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Abstract - This work offers a Hybrid Intrusion Detection 

System (HIDS) that combines traditional machine learning and 

deep learning methods for efficient and scalable network attack 

identification. The system makes use of Principal Component 

Analysis (PCA) for reducing dimensionality and then utilizes a 

hybrid CNN-LSTM architecture for feature learning as well as 

classification. An ensemble method is also utilized to combine 

Random Forest with the CNN-LSTM to add robustness as well 

as generalization. The CICIDS2018 dataset, comprising modern 

real-world network traffic situations, is employed for testing. Our 

system detects with an accuracy of 99.1% on the test set, far 

better than conventional classifiers. This paper proves the 

efficacy of integrating statistical feature engineering with deep 

sequential models and ensemble techniques to counter 

cybersecurity attacks in real-time settings. 
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1.INTRODUCTION  

 
With the rapid expansion of digital services, cloud computing, and 

IoT enabled devices, networks are becoming prime targets for 

cybercriminals. The growing complexity and diversity of modern-

day cyberattacks, including Advanced Persistent Threats (APTs), 

Zero-Day Exploits, and Distributed Denial of Service (DDoS), 

present a significant challenge to conventional security systems. 

Traditional Intrusion Detection Systems (IDS), being usually 

based on static signature-based methods or naive anomaly 

detection algorithms, are incapable of handling evolving threats. 

Their lack of adaptability and reliance on pre-defined rules make 

them vulnerable to emerging attack techniques. This paper 

proposes the development of a next-generation, hybrid Intrusion 

Detection System that best leverages the strength of both ML and 

DL paradigms. With the integration of ML-based feature 

engineering and preprocessing with DL-based traffic analysis and 

classification, and boosting predictions through ensemble 

learning, the system promises to significantly enhance detection 

accuracy, reduce false positives, and deliver effective high-

dimensional network data processing. 

 

The primary objectives of this work are aimed at developing an 

optimal hybrid Intrusion Detection System (IDS). First, the 

network traffic data is preprocessed and normalized through 

Principal Component Analysis (PCA) to facilitate learning 

efficiently by reducing dimensionality. Subsequently, a CNN- 

 

LSTM model is trained and constructed to learn both the spatial 

and temporal characteristics typical in network traffic data. For 

even greater increase in robustness, this deep learning model is 

also combined with a Random Forest classifier in an ensemble 

strategy. Finally, the performance of the given hybrid IDS is 

thoroughly tested on the CICIDS2018 dataset, with exhaustive 

metrics such as accuracy, precision, recall, F1-score, and AUC-

ROC. 

2.LITERATURE REVIEW 
This part presents a systematic overview of recent research on the 

topic of Intrusion Detection Systems (IDS) using machine 

learning and deep learning-based methodologies. It gives a 

description of essential methodologies, benchmark datasets, and 

state-of-the-art methodologies that have had a significant impact 

on the formulation of the suggested hybrid IDS model. A perusal 

of literature demonstrates several methods for feature extraction, 

including PCA and statistical feature engineering, that have been 

successful in simplifying network traffic data. Machine learning 

models such as Random Forest, Support Vector Machines, and 

deep learning architectures like CNNs and LSTM networks have 

also been utilized with success in traffic classification and 

anomaly detection. This review also identifies the advantages of 

combining dimensionality reduction methods with deep learning 

models, as well as the advantageous effects of ensemble learning 

techniques on enhancing model generalization and resilience. 

These findings provided the groundwork for the hybrid model 

proposed that integrates PCA, CNN-LSTM, and Random Forest 

to boost intrusion detection accuracy. The work and developments 

relevant to this are listed in Table 1. 
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3.METHODOLOGY  

 

This paper presents a machine learning and deep learning-based 

hybrid Intrusion Detection System (IDS) to correctly identify 

cyberattacks in network traffic. The approach is a structured 

pipeline of data preprocessing, feature extraction, deep learning-

based classification, ensemble learning, and performance 

evaluation. The proposed IDS architecture was implemented and 

tested using the CICIDS2018, a widely used benchmark dataset 

for intrusion detection research. 

 

The CICIDS2018 dataset, offered by the Canadian Institute for 

Cybersecurity (CIC), mimics actual enterprise network traffic 

and covers benign activity and varied attack types such as DDoS, 

brute-force, infiltration, botnet, and web attacks. The dataset 

contains more than 80 features, including flow duration, packet 

statistics, protocol flags, and header information. It is organized 

in CSV format, with each row representing a network flow and 

each column representing extracted features or a class label. 

