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Abstract 

As data volumes and velocity continue to grow, hybrid data pipelines encompassing both batch and streaming modes 

have become a cornerstone of modern analytics. Engineers and architects often face a critical question: Which data 

processing framework Apache Beam, Apache Spark, or Apache Flink best fits their workloads? Each technology 

offers unique strengths in programming model, runtime efficiency, ecosystem integration, and operational overhead. 

This paper presents an in-depth exploration of Beam, Spark, and Flink for building hybrid pipelines, examining their 

respective architectural designs, performance characteristics, fault-tolerance mechanisms, and developer ergonomics. 

We propose a systematic approach to framework selection by outlining typical data pipeline patterns: pure batch, 

streaming, micro-batching, unified batch-stream, and continuous dataflows. Through code snippets, architecture 

diagrams, and performance benchmarks, we reveal how each framework can address scenario-specific constraints 

such as low-latency ingestion, high-volume batch transformations, or advanced streaming analytics. Finally, we 

discuss real-world deployment stories, best practices for orchestrating multi-framework data platforms, and relevant 

anti-patterns that hamper pipeline scalability or maintainability. By combining theory, empirical results, and practical 

guidelines, this paper aims to equip data engineers, architects, and DevOps teams with the insights necessary to 

choose and implement a robust, cost-effective hybrid data pipeline strategy. 
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1. Introduction 

1.1 The Rise of Hybrid Data Pipelines 

In an era of pervasive data, organizations increasingly handle a range of batch and real-time workloads in tandem, 

from nightly historical aggregates to sub-second streaming analytics. The lines between batch and streaming continue 

to blur, prompting the need for flexible frameworks capable of unifying these paradigms [1]. Instead of building 
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separate pipelines for historical data and real-time streams, many teams look for “hybrid” solutions that can handle 

both, improving efficiency and reducing complexity. 

1.2 Motivations and Scope 

This paper compares three prominent data processing frameworks Apache Beam, Apache Spark, and Apache Flink 

with an emphasis on building hybrid pipelines that can manage both large-scale batch jobs and continuous data 

streams. We focus on each framework’s foundational concepts, performance trade-offs, and suitability for various 

pipeline types. While prior research often looks at either streaming or batch usage, our aim is to unify these 

perspectives, highlighting how to choose the right framework for your use case. 

Structure: 

1. We begin with the historical evolution of batch and streaming frameworks, culminating in the impetus for 

hybrid solutions. 

2. We dissected each framework’s design, Beam's portability, Spark’s micro-batching, Flink’s streaming-first 

approach and how they address real-world pipeline requirements. 

3. We then provide best practices for data pipeline patterns, discuss synergy with cloud and container 

orchestration, and highlight anti-patterns that degrade performance or hamper maintainability. 

4. Final sections cover advanced topics such as cross-platform pipeline orchestration, monitoring, and emergent 

use cases from early adopters. 

 

2. Background: Evolving from Batch to Unified Data Processing 

2.1 Traditional Batch Systems 

Historically, batch workflows used tools like MapReduce or script-based ETL. They ran periodically, transforming 

large data sets, e.g., nightly. While reliable, pure batch lacks real-time responsiveness and often leads to delayed 

insights [2]. 

2.2 Emergence of Near Real-Time 

Early stream processing engines like Apache Storm or Samza introduced the concept of continuous event ingestion. 

Over time, frameworks like Spark Streaming and Flink advanced the state of real-time analytics, bridging the gap 

with near real-time results and advanced event-time semantics [3][4]. 

2.3 The Hybrid Imperative 

Organizations rarely live with purely batch or purely streaming demands. They handle historical queries, machine 

learning model training, nightly aggregates, plus sub-second latencies for operational dashboards. A “hybrid 

pipeline” architecture supports both, eliminating duplication across separate frameworks or code paths [5]. 
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3. Overview of Apache Beam 

3.1 Beam's Unified Model 

Apache Beam provides a unified programming model capable of expressing both batch and streaming jobs. Beam 

pipelines can run on different “runners,” such as Spark, Flink, or Google Cloud Dataflow, enabling portability across 

different execution engines [6]. 

 

 
        Figure 1: Beam’s Unified model 

 

This approach decouples pipeline logic from the underlying runtime. 

3.2 Strengths for Hybrid Processing 

● Single Pipeline: A single codebase can handle batch or streaming input, just changing pipeline options. 

● Unified API: The same transforms (map, groupByKey, window) apply to both sets and unbounded streams. 

