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Abstract— This project proposes an advanced approach for 

endoscopic ultrasound image recognition using data mining and 

hybrid deep learning techniques to address challenges such as 

image blurriness, noise, and difficulty in identifying organ 

structures. The method starts with preprocessing steps like 

graying, enhancement, histogram equalization, and noise 

reduction to improve image quality and feature extraction. An 

enhanced YoloV4 convolutional neural network (CNN) is used 

for detection and classification, trained on a comprehensive 

dataset for real-time, accurate detection. A hybrid model 

combining CNNs with Vision Transformers (ViTs) captures 

both local and global features, improving performance in 

recognizing subtle variations in organ structures. The results 

show that this hybrid system outperforms traditional manual 

methods, reducing misjudgments, increasing detection 

efficiency, and supporting medical professionals in making 

more accurate clinical decisions. This work advances automated 

detection technologies in healthcare, enhancing diagnostic 

accuracy and outcomes. 

Keywords— Vision Transformers(ViTs), convolutional neural 

network (CNN), YoloV4 

I. INTRODUCTION  

             Medical imaging is crucial for clinical diagnosis and 

treatment, with ultrasound standing out for its non-invasive 

nature, real-time feedback, affordability, and safety 

[1].Endoscopic ultrasound (EUS) is especially effective in 

gastroenterology and oncology for visualizing internal organs 

and detecting abnormalities such as tumors and cysts 

[2].However, ultrasound imaging faces challenges like low 

resolution, speckle noise, blurriness, and artifacts [3].which 

hinder accurate recognition of structures and compromise 

diagnostic precision [4].The variability in image quality and 

reliance on expert interpretation often leads to inconsistent 

diagnoses [5]. Consequently, there is a need for automated 

systems to enhance image quality and improve diagnostic 

accuracy [6]. 

         Recent research has increasingly utilized artificial 

intelligence (AI) and machine learning (ML), particularly deep 

learning models, to address challenges in medical image 

analysis. Convolutional neural networks (CNNs) have shown 

success in image classification, object detection, and 

segmentation in medical contexts[7]. However, CNNs alone 

may struggle to capture complex spatial relationships and global 

context in ultrasound images, especially with the noise and 

subtle variations in endoscopic ultrasound (EUS) scans [8].To 

improve performance, more advanced deep learning techniques 

are needed to capture both local features and broader spatial 

dependencies [9]. 

          This project proposes a novel approach to endoscopic 

ultrasound (EUS) image recognition by integrating advanced 

image preprocessing techniques with a hybrid deep learning 

architecture that combines the strengths of Convolutional Neural 

Networks (CNNs) and Vision Transformers (ViTs). The process 

begins with a comprehensive preprocessing pipeline 

grayscaling, image enhancement, histogram equalization, and 

noise reduction designed to improve image clarity, delineate 

organ boundaries, and minimize noise [10],[11].These 

preprocessing steps enhance visual quality, enabling more 

accurate and robust feature extraction in later analysis stages 

[12].The hybrid CNN-ViT model further improves performance 

by capturing both local details and global contextual information 

in complex ultrasound images [13]. 

         For object detection and classification, this project uses an 

enhanced YoloV4 convolutional neural network, chosen for its 

high accuracy and real-time performance key in medical 

imaging tasks [14]. The model is trained on a large annotated 

dataset of endoscopic ultrasound (EUS) images to identify 

anatomical structures and pathological areas. Improvements 

include optimized feature pyramid networks (FPNs), spatial 

attention mechanisms, and fine-tuned hyperparameters to handle 

the specific challenges of ultrasound data [15],[16]. 

To enhance performance, the system incorporates a Vision 

Transformer (ViT) module into the deep learning pipeline. 

Originally developed for natural language processing, 

Transformers have shown strong results in vision tasks by 

capturing long-range dependencies and global context[17]. By 

combining CNNs for local feature extraction with ViTs for 

global understanding, the hybrid model learns more robust 

representations of complex organ structures in ultrasound 

images[18]. This approach improves the model’s ability to 

handle subtle textures, contrast variations, and fine structural 

details [19]. 

The key contributions of this work are: 

• Develop an advanced system for EUS image 

recognition to address challenges such as blurriness, 

noise, and identifying organ structures. 

• Use graying, enhancement, histogram equalization, and 

noise reduction to improve image quality. 

