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Abstract - This study presents a novel hybrid 

methodology that integrates classical physics-based 

orbital propagation with machine learning (ML) 

corrections to forecast the future trajectories of near-

Earth asteroids while also assessing their hazard 

potential. The approach combines an analytical two-

body orbit model with ML-based error correction—

implemented using Long Short-Term Memory (LSTM) 

network—to significantly reduce prediction errors. 

Additionally, ensemble learning techniques using 

XGBoost and Random Forest are employed for asteroid 

hazard classification, achieving an accuracy of 99.08%. 

The results demonstrate that the hybrid approach not 

only improves long-term trajectory prediction accuracy 

but also enhances risk assessment, paving the way for 

more reliable planetary defense and space mission 

planning. 
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1.INTRODUCTION 

 

Near-Earth asteroids (NEAs) are of significant scientific 

interest and represent potential threats to our planet. 

Accurate prediction of their trajectories is critical for 

both planetary defense and the planning of space 

missions. Traditional methods based on two-body orbital 

mechanics provide a solid foundation but are prone to 

accumulating errors over extended propagation periods 

due to perturbations and measurement uncertainties. 

Furthermore, classifying asteroids based on their orbital 

and physical characteristics is essential for risk 

assessment.This paper introduces a comprehensive 

hybrid approach that combines physics-based orbit 

propagation with machine learning corrections to 

enhance trajectory predictions. In parallel, it employs 

ensemble classifiers to accurately categorize asteroids, 

thereby providing a robust framework for impact risk 

assessment and mission planning. 

 

 

2. Data and Methodology  

2.1 Dataset Details 

Classification Dataset: 

Approximately 5000 asteroids from NASA’s NEO 

database and ESA’s Risk Lists. This dataset includes key 

orbital elements (semi-major axis, eccentricity, 

inclination, perihelion distance, ascending node, 

argument of perihelion, mean motion), 

velocity/positional data (Earth and Jupiter MOIDs, orbit 

condition codes), and absolute magnitude (H). Data are 

split into 80% training, 20% testing, with a separate 

validation set. 

Trajectory Prediction Dataset: 

Historical orbital data from the NASA Horizons 

database, featuring long-term observations (e.g., 

Apophis, 2003 BR47) that capture dynamic variations in 

orbital paths. It includes astrometric and motion details 

(UTC timestamps, RA and Dec rate changes), essential 

orbital parameters (heliocentric coordinates, radial 

velocity, distance from Earth), brightness, phase angle, 

and precise sky coordinates. 

 

2.2 Physics-Based Orbital Propagation 

The initial stage involves estimating the asteroid's state 

by converting spherical coordinates (radial distance, 

ecliptic longitude, and latitude) into Cartesian 

coordinates. The initial velocity is computed using finite 

differences from early observations. A classical two-

body orbit model is constructed using astrodynamics 

transformation formulas and is implemented via the 

Poliastro library. The orbit propagation is carried out 
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with the Runge-Kutta 4th order (RK4) method. Although 

this model provides a robust baseline, it is sensitive to 

unmodeled perturbative effects over long durations. 

 

2.3 Machine Learning Corrections 

To address the limitations of the pure physics-based 

model, ML-based error correction strategies are 

employed: 

LSTM-Based Trajectory Refinement: 

Recognizing the sequential nature of orbital data, an 

LSTM network with three hidden layers (128, 64, and 32 

neurons) is employed to learn temporal dependencies and 

refine trajectory predictions. Optimized using the Adam 

optimizer and trained over 200 epochs with early 

stopping, this model further reduces prediction errors—

yielding an MSE of 0.000012 and an MAE of 

0.001559—thus capturing complex error patterns that 

occur over longer time intervals. 

 

2.4 Hybrid Prediction Process 

The hybrid approach combines the strengths of both 

methods. Future asteroid positions are first forecasted 

using the physics-based orbit propagation, after which 

ML correction (LSTM) are applied to adjust these 

predictions. An optional post-processing step, such as 

phase alignment, ensures a smooth, continuous trajectory 

and effectively manages discontinuities during orbital 

wrap-around. 