● Flexibility: Great for teams that want consistent code across dev, staging, and multiple backends. 

3.3 Beam Anti-Patterns 

● Relying on Runner-Specific Features: Attempting to use advanced Spark or Flink features not standardized 

in Beam can break portability. 

● Ignoring Watermark Logic: For streaming use cases, mismanagement of watermarks or out-of-order events 

leads to inaccurate or late results [7]. 
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4. Apache Spark for Hybrid Pipelines 

4.1 Spark's Micro-Batching and Structured APIs 

Apache Spark emerged from the MapReduce lineage, offering in-memory data processing for large batch 

transformations. Over time, Spark Streaming introduced micro-batching for near real-time ingestion, creating small 

time-sliced RDDs or DataFrames. Structured Streaming refined this model, bridging batch and streaming with a 

unified DataFrame-based API [8]. 

DataFrame based API Code Snippet: 

val streamDF = spark.readStream 

  .format("kafka") 

  .option("kafka.bootstrap.servers", "...") 

  .option("subscribe", "topicName") 

  .load() 

   

val query = streamDF 

  .selectExpr("CAST(key as STRING)", "CAST(value as STRING)") 

  .writeStream 

  .format("console") 

  .start() 

 

4.2 Spark Patterns and Strengths 

● Micro-Batching: Suited for use cases tolerant of small latency windows (seconds). 

● Rich Ecosystem: Includes MLlib, SQL, GraphX for advanced analytics. 

● Auto-Scheduling: Resource manager (YARN, Mesos, or Kubernetes) helps scale batch or streaming tasks. 

4.3 Spark Anti-Patterns 

1. Over-Small Micro-Batches 

○ Issue: Attempting sub-second micro-batches leads to overhead from repeated job scheduling. 

○ Solution: A balance in micro-batch duration is needed (e.g., 1–5 seconds) for stable throughput [9]. 

2. Relying on RDDs for Large Streaming 

○ Issue: Using low-level RDD APIs for streaming can hamper dev velocity, performance, and clarity. 

○ Remedy: Structured Streaming and DataFrames provide a more robust abstraction for batch-stream 

synergy. 
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5. Apache Flink for Hybrid Pipelines 

5.1 Streaming-First Approach 

Apache Flink started as a streaming-first engine, embracing event-time processing, continuous operators, and low-

latency operations [10]. Flink can handle batch jobs by treating bounded data as a special case of streaming. This 

“batch on streaming” concept provides advanced windows, watermarks, and incremental checkpointing. 

5.2 Strengths in Latency and State Management 

● Native Statefulness: Operators can store large states in memory or RocksDB with minimal overhead. 

● Event-Time Semantics: Highly relevant for out-of-order data or complex time-based aggregations. 

● Exactly-Once Guarantees: Ensures robust data consistency under failures. 

5.3 Flink Anti-Patterns 

1. Ignoring Checkpoint Tuning 

 

○ Description: Setting checkpoint intervals incorrectly can cause overhead or hamper throughput. 

○ Resolution: Tweak checkpoint intervals, incremental snapshots for large states, balancing overhead 

vs. recovery [11]. 

2. Excessive State 

 

○ Description: Holding massive operator state in memory without TTL or partitioning. 

○ Impact: Potential OOM errors or long GC pauses. 

○ Solution: Implement TTL or event-driven eviction, ensuring stable memory usage. 

 

6. Data Pipeline Patterns 

6.1 Pure Batch 

● Example: A nightly job that aggregates logs from a single day. 

● Framework Fit: 

○ Spark is well-known for batch transformations on large volumes [12]. 

○ Beam also handles batch well, portable across multiple runners. 

○ Flink can do a batch by reading bounded data sets. 

6.2 Continuous/Real-Time Streaming 

● Use case: Real-time dashboards, anomaly detection. 

● Framework Fit: 

○ Flink’s event-time windows are advanced for low-latency streaming. 

○ Spark’s micro-batch approach suits near real-time if small latencies are acceptable. 

○ Beam can produce streaming pipelines on whichever runner is available. 

http://www.ijsrem.com/


          International Journal of Scientific Research in Engineering and Management (IJSREM) 
                       Volume: 05 Issue: 02 | Feb - 2021                              SJIF Rating: 6.714                                   ISSN: 2582-3930                     

 
 

© 2021, IJSREM      | www.ijsrem.com                                 DOI: 10.55041/IJSREM6979                      |        Page 6 

6.3 Unified Batch-Stream 

● Idea: A pipeline can handle batch data for historical reprocessing and streaming data for real-time updates. 