• Employ an enhanced YOLOv4 CNN for real-time 

detection and high accuracy. 
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II. LITERATURE SURVEY 

           Endoscopic ultrasound (EUS) continues to evolve as a 

powerful imaging and therapeutic tool in both clinical and 

research settings. Recent studies have introduced innovative 

methods and devices aimed at improving image quality, surgical 

precision, and diagnostic accuracy. These developments span a 

range of applications, including gastrointestinal cancer, spinal 

surgery, and auditory diagnostics, as well as non-destructive 

testing. The following overview highlights key contributions 

that push the boundaries of EUS technology and its integration 

into minimally invasive procedures. 

         C. Ren [20] presents a simulation-based approach that 

integrates both internal and external ultrasound imaging to 

improve knee arthroscopy. By utilizing a 3D knee model, the 

method enables more accurate tracking of surgical instruments 

and provides enhanced tissue assessment. This dual-modality 

approach helps in evaluating tissue integrity and joint structures 

in greater detail, ultimately contributing to better surgical 

precision and improved patient outcomes. The integration of 

internal ultrasound with external B-mode imaging ensures 

comprehensive real-time visualization, making the procedure 

more efficient and reducing the likelihood of errors. N. Wang 

[21] proposes a novel phase-corrected-and-sum with coherence 

factor weighting (PCAS-CFW) method to enhance high-

frequency endoscopic ultrasound (HFEUS) imaging. This 

approach addresses phase errors and improves signal coherence 

by incorporating a phase correction technique and using 

coherence factor weighting derived from the correlation 

coefficient of the superimposed signals.  

        A. Drainville [22] presents an early prototype of an 

innovative endoscopic ultrasound device specifically designed 

to deliver high focal pressure for the guided treatment of 

pancreatic cancer. This device leverages the potential of acoustic 

cavitation to significantly enhance drug delivery, allowing for 

more effective and localized treatment of pancreatic ductal 

adenocarcinoma (PDAC). P. Zarkos  [23] presents the first fully 

integrated 2D electronic-photonic ultrasound sensor array for 

low-power endoscopic probes. 

Built on 45nm CMOS-SOI technology, it uses micro-ring 

resonators (MRRs) for sensing, replacing traditional transducers. 

          J. Yao [24] proposes a forward-oriented EUS system for 

spine surgery, using a custom probe and gray-level co-

occurrence matrix (GLCM) analysis. Achieving 100% accuracy 

for fibrous ring, nerve root, and bone identification, the system 

shows promise for precise tissue differentiation during 

minimally invasive spinal procedures. 

          Z. Xi [25] introduces the Circular Total Focusing Method 

(CTFM) to enhance spatial resolution in endoscopic ultrasound 

(EUS) of dual-layered media. 

CTFM improves time-of-flight accuracy, corrects transducer 

eccentricity, and compensates for intensity variations. 

Validated on tube immersion EUS, it outperforms the delay-and-

sum method with 27.5% and 33.3% better lateral and axial 

resolutions and a 33.6% higher signal-to-noise ratio. 

The method offers improved EUS imaging for medical and 

nondestructive testing applications. 

          S. Lei  [26] introduces an endoscopic ultrasound 

localization microscopy (e-ULM) technique to monitor 

microvascular changes associated with gastrointestinal (GI) tract 

tumor progression. Utilizing a customized 6.8 MHz circular 

array transducer and spatiotemporal signal processing, the 

method exceeds the diffraction limit of conventional EUS 

imaging. In vivo experiments on rabbit GI tumors revealed 

notable variations in microvascular patterns and density across 

different tumor growth stages. These findings highlight the 

potential of e-ULM as a powerful, minimally invasive tool for 

early detection of GI tumor microcirculation alterations, 

advancing cancer diagnostics. 

          L. Lavenir [27] proposes a minimally invasive 3D 

ultrasound imaging technique for the auditory system using a 

novel miniaturized endoscopic 2D transducer. An 18 MHz, 24-

element curved array probe is inserted into the ear canal and 

rotated using a robotic platform to acquire B-scans for 3D 

reconstruction. Validation with both a phantom and a cadaveric 

head demonstrated high spatial accuracy, with a maximum error 

of 0.20 mm, and provided clear visualization of middle and 

inner ear structures. This method offers a safe, real-time, and 

cost-effective approach for otologic diagnosis and surgical 

navigation. 

          Z. Xi [28] proposes a 2-D circular array (2-D CA) 

transducer featuring independent-dual-focusing (IDF) 

beamforming to enhance imaging flexibility in endoscopic 

ultrasound (EUS) for nondestructive testing (NDT) of tubular 

structures. The 10.10 MHz prototype supports 3D focusing in 

any direction, addressing the limitations of fixed-normal beams 

in conventional EUS systems. Validation through immersion 

inspection of stainless-steel tubes demonstrated superior 

detection of quasiplanar reflectors and improved robustness. The 

2-D CA achieved a 26.12 dB higher signal-to-noise ratio and a 

40.37% reduction in characterization error, highlighting its 

potential for both medical and industrial imaging applications. 

