to derive features such as finger angles and 
distances between landmarks. The temporal sequence of 
keypoints across 30 frames is fed into a Long Short-Term 
Memory (LSTM) network with 128 units to capture gesture 
dynamics. 

1) Dataset used: Mediapipe Holistics was used to extract 
21 3D hand landmarks (x, y, z coordinates) per frame, 
resulting in a 63-dimensional feature vector per frame 
(21 keypoints × 3 coordinates). For each 30-frame 
sequence, this produced a 63×30 feature matrix per 
sample[13]. Each sample was a NumPy array of shape 
(30, 63+derived_features), where derived_features 
included 10 additional angle and distance metrics, fed 
into the LSTM for temporal modeling and subsequently 
classified by the Random Forest. 

2) Implementation details: The dataset was preprocessed 
to normalize keypoint coordinates. The LSTM model 
was trained with a batch size of 32, and the Random 
Forest classifier was tuned for maximum depth and 
minimum samples per split. An autocorrect feature was 
integrated to enhance sentence-level predictions by 
correcting up to two misclassified alphabets per word. 

 

B. Implementation of  SVM-Model  

This experiment replaces the LSTM and Random Forest 
components with a Support Vector Machine (SVM) classifier. 
Mediapipe-extracted hand landmarks are preprocessed to 
compute a feature vector comprising 63 features (21 keypoints × 
3 coordinates). These features are flattened across 30 frames to 
form a single input vector per gesture. An SVM with a radial 
basis function (RBF) kernel was used for classification, 
optimized using grid search to tune the regularization parameter 
(C) and kernel parameter (γ). 

1) Dataset used: The same ASL and ISL datasets were 
used, with 30-frame video sequences and static 
images. To adapt to SVM’s static classification, 
each 30-frame sequence was treated as a single 
sample by aggregating features across frames. 
Mediapipe extracted 21 3D hand landmarks per 
frame, as in Experiment 1. However, instead of 
preserving the temporal sequence, the landmarks 
from all 30 frames were concatenated into a single 
feature vector.[14] 

2) Implementation details:  The feature vectors were 
standardized using z-score normalization. The SVM 
was trained with a one-vs-rest strategy to handle 
multi-class classification.[15]The grid search 

identified optimal hyperparameters as C=10 and 
γ=0.01. The model was evaluated on the same test 
set as Experiment 1, without the autocorrect feature 
to isolate classifier performance. 

C. Implementation of  CNN-Transformer Model 

This approach combines a Convolutional Neural Network 
(CNN) for spatial feature extraction with a Transformer for 
temporal sequence modeling. Raw video frames (30 frames per 
gesture) are resized to 224×224 pixels and fed into a CNN based 
on MobileNetV2, pre-trained on ImageNet, to extract spatial 
features. The feature maps are then processed by a Transformer 
encoder with 4 layers, 8 attention heads, and a feed-forward 
dimension of 512. The Transformer output is passed through a 
dense layer for classification.[16] 

1) Dataset used:  To address gaps in the public datasets 
and include Indian Sign Language (ISL) elements, 
2,000 additional samples were collected using a 
1080p webcam. Volunteers performed ASL and ISL 
gestures, each recorded for 1 second (30 frames at 
30 FPS). It uses raw RGB frames, capturing richer 
visual information but requiring more 
computational resources.[17] 

2) Implementation details: The CNN was fine-tuned 
by unfreezing the last 20 layers of MobileNetV2. 
The Transformer was trained with a dropout rate of 
0.1 to prevent overfitting. The model used a batch 
size of 16 and was optimized with the AdamW 
optimizer (learning rate=0.0001). Data 
augmentation was applied during training to 
enhance robustness. 

      Comparative Analysis:  

In this work, we calculate the precision value, recall and f1 
score for each label . CNN-Transformer model shows the best 
overall performance metrics, achieving the highest accuracy 
(94.3%), precision (93.7%), recall (94.0%), and F1-score 
(93.8%). The Mediapipe-LSTM-Random Forest hybrid 
approach performs second best with 92.5% accuracy and 
balanced precision/recall metrics (91.8%/92.0%), resulting in 
a solid F1-score of 91.9%. The Mediapipe-SVM model has 
the lowest performance metrics across the board, with 88.7% 
accuracy and corresponding lower precision, recall, and F1-
scores. 

The experiments demonstrate that the choice of ML 
algorithm significantly impacts the performance of the 
HSLRS. The CNN-Transformer model is ideal for 
applications prioritizing accuracy, while the Mediapipe-
LSTM-Random Forest model is better suited for real-time 
scenarios with moderate computational resources. 

  VI.  RESULTS  

In this section, we evaluate the performance of the proposed 
human sign language recognition system using standard 
classification metrics. The evaluation is based on a confusion 
matrix, which provides insight into the model's ability to 
correctly classify various sign language gestures. The primary 
metrics used include accuracy, precision, recall, and F1-
score. 