 

The data is loaded and preprocessed once the libraries have been 

imported. Preprocessing involves cleaning the raw data, 

standardizing it, and encoding it to prepare it for machine 

learning algorithms. Missing values are handled with imputation 

methods like mean substitution, and redundant or non-

informative features—such as timestamps and string-based 

fields—are dropped. Categorical fields like protocol types are 

encoded into numerical form using label encoding. After being 

cleaned, the data is then normalized with z-score standardization 

to ensure all the values of the features are on an even scale to 

facilitate better convergence rate and accuracy in deep learning 

models. 

 

After preprocessing, dimensionality reduction is achieved 

through Principal Component Analysis (PCA), a proven 

statistical method that maps the initial high-dimensional feature 

space to a lower-dimensional one by determining principal 

components that capture the highest variance in the data. PCA 

serves to minimize computational complexity, remove noise, and 

enhance generalization by keeping only the most informative 

components, thereby preventing overfitting in later learning 

phases. In this research, the number of components was chosen 

to preserve about 95% of the data variance to ensure that 

significant patterns useful in network intrusion detection are 

maintained. 

 

Principal Component Analysis or PCA is another statistical 

technique performed to reduce the dimensionality: It transforms 

an original high dimensional feature space to a lower dimension 

one by capturing the principal component explaining the highest 

variance in data. PCA contributes to reducing noise, 

computational complexities, and thereby improves 

generalization while retaining more informative components 

over subsequent learning, which reduces overfitting chances. In 

this research, the number of features was chosen to keep about 

95% of data variance in order to maintain significant patterns 

important to network intrusion detection. 

 

After reducing the feature space, a hybrid deep model is 

trained through the interaction of Convolutional Neural 

Networks (CNN) and Long Short-Term Memory (LSTM) layers. 

CNN is used initially to identify spatial patterns and local 

correlations among the input features, which can expose the 

structural signatures of particular attack types. The output of the 

CNN layers is subsequently fed into LSTM layers, which 

are particularly effective at learning sequential dependencies and 

temporal behaviors in the data, such as multi-stage attack 

sequences or slow-moving infiltration attempts. This deep 

learning design is formulated to capture both spatial patterns and 

temporal trends of network traffic, providing an end-to-end view 

of traffic behavior. 

 

Concurrently with the deep learning pipeline, a Random Forest 

classifier is also trained over the same preprocessed and PCA-

reduced feature set. Random Forest, which is one of the most 

used ensemble machine learning methods, learns multiple 

decision trees at training and combines their results to achieve 

prediction accuracy and insensitivity improvement. Because 

Random Forest can handle both structured and table data 

effectively as well as maintain resistance against overfitting, it 

can provide a powerful complementing classifier to the hybrid 

method. 
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The last step of the methodology is to merge the output of the 

CNN+LSTM model and the Random Forest classifier through an 

ensemble scheme. The ensemble process utilizes majority voting, 

where the predicted class is made based on agreement between 

both models. When both classifiers are in agreement about the 

prediction, the choice is direct; when there is a disagreement, the 

majority class among ensemble predictions is utilized. This 

combination approach minimizes false positives and improves 

the overall detection rate by taking advantage of the strengths of 

both deep and conventional learning approaches. 

 

To assess the performance of the proposed hybrid IDS, a number 

of classification metrics are calculated, such as accuracy, 

precision, recall, and F1-score. Accuracy calculates the overall 

prediction correctness, precision calculates the positive 

classification correctness, recall calculates the model's detection 

of real attacks, and F1-score calculates the balance between 

precision and recall, especially for dealing with imbalanced data. 

Besides numerical values, graphical aids like confusion matrices 

and Receiver Operating Characteristic (ROC) curves are 

employed to offer insights into model performance against 

various attack classes. This robust methodology will ensure the 

generation of a highly performing, generalizable IDS with the 

ability to precisely identify multiple cyber threats across different 

real-world network environments along with scalability and 

reliability. 

 

The following algorithmic strategy outlines the step-by-step 

algorithm employed to build this research. 

__________________________________________________  

 

INPUT:  CICIDS2018 dataset (CSV format) containing static 

and dynamic features of network traffic, labeled as benign or 

attack types. 