           X. Xiao [29] proposes a novel ultrasound robotic system 

(URS) with a multi-approach puncture mechanism to support 

spinal interventions in endoscopic spinal surgery (ESS). The 

system incorporates a five-bar linkage with a remote center of 

motion (RCM), enabling wide orientation adjustments in both 

the transverse (85°) and coronal (140°) planes. Experimental 

validation on a gel lumbar model demonstrated puncture 

accuracy of less than 3 mm, successfully covering the full 

procedure from imaging to needle guidance. The URS enhances 

precision and flexibility in spinal interventions, offering a 

promising solution to improve ESS outcomes and reduce 

dependence on manual techniques. 

http://www.ijsrem.com/
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                               Figure. 1 System Architecture 

II. PROPOSED METHODOLOGY 

A. DATA SET  

This study focuses on creating a medical ultrasound 

image dataset by framing and annotating video data from 

visceral endoscopic images, including organs like the 

gallbladder and pancreas. The video frames, extracted at 

intervals of 1-5 frames, resulted in 3510 usable images. These 

images were further processed to remove interference like 

bubbles, ensuring that organ characteristics remain identifiable 

in complex scenes. Using the labelimg tool, the images were 

labeled and ROI frames were selected, creating a dataset in 

VOC format, with 21 labeled organ images, including those of 

the pancreas. 

 

B.  IMAGE GRAYING AND ENHANCEMENT 

The dataset's RGB images, which only capture optical 

characteristics and not the target object's morphology, are 

converted to grayscale to reduce redundancy and computational 

complexity. Using the average of the R, G, and B channels, the 

grayscale values are calculated. Additionally, some images 

exhibit blurriness and ghosting, which hinder recognition. To 

address this, the images are sharpened using the PIL library in 

Python, improving their clarity. This enhancement significantly 

boosts the sharpness of edge portions, which is especially useful 

for detecting internal edge signals in organ endoscopic images. 
𝐺𝑟𝑎𝑦(𝑖, 𝑗) = (𝑅(𝑖, 𝑗) + 𝐺(𝑖, 𝑗) + 𝐵(𝑖, 𝑗))/3 

C. HISTOGRAM  EQUALIZATION 

The grayscaled image has uneven distribution of 

brightness. In order to improve the overall pixel grayscale 

distribution and contrast of the image, it is necessary to 

transform an image with a known grayscale distribution into a 

uniformly distributed grayscale image. By improving the 

irregular distribution of pixels, the range of pixel distribution is 

enlarged, and the contrast of the image is further improved. The 

steps to realize the remapping distribution of the histogram are 

as follows: Calculate the probability density function at each 

gray level 

𝑃𝑟(𝑟𝑘) = 𝑟𝑘/𝑛 

In the above formula, 𝑃𝑟  (𝑟𝑘) is the probability under 

the gray level of 𝑟𝑘,𝑛𝑘is the number of pixels under the gray 

level, and n is the total number of pixels in the image. Use the 

mapping relationship to get the distribution function value after 

gray level mapping. 

𝑆𝐾 = 𝑇(𝑟𝑘) = ∑ 𝑝𝑟

𝑘

𝑖=0
(𝑟𝑖) 

Among them, 𝑆𝑘 represents the value of the probability 

distribution function under the gray level from 𝑟𝑗to 𝑟𝑘 .  

After converting to the standard gray value through the 

mapping arrangement, the histogram is equalized, and the 

number of pixels will no longer only be distributed near the 

black, but distributed on the gray scale of 0-255, realizing the 

medical image Rearrangement of gray levels. Histogram before 

and after equalization. 

The abscissa represents the gray level, and the ordinate 

represents the number of pixels in the gray level. After 

equalizing the pancreas image, the gray value and pixel statistics 

are used to obtain a visual gray histogram. Before equalization, 

most of the pixels are distributed in the 0-50 area. After 

equalization, it can be clearly seen that the distribution of the 

grayscale histogram is more balanced, with a distribution in the 

range of 50∼255, thus achieving grayscale remapping and 

image equalization. 

D. Covolutional Neural Network 

Ultrasound imaging mainly uses the acoustic 

characteristics of ultrasound reflected in different organs and 

tissues, and can distinguish different organ contours. The image 

has interference mainly caused by speckle noise, and this kind of 

noise cannot be eliminated by physical methods, but can only be 

processed by the method of imaging. In this article, the 

graininess and glitch interference in the ultrasound endoscopic 

images are noise points. In order to reduce the impact of this 

kind of noise, Gaussian denoising is first adopted, and then 

median filtering is used.  