Confusion Matrix AnalysisThe confusion matrix for our 
model is shown in Figure X. The matrix indicates the number 
of correct and incorrect predictions for each sign language 

http://www.ijsrem.com/
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gesture. The diagonal elements represent correct 
classifications, while off-diagonal elements indicate 
misclassifications. 

From the confusion matrix: 

• The model successfully classified most of the gestures, 
with a high number of true positive values along the 
diagonal. 

• Minimal misclassifications occurred, suggesting that 
the system performs well in distinguishing between 
different signs. 

• The overall accuracy of the system is 90.00%, 
demonstrating the effectiveness of the implemented 
deep learning model. 

Evaluation Metrics 

To further analyze the system's effectiveness, we compute 
the following performance metrics: 

1. Accuracy: 

Accuracy=TP+TNTP+TN+FP+FN=90.00%Accuracy = 
\frac{TP + TN}{TP + TN + FP + FN} = 90.00\%  

This metric indicates that the system correctly classified 90% 
of the input gestures, making it a reliable model for real-time 
sign language recognition. 

2. Precision, Recall, and F1-Score: 
Precision and recall are crucial in assessing the model’s 
reliability, especially in cases where incorrect 
classifications could lead to misunderstandings in 
communication. These metrics are computed as 
follows: 

o Precision (P): The proportion of correctly 
predicted instances out of all instances 
predicted as a given class. 

Precision=TPTP+FPPrecision = \frac{TP}{TP + FP}  

o Recall (R): The proportion of correctly 
predicted instances out of all actual instances 
of a given class. 

Recall=TPTP+FNRecall = \frac{TP}{TP + FN}  

o F1-Score: The harmonic mean of precision 
and recall, which balances both metrics. 

F1=2×Precision×RecallPrecision+RecallF1 = 2 \times 
\frac{Precision \times Recall}{Precision + Recall}  

Class Precision Recall 
F1-

Score 

0 1.00 1.00 1.00 

1 1.00 1.00 1.00 

2 1.00 1.00 1.00 

3 1.00 1.00 1.00 

4 1.00 1.00 1.00 

5 1.00 1.00 1.00 

The results indicate that the model achieved perfect 
classification for most classes, with precision, recall, and F1-
score values of 1.00 in each case. 

Performance in Real-Time Conditions 

In addition to standard evaluation metrics, the system was 
tested under different lighting conditions, camera angles, and 
backgrounds. The model demonstrated high robustness 
across varying conditions, maintaining an accuracy above 
85% in challenging environments. This suggests that the 
implementation of MediaPipe Holistic for keypoint 
extraction and the use of CNN-LSTM models significantly 
improved gesture recognition. 

Error Analysis 

Although the model achieved high accuracy, minor 
misclassifications were observed. These errors may have 
resulted from: 

• Similar hand gestures: Some signs may share 
overlapping features, causing occasional confusion. 

• Variability in user execution: Differences in hand 
shape, motion speed, and positioning can lead to minor 
misclassifications. 

To address these issues, further improvements can be made 
by increasing the dataset size, incorporating additional pre-
processing steps, and fine-tuning the model with more 
advanced architectures. 

VII  CONCLUSION 

The experimental results demonstrate that our proposed 
sign language recognition system achieves a high 
classification accuracy of 90%, with near-perfect precision 
and recall values. The system performs well in real-time 
conditions and can be effectively deployed in practical 
applications for assisting individuals with hearing 
impairments. Future work will focus on expanding the 
dataset, improving model generalization, and integrating 
more advanced real-time deployment strategies. 

 

Fig. 5  Confusion Matrix 
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VIII  FUTURE SCOPE 

Development of Lightweight Models: Future research can 
focus on designing efficient architectures, such as MobileNet or 
TinyML-based models, that maintain high accuracy while being 
computationally lightweight. This would enable HSLR systems 
to run smoothly on mobile devices and embedded systems.[11] 

Improved Temporal and Sequential Modeling: Advanced 
techniques in sequential modeling, such as Transformers, could 
further enhance the accuracy of continuous signing recognition. 
Optimizing these models for real-time use with reduced latency 
would enable more seamless video-based communication. 

Cross-Language and Multilingual HSLR Systems: 
Expanding HSLR systems to support multiple sign languages and 
dialects would broaden accessibility. Transfer learning and 
multilingual datasets could be used to train models that generalize 
across different languages, potentially creating more universal 
solutions.[12] 

Integration of Multimodal Data: Combining audio, video, and 
depth data, or leveraging wearable sensors only when needed, 
could increase robustness across different environments and 
improve recognition in complex situations, such as low-light or 
noisy environment. 
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