 

 

1. Import Necessary Libraries 

 

Import all required Python libraries to support data 

preprocessing, deep learning, visualization, and model 

assessment. These libraries include NumPy and Pandas 

for data processing, Scikit-learn for preprocessing and 

Random Forest usage, TensorFlow and Keras for deep 

learning (CNN and LSTM), and Matplotlib/Seaborn for 

data visualization and performance plotting. 

 

2. Load and Preprocess Dataset 

 

a) Import the CICIDS2018 dataset (namely, the Friday-

02-03-2018_TrafficForML_CICFlowMeter.csv file) 

having labeled network traffic data. 

b) Eliminate unused columns like timestamps or flow IDs 

that won't be used for classification. 

c) Fill in missing values by performing imputation (e.g., 

with column mean). 

d) Convert categorical labels (e.g., "BENIGN", "DoS 

Hulk", etc.) to numerical form via Label Encoding. 

e) Normalize numerical features with z-score 

normalization for uniform feature scaling during 

training. 

 

 

3. Feature Reduction using PCA 

 

a) Perform Principal Component Analysis (PCA) to 

dimensionally reduce the dataset while maintaining 

variance. 

b) Keep enough principal components (e.g., 95% 

variance cutoff) to strike a balance between model 

accuracy and computational costs. 

c) Project the dataset to its lower-dimensional PCA form 

for subsequent model training. 

 

4. Train Deep Learning Model: 

 

a) CNN + LSTM Architecture 

Build a deep learning model that uses 1D 

Convolutional Neural Networks (CNN) for spatial 

feature learning and Long Short-Term Memory 

(LSTM) layers for temporal sequence analysis. 

b) Declare model layers such as Conv1D, LSTM, 

Dropout for regularization, and Dense layers for 

classification. 

c) Compile the model with the Adam optimizer and 

binary cross-entropy loss function. 

d) Train the model on the PCA-transformed training set 

and validate on held-out test data. 

e) Watch for training and validation accuracy and 

loss over epochs for convergence. 

 

5. Parallel Training of Random Forest Classifier 

 

a) Initialize and train a Random Forest classifier on the 

same PCA-transformed dataset. 

b) Perform hyperparameter tuning on parameters like nu

mber of trees and depth to 

tune for the best performance. 

c) Check its individual performance against classificatio

n metrics to compare with other models. 

 

6. Ensemble Evaluation and Prediction 

  

a) Ensemble the CNN+LSTM and Random 

Forest model predictions through majority voting. 

b) Make final predictions by comparing the outputs 

and taking the most confident or prevailing label. 

c) This ensemble process aids in improving detection 

strength and eliminating false positives. 

 

7. Model Evaluation and Visualization 

 

a) Calculate and evaluate important evaluation measures

 like Accuracy, Precision, Recall, and F1-Score 

for the individual and ensemble models. 

b) Plot a confusion matrix to represent the classification 

performance for various categories of attacks. 

c) Plot Receiver Operating Characteristic (ROC) curves 

and compute Area Under Curve 

(AUC) to measure classification thresholds. 
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d) Plot training/validation loss and accuracy curves 

to test the generalization capability of the 

CNN+LSTM model. 

 

OUTPUT: An optimized hybrid Intrusion Detection 

System (IDS) that effectively identifies malicious network 

behavior with diminished feature dimensions and 

sophisticated deep learning methods.  

 

 

4.RESULT 

 
This work employed a Hybrid Intrusion Detection System (IDS) 

was created in order to enhance the accuracy and efficiency of 

detecting malicious network traffic through the incorporation of 

both machine learning (ML) and deep learning (DL) approaches. 

The system was implemented using the CICIDS2018 dataset, 

which holds realistic network traffic data with several labeled 

cyberattack scenarios. The first process in the pipeline was data 

preprocessing, which included the removal of timestamp 

features, factorization-based encoding of categorical variables, 

missing and infinite value handling, and normalization via 

Standard Scaler. To address the high-dimensional character of 

the dataset and simplify computational complexity, Principal 

Component Analysis (PCA) was utilized for feature extraction, 

keeping the top 30 most informative components that account for 

most of the variance in the data. This phase not only achieved 

dimensionality reduction but also aided in the removal of 

redundant and less descriptive features, which may otherwise be 

a bottleneck to model performance. 