Gaussian denoising blurs the full-screen noise, 

performs assignment calculations through the movement of the 

module, and uses a two-dimensional Gaussian filter to design a 

3 ∗3 mask when setting the template. 

 

𝐻𝑖𝑗 =
1

2𝜋𝛿2
𝑒 

– (𝑖 − 𝑘 − 𝑖)2 + (𝑗 − 𝑘 − 1)2

2𝛿2
 

Among them, k represents the size of the serial port. 

Through the movement of the window, 𝐻𝑖𝑗  is the value of row i 

and column j in the mask, and Gaussian filtering is performed 

on pixels in all positions.  

However, Gaussian filtering cannot remove salt and 

pepper noise. In response to this situation, this project uses 

median filtering as a supplementary method to further remove 

the salt and pepper noise in the image, while retaining the edge 

features of the image. When the template is moved, the gray 

levels of the pixels in the mask are sorted, and the median value 

of the area covered by the mask is taken as the new gray value 

of the central pixel. Compared with figure (a), the burr and salt 

and pepper noise of the processed figure (b) are greatly 

weakened, and the joint filtering effect is good. 

E EDGE EXTRACTION AND ENHANCEMENT 

ALGORITHM.  

The recognition of endoscopic images is mainly to 

judge the ultrasonic appearance characteristics of different 

organs and membrane structures. The main high-frequency 

http://www.ijsrem.com/
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information is the changes in the pixel gray levels at the edges 

and contours. Therefore, the optimization and extraction of edge 

information will play an important role in the recognition effect. 

In this paper, the Laplace operator is used to construct a 3 × 3 

convolution kernel, which is used to calculate the gray jump 

value of the edge pixels of the image. 

 

, 𝛻2𝑓 =
𝜕2𝑓

𝜕𝑥2
+

𝜕2𝑓

𝜕𝑥2
 

 

F. CONVOLUTIONAL NEURAL NETWORK TRAINING 

AND PREDICTION 

The CNN route mainly consists of three parts: data 

mining and expansion, Yolo V4 detector network framework 

construction, network evaluation and improvement. To improve 

the robustness of the algorithm, this project selects the best 

parameters and regularization methods to debug and optimize 

the algorithm. The simulation environment is under the 

Windows 10 operating system, using the Tensorflow framework 

to build a convolutional neural network YoloV4.  

G. CONSTRUCTION OF YOLOV4 NETWORK 

FRAMEWORK  

The construction of the YOLO V4 network detector is 

very important, which mainly includes the backbone network, 

SPP, PANet network, and prediction network, as shown in 

Figure 3.2. The backbone network is used to extract features, 

SPP participates in pooling as an additional part, and PANet 

mainly participates in feature fusion. The Yolo head part is 

mainly used for forecasting. 

SPP uses 1 × 1, 5 × 5, 9 × 9, 13 × 13 pooling to check 

the feature layer convolution and pooling. This structure can 

increase the receptive field and separate the characteristics of the 

upper and lower layers as much as possible. PANet is a 

segmentation algorithm used to improve the features of the 

target detection object and realize the repeated extraction of 

features.  

The feature layer dimensions designed using Yolo 

network are respectively (52, 52, 256), (26, 26, 512) and (13, 13, 

1024). On this basis, the parameters are adjusted, and at the 

same time, regularization and data enhancement are introduced. 

The training forms a convolutional neural network suitable for 

endoscopic ultrasound samples. The improved network 

performed well in the experiment and can effectively identify 

endoscopic image features. 

H. TRAINING PREPARATION AND DATA MINING  

To enhance the limited number of characteristic frames 

in endoscopic ultrasound images, data augmentation techniques 

are employed to increase feature diversity and prevent model 

overfitting. Using OpenCV, random inversion, rotation, and 

scaling are applied by setting a random state flag. Additionally, 

the mosaic method stitches parts of four images into one, 

improving image variety and training efficiency with smaller 

batch sizes. During training, stochastic gradient descent is used 

to optimize the model, but it can get trapped in local optima 

when facing multimodal loss functions. To address this, cosine 

annealing decay is introduced, allowing the model to escape 

local minima and continue optimizing toward a global solution. 

𝜂𝑡 = 𝜂𝑚𝑖𝑛
𝑗

+ (𝜂𝑚𝑖𝑛
𝑗

− 𝜂𝑚𝑖𝑛
𝑗

)(1 + cos (
𝑇𝑐𝑢𝑟𝑟𝑒𝑛𝑡

𝑇𝑖
𝜋)  

In the above formula, j represents the jth index value, 

𝜂max 
𝑗

 is the maximum learning rate, and 𝜂min  
𝑗

 is the minimum 

learning rate. Tcurrent indicates the number of epoch rounds 

currently executed. The learning rate will be changed after each 

restart, so as to achieve an effect of updating the learning rate. 