 

2.5 Asteroid Hazard Classification 

In addition to trajectory prediction, the study employs 

ensemble learning for asteroid hazard classification. Both 

XGBoost and Random Forest classifiers are trained on 

engineered features derived from orbital and physical 

parameters (e.g., MOID, perihelion distance, 

eccentricity, and absolute magnitude). Hyperparameter 

tuning via grid search optimizes model performance. 

Both models achieved a classification accuracy of 

99.08%, confirming the reliability of ensemble methods 

for hazard assessment. 

 

3. Experimental Results and Discussion 

3.1 Trajectory Prediction Performance 

The hybrid trajectory prediction models were evaluated 

using standard error metrics on the training data: 

 

•Physics Based Model:  

MSE: 0.005144 

MAE: 0.044949 

 

•Hybrid Model:  

MSE: 0.000012 

MAE: 0.001559           

 

These results highlight the dramatic improvement 

achieved by integrating ML corrections with the classical 

physics-based model, with reductions in error metrics 

exceeding 90% in certain configurations. 

 

 

 

 
                                          Fig -1: Error Metrics 

 

 

3.2 Graphical Analysis 

 

The effectiveness of the hybrid approach is further 

supported by various visual analyses: 

 

Figure 2: Residuals Over Time: Line plots depict the 

evolution of residual errors, demonstrating that the 

majority of corrections remain minimal after ML 

adjustment. 

 

 
                                      Fig -2: Residual Errors 
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Figure 3: Histogram of Residuals: Frequency 

distributions show that residuals are tightly concentrated 

near zero. 

 

 
                              Fig -3: Histogram of Residuals 

 

Figure 4: Scatter Plot Comparison: A scatter plot of 

observed versus hybrid predicted coordinates indicates a 

strong linear correlation. 

 

 
                                          Fig -4: Scatter Plot 

 

 

Figure 5: 3D Visualizations: Both static and animated 3D 

plots illustrate the close alignment between observed 

orbits and the hybrid predictions, with the Sun positioned 

at the center for reference. 

 

 

 

                                   

               
                                          Fig -5: 3D Visualizations 

 

 

Figure 6: Classification Accuracy: 

A bar plot comparing the accuracy of the Random Forest 

and XGBoost classifiers. 

 
                                          Fig -6: Bar Plot 

 

Figure 7: Animated 3D Simulation: 

An animated Plotly figure showcasing the dynamic 

evolution of the hybrid predicted orbit over time.         

             

 
                                Fig -7: 3D simulation 
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3.3 Comparison with Traditional Methods 

Traditional approaches used by organizations such as 

NASA and ESA rely on high-fidelity numerical 

integration and perturbation models. While these 

methods are highly accurate, they are computationally 

intensive and less adaptable to new data. The proposed 

hybrid approach not only reduces computational costs by 

leveraging ML corrections but also offers real-time 

adaptability and enhanced long-term accuracy. 

 

3.4 Advantages and Future Applications 

The integration of physics-based propagation with ML 

correction offers several advantages: 

•Enhanced Accuracy: ML models significantly reduce 

errors by learning from historical residuals. 

•Computational Efficiency: Rapid adjustments based on 

learned patterns minimize the need for exhaustive 

numerical simulations. 

•Real-Time Adaptability: The framework is capable of 

integrating new observational data quickly, enhancing its 

responsiveness to dynamic conditions. 

 

Looking ahead, integrating AI-assisted monitoring 

systems with real-time data could further refine 

trajectory predictions, thereby improving planetary 

defense strategies and supporting advanced space 

exploration initiatives. 

 

4. Conclusion 

This paper presents a comprehensive hybrid approach 

that effectively combines classical physics-based orbital 

propagation with machine learning corrections for both 

trajectory prediction and hazard classification of near-

Earth asteroids. The integration of LSTM-based model 

results in significant reductions in prediction errors, 

while ensemble classifiers (XGBoost and Random 

Forest) achieve high hazard classification accuracy. 

Future work will aim to extend the dataset across 

multiple orbital cycles and further optimize the ML 

models to enhance long-term prediction reliability. This 

integrated methodology offers a promising tool for 

improving asteroid tracking, risk assessment, and space 

mission planning. 
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