 

Post-preprocessing, the data set was divided into training and 

testing sets in 80:20 proportion. In the deep learning part, a 

hybrid structure by integrating Convolutional Neural Networks 

(CNN) and Long Short-Term Memory (LSTM) networks was 

constructed. The CNN layer was tasked with extracting spatial 

features from the data, whereas the LSTM layers were used to 

capture sequential dependencies that are instrumental in 

discerning time-based attack patterns. This CNN+LSTM model 

was trained with the Adam optimizer and binary cross entropy 

loss function and was trained for more than 10 epochs with a 

batch size of 32. The model had very good learning capability as 

it was able to achieve a very high accuracy of 99.98% on the test 

set along with excellent generalization as reflected by the training 

and validation accuracy plot. The performance of the model was 

also evaluated using precision, recall, and F1-score metrics, and 

all of these measures reported high values, indicating efficient 

intrusion detection with low false positives and false negatives. 

 

Besides the deep learning model, a Random Forest classifier was 

also trained on the same PCA-transformed dataset. Being known 

for its stability with structured tabular data and its resistance to 

overfitting, the Random Forest model showed a perfect accuracy 

of 100%. For tapping the strengths of both models, an ensemble 

approach was taken, aggregating the predictions made by the 

CNN+LSTM deep learning model and the Random Forest 

classifier. This ensemble methodology enabled the system to 

leverage the deep learning model's capacity for recognizing 

intricate patterns and sequences of data and take advantage of the 

high interpretability and dependability of the Random Forest 

model. The ensemble enhanced overall stability and detection 

resilience, especially in heterogeneous attack situations. The 

training and validation loss and accuracy is graphically displayed 

in Figure 1. 

 

 
 

Figure 1(a): Training and validation loss of CNN+LSTM deep 

learning model for 10 epochs. 

 
Figure 1(a): Training and validation accuracy of CNN+LSTM 

deep learning model for 10 epochs. 

 

 

Both models were evaluated using accuracy, precision, recall, 

and weighted-average F1-score as metric, which is particularly 

vital in imbalanced classification problems. The CNN+LSTM 

model achieved a weighted-average F1-score of approximately 

99.92%, and the Random Forest model achieved a flawless F1-

score of 100%, which verified the system's excellent performance 

under various metrics. This holistic method successfully 

overcomes the shortcomings of conventional IDS by merging the 

virtues of ML and DL, hence providing a scalable, adaptive, and 

precise solution to contemporary network security. The final 

deep learning and random forest classifier classification 

report is presented in Figure 2 
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Figure 2(a): Classification report representing Deep Learning 

classifier metrics. 

 

 
 

Figure 2(b): Classification report representing Random Forest 

classifier metrics.  

 

 

5. CONCLUSIONS AND FUTIRE SCOPE 

 
The Hybrid Intrusion Detection System (IDS) methodology was 

carried out using PCA for dimensionality reduction, 

CNN+LSTM deep learning model for pattern detection, and 

Random Forest classifier for better accuracy and interpretability. 

The CNN+LSTM model was 99.98% accurate, whereas the 

Random Forest model was 100%, and the ensemble also 

increased detection resilience and removed false positives. 

Training and validation results confirmed strong learning and 

minimal overfitting. This hybrid approach resolves significant 

failings of traditional IDS, such as poor detection of emerging 

threats and high rates of false alarms, and is therefore a 

responsive and scalable solution for modern cybersecurity 

environments. The proposed hybrid Intrusion Detection System 

(IDS) exhibits high accuracy and resilience in a controlled 

environment, and it has great promise for real-world deployment 

in real-time applications. One of the main future prospects is to 

deploy this model within a real-time IDS system, where it can 

constantly observe live network traffic and raise alarms on 

identifying unauthorized intrusions. Combining the model with 

SIEM systems would improve threat correlation and automate 

response to incidents. Future development could also include 

adapting the system for IoT and edge environments through low-

resource optimization. Further extension of the model to multi-

class classification could be useful in determining particular 

types of attacks, allowing more in-depth threat analysis. 

Integration of transformer-based architectures and adversarial 

training methods could also further enhance detection of 

advanced threats. Lastly, having online learning would allow the 

system to continually adapt to emerging attack patterns, thus 

becoming more dynamic and robust in the long term. 
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