After each restart, it is multiplied by a fixed value to realize 

automatic increase. In this way, the learning rate will be updated 

after each restart. 

Random image changes, Mosaic data enhancement, 

and cosine annealing attenuation are used to achieve data 

expansion of a limited frame of ultrasound images, and reduce 

the amount of calculation, avoiding over-fitting of the 

calculation. 

I. HYBRID MODEL ARCHITECTURE 

This research presents a hybrid deep learning 

architecture combining YOLOv4 and Vision Transformers 

(ViTs) to enhance medical ultrasound image analysis. YOLOv4 

excels in real-time object detection by quickly localizing and 

classifying regions of interest, while ViTs improve global 

contextual understanding by modeling long-range dependencies. 

YOLOv4 captures local features through its CSPDarknet-53 

backbone and Spatial Pyramid Pooling, whereas ViTs enhance 

feature maps with global context via multi-head self-attention. 

The integration of these models allows for more accurate and 

holistic detection, crucial in medical imaging, especially when 

dealing with subtle and variable features in ultrasound images. 

This hybrid approach improves both detection precision and 

diagnostic confidence, making it highly effective for real-world 

clinical applications. 

III. RESULTS AND DISCUSSION 

The proposed hybrid deep learning framework, 

integrating an enhanced YOLOv4 and Vision Transformers 

(ViTs), demonstrates promising capabilities in improving 

endoscopic ultrasound image recognition. By addressing core 

limitations such as blurriness, low contrast, and structural 

ambiguity, the preprocessing pipeline comprising grayscale 

conversion, histogram equalization, image enhancement, and 

noise reduction plays a crucial role in standardizing input data 

and optimizing feature quality for the model. 

The use of an enhanced YOLOv4 model ensures 

efficient and accurate real-time object detection within complex 

ultrasound imagery. However, the addition of Vision 

Transformers allows the system to capture long-range 

dependencies and global context, which are particularly 

important in interpreting medical images where subtle 

differences can significantly impact diagnosis. The 

complementary strengths of CNNs and ViTs lead to improved 

spatial feature understanding and higher recognition precision, 

especially in differentiating closely situated anatomical 

structures. 

http://www.ijsrem.com/
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FIGURE 2. Recognition results of organs 

 
Table 1. Comparison Table 

Methods Accuracy 

YOLOV4(CNNs) 90.5 

YOLOV4(CNNs+ViTs) 93.8 

 

        Table 1 presents a comparison between two object 

detection models: YOLOv4 using only convolutional neural 

networks (CNNs) and an enhanced version that combines CNNs 

with vision transformers (ViTs). The results show a notable 

improvement in accuracy when ViTs are integrated into the 

YOLOv4 architecture, increasing from 90.5% to 93.8%. This 

enhancement can be attributed to the complementary strengths 

of CNNs and ViTs. While CNNs are highly effective at 

capturing local spatial features, ViTs excel at modeling long-

range dependencies and global context within an image. The 

fusion of these two architectures allows for more comprehensive 

feature representation, leading to improved detection accuracy. 

These results demonstrate the potential of hybrid models that 

leverage both convolutional and transformer-based components 

for high-performance visual recognition tasks. 

 
FIGURE 3. Model Accuracy & Loss 

IV. CONCLUSION 

This research introduces an advanced methodology for 

endoscopic ultrasound (EUS) image recognition, integrating 

image preprocessing, enhanced YOLOv4, and Vision 

Transformers (ViTs) to address the challenges of low resolution, 

speckle noise, and overlapping textures in soft tissues. The 

proposed system demonstrates significant improvements in 

diagnostic accuracy and efficiency, providing clinicians with a 

reliable tool for identifying anatomical structures and 

abnormalities. By combining the strengths of CNNs and ViTs, 

the model effectively captures both local and global features, 

enhancing the recognition of subtle variations in organ 

structures. The integration of these advanced techniques 

contributes to the advancement of automated and intelligent 

detection technologies in the medical field, with the potential to 

improve healthcare outcomes through more accurate 

diagnostics. 

Future advancements in endoscopic ultrasound (EUS) 

image recognition may include the integration of real-time 

elastography and contrast-enhanced imaging to improve tissue 

characterization and lesion detection. Additionally, the 

incorporation of fusion imaging techniques, combining EUS 

with modalities like CT or MRI, could enhance spatial 

orientation and diagnostic accuracy. 
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