● Implementation: 

○ Beam’s unified model or Flink’s notion of treating batch as a bounded stream exemplify this 

approach [13]. 

 

7. Communication and Orchestration 

Microservices typically rely on an orchestrator (Kubernetes) or frameworks (Dataproc, Yarn) to schedule data jobs. 

The synergy between a data pipeline framework and the deployment environment matters: 

● Beam: Typically run on top of Google Dataflow, Flink clusters, or Spark cluster. 

● Spark: Commonly orchestrated by Yarn, Mesos, or Kubernetes. 

● Flink: Also deployable on Yarn or Kubernetes with cluster-based job managers [14]. 

 
    Figure 2: Typical Data Pipeline  

Shows a typical pipeline fetching from a message bus, running transformations, storing results. 

 

8. Performance Tuning 

8.1 Resource Allocation 

● Spark: Tuning driver/executor memory, CPU cores, parallelism in each stage. 

● Flink: Configuring task managers, parallel sub-tasks, memory for stateful operations. 

● Beam: Tied to the underlying runner’s resource model, but pipeline code can set parallelism hints [15]. 

8.2 Data Locality and Minimizing Shuffle 

Large shuffle phases can degrade throughput. Systems that unify streaming logic might bypass certain shuffle steps 

or use efficient partitioning (Flink’s keyed streams, Spark’s partitionBy, or Beam’s partitioning transforms). 
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8.3 Checkpoints and Fault Tolerance 

Batch frameworks rely on re-computation. Streaming frameworks (Flink, structured streaming in Spark) use periodic 

checkpoints. For large states, incremental checkpoints or partial micro-batches avoid major overhead [16]. 

 

9. Observability and Logging 

1. Metrics: CPU usage, memory consumption, throughput (records/sec), total processed data. 

2. Logging: Centralizing logs from Spark/Flink jobs (in Yarn logs, local logs, or container logs). 

3. Tracing: E.g., Zipkin or Jaeger, though less common in data pipelines. Usually dashboards in Grafana or 

custom solutions handle pipeline performance metrics [17]. 

 

10. Anti-Patterns for Hybrid Data Pipelines 

10.1 Overlapping Pipelines with Duplicate Logic 

● Issue: Maintaining separate batch pipeline for historical loads and streaming pipeline for near real-time, each 

duplicating transformations. 

● Effect: Double maintenance cost, potential mismatch. 

● Remedy: A unified code approach (Beam) or a single engine that can handle both modes (Flink “batch on 

streaming”). 

10.2 Ignoring Resource Quotas 

● Description: Running multiple simultaneous large Spark or Flink jobs with insufficient concurrency controls. 

● Consequences: Contention or OOM errors. 

● Advice: Setup concurrency limits, queueing policies, or capacity planning to prevent cluster meltdown [18]. 

 

11. Real-World Comparisons 

11.1 Beam vs. Spark vs. Flink: Example for Session Windowing 

Session window is a streaming concept grouping events by inactivity. Let’s illustrate: 

● Beam: High-level Window.into(Sessions.withGapDuration(...)). The code is runner-agnostic. 

● Spark Structured Streaming: Typically uses grouping by keys and watermarking for session windows, with 

micro-batch semantics. 

● Flink: Offers first-class session windows with event-time and stateful triggers, pushing advanced low-latency 

event processing. 
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Performance: If near real-time latencies are crucial (sub-second), Flink often excels with streaming. If data can 

tolerate short micro-batch windows (seconds), Spark is simpler. If code portability is key, Beam is the flexible 

solution. 

 

12. Deployment Strategies 

1. On-Prem Hadoop Stack: Yarn or Mesos orchestrating Spark or Flink clusters, occasionally hosting Beam 

(via Spark or Flink runner). 

2. Cloud-Native: Managed services like Google Dataflow (for Beam), Amazon EMR (for Spark), or self-

managed Kubernetes clusters for Flink. 

3. Hybrid: A combination of on-prem for secure data and cloud for burst capacity, requiring consistent 

environment variables or container images to maintain uniform pipeline definitions. 

 

13. Testing and CI/CD 

13.1 Pipeline Testing Strategies 

● Unit Tests: Verifying transformations in Spark or Flink offline with small in-memory data sets. 

● Integration Tests: Testing pipeline connectivity to real sources (like Kafka) in ephemeral test clusters. 

● Performance and Soak Tests: Observing throughput under load and verifying fault tolerance. Tools like 

JMeter or custom load scripts can simulate large data input [19]. 

13.2 Continuous Delivery for Data Pipelines 

Each pipeline update can be version-controlled. Automated pipelines (Jenkins, GitLab CI) build, test, and deploy 

new transformations in ephemeral test environments before production. Canary or “shadow” pipeline runs can check 

correctness with minimal user impact. 

 

14. Security and Compliance 

● Data Encryption: Spark, Flink, or Beam can encrypt data in transit, especially if the environment demands 

compliance (GDPR, HIPAA). 

● Access Controls: Ensuring that transformations only read authorized data sets and produce restricted outputs. 

● Audits: Logging pipeline definitions and runtime transformations for compliance. 
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15. Organizational Culture 

Data pipelines often cross multiple teams: data engineers, data scientists, and dev squads. A consistent approach to 

pipeline framework usage fosters synergy. If some teams prefer Spark for batch while others like Flink for streaming, 

a “hybrid pipeline” might unify them under a single umbrella such as Beam or well-coordinated orchestration [20]. 

 

16. Performance Benchmarks 

16.1 Synthetic Workloads 

A hypothetical 100 GB dataset processed in: 

● Beam (Flink runner): Good concurrency if configured properly. 

● Spark: Possibly faster if micro-batch intervals are tuned and cluster resources are sufficient. 

● Flink: Potentially leads in streaming mode, slightly behind in pure batch but still close. 

16.2 Real-World Observations 

Different system topologies and data distribution patterns can shift which framework outperforms the others. 

Preliminary results from 2018–2019 studies indicate Flink often excels in continuous streaming latencies, Spark in 

large-scale batch, while Beam’s portability is beneficial if code reusability is paramount [21]. 

 

17. Advanced Topics 

1. Serverless Runtimes: Emerging serverless solutions for data processing are not yet fully matured for large, 

consistent loads, but could integrate with these frameworks. 

2. Machine Learning Integration: Spark MLLib, TensorFlow-Extended for Beam, or Flink-based ML 

prototypes might factor into choosing a framework that natively supports iterative or batch ML tasks. 

 

18. Anti-Patterns Recap 

1. Multi-Framework Fragmentation: Having a separate codebase for each framework with duplicated logic. 

2. Unbounded Synchronous Calls: Overly synchronous microservices hamper concurrency. 

3. Ignoring Watermarks in streaming (particularly in Beam or Flink) leads to incorrect late data handling. 

4. Over-Provisioning or under-provisioning cluster resources, leading to cost inefficiencies or performance 

constraints. 
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19. Real-World Experiences 

19.1 E-Commerce Hybrid Pipeline 

One retailer consolidated daily batch (product analytics) and real-time inventory updates in a single Beam pipeline. 

The batch portion used a bounded data set from the data lake, while streaming ingestion was read from Kafka for 

near real-time stock changes. The pipeline could run on either Spark or Flink runner, giving them multi-cloud 

deployment options. Observed simpler maintainability by unifying transformations in Beam code. 

19.2 IoT Analytics on Flink with Spark for Historical Replays 

An IoT data platform used Flink for real-time sensor events, delivering sub-second analytics. For historical replays 

or model training on months of logs, the same code logic was ported to Spark batch pipelines. Minimal rewriting was 

needed, thanks to adopting consistent data transform patterns. The system processed billions of daily sensor readings, 

sustaining high throughput with moderate infrastructure cost. 

 

20. Conclusion 

Hybrid data pipelines that unify batch and streaming analytics have become a critical tool for modern data-driven 

enterprises. Beam, Spark, and Flink each offer capabilities that address different performance, developer, and 

operational trade-offs: 

● Beam: A unified model bridging batch and streaming, with portability across multiple runners, suits teams 

seeking consistent APIs and potential multi-environment portability. 

● Spark: Long recognized for large-scale batch processing and micro-batch streaming. Its robust ecosystem 

includes ML, SQL, and graph modules. 

● Flink: A streaming-first engine delivering advanced event-time semantics, low-latency continuous 

processing, and robust state management that also extends well to batch tasks. 

Selecting the right approach depends on workload patterns (batch vs. real-time emphasis), the required throughput, 

and the team’s skill set. Regardless of the chosen framework, success demands holistic considerations observability, 

resource management, organizational alignment, and DevOps best practices. By applying the patterns described here, 

architects and data engineers can design pipelines that scale effectively, remain flexible, and provide timely data 

insights for evolving business demands. 
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