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ABSTRACT: A new hyperspectral image denoising algorithm, called the dual deep convolutional neural 

network (DD-CNN), is proposed in this paper. In contrast to internal denoising methods that utilize only the 

features from the target noisy image, the DD-CNN extensively explores the similarities between the target 

noisy image and the clean reference image from other bands. As external data, the reference images are 

selected based on the structural similarity index metric (SSIM). The DD-CNN is composed of two CNNs: 

one is responsible for extracting the features of the target image, and the other is responsible for extracting 

features from the reference image. A new activation function is proposed that activates the two types of 

features in the DD-CNN. Based on the dual structure and the new activation function, the external features 

extracted from the reference images are thoroughly integrated into the internal features of the target noise 

image. We experimented on different datasets with different noise levels; we also tested special cases for 

reference images with extra or undesirable features. The DD-CNN algorithm can effectively utilize the 

similarity between the external image and the target image. When the noise level is high, the advantages of 

the DD-CNN are obvious. 

 

Keywords: Hyperspectral image denoising, deep dual neural network, feature learning, activation 

function. 

 

I. INTRODUCTION 

Hyperspectral images (HSI) - images of the same 

scene captured across a number of different 

wavelengths - are important to various civilian 

and military applications including remote sensing 

[1], agriculture [2], object tracking [3] and 

recognition [4]. Existing hyperspectral imaging 

methods often suffer from the problem of low 

signal-to-noise ratio (SNR) due to the fundamental 

limitation in physics - i.e., simultaneously 

acquiring many images of different spectral bands 

inevitably leads to shorter exposure time and 

narrower bandwidth. Accordingly, 

the acquired hyperspectral images are often 

corrupted by heavy noise which could severely 

deteriorate the performance of HSI-based 

segmentation and analysis algorithms. In view of 

the expensive cost of hardware-based solution to 

noise suppression, it is therefore desirable to 

develop effective software based HSI denoising 

techniques as a preprocessing step to support 

various HSI-related applications. 

 

Existing HSI denoising techniques in the literature 

can often be viewed as the extensions of grayscale 

image denoising methods. Early works including 

dictionary learning based methods [5], BM3D [6], 

and sparsity based denoising methods [7], [8] 

simply remove the noise in a band-by-band 

manner and cannot exploit strong correlation 

across the spectral bands. 
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In order to exploit spatial-spectral correlations 

among HSI, a wavelet shrinkage method in the 

derivative-domain was proposed for HSI 

denoising in [9]; the principal component analysis 

(PCA) was combined with wavelet shrinkage 

methods in [10]; a spatial-spectral total variation 

model was developed for HSI denoising in [11]. 

This line of research has led to a multiple spectral-

band conditional random fields (MSBCRF) model 

[12] aiming at simultaneously characterizing the 

spatial-spectral dependencies in a unified 

probabilistic framework. Other notable works 

include a multidimensional Wiener filtering with 

adaptive tensor flattening [13], a vector 

formulation of bilateral filtering [14] and the 

extension of well-known BM3D method into 

BM4D [15]. 

 

More recently, the class of low-rank tensor 

approximation methods have been extended for 

HSI denoising [13], [16] as well. With Tucker 

decomposition, the multirank of HSI 

can be first estimated via the alternative least 

square (ALS) algorithm and then the noiseless 

HSI can be reconstructed from multirank 

truncation of the core tensor [13]. To address the 

uniqueness issue with Tucker decomposition 

during the estimation of multirank, the parallel 

factor analysis (PARAFAC) decomposition 

method has been proposed for HSI denoising in 

[17]. A nonlocal tensor dictionary learning 

method was proposed in [18] where similar noisy 

tensors grouped by similar patches are denoised 

by multirank truncation. Different 

from multirank truncation-based tensor 

approximation, high order singular value 

decomposition (HOSVD) is exploited in [19]. 

After HOSVD is applied to high-order tensors 

formed by similar patches, the core tensor 

coefficients were denoised via hard-thresholding 

followed by Wiener filtering. Most recently, 

Laplacian scale mixture (LSM) models were 

proposed for core tensor coefficients in [20]; the 

LSM prior led to an adaptive thresholding 

algorithm in which both coefficients and 

thresholds can be jointly estimated from noisy 

data. 

 

In this paper, a well-designed discriminative 

model is proposed to further improve HSI 

denoising performance. In the proposed method, 

3-D kernels are combined with convolution to 

enlarge the receptive fields in the spatial and 

spectral bands simultaneously. This scheme 

supports better enforcement by capturing more 

pixel-wise features in multiple dimensions. A 

single denoising network model is trained to 

remove the mixed type of photon and thermal 

noise at various levels, rather than a single type of 

noise at a fixed noise level. In addition, the 

employed multiscale structure allows the proposed 

denoising model to retain subtle image details and 

achieve an excellent effect, outperforming other 

state-of-the-art denoising methods for HSIs. In 

more detail, the contributions of our work are 

summarized 

as follows. 

 

1) A 3-D convolution kernel rather than a 2-D 

kernel is employed in HSI denoising CNN model 

and allows the CNN to be formulated with the 3-D 

kernel to extract the spectral and spatial features 

of the hyperspectral data simultaneously. 

2) The 3-D atrous convolution kernel is 

introduced to capture more context information by 

enlarging the receptive field without increasing 

the number of network parameters to be trained 

and the computation cost. 

3) The 3-D separable kernel is employed in the 

proposed multibranch blocks to decrease the time, 

which gives the advantage of fast training 

convergence with reduced overfitting risk. 

4) In the proposed noise removal, different scale 

features are extracted in parallel by filters with 

different dilation rates, and then the information 

from wide and local ranges is fused for better 

performance. The experimental results 
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demonstrate that the multiscale fusion gives a 

great help for performance improvement. 

5) The proposed end-to-end trained CNN not only 

removes the mixed type of thermal and photon 

noises, but also achieves blind denoising over a 

certain range. That implies the proposed model is 

flexible and robust. 

 

The remaining paper is organized as follows. The 

related work is introduced in Section II, the details 

of our proposed method are given in Section III, 

and the performed experiments and resulting 

discussions are presented. 

 

II. RELATED WORK 

A. Hyperspectral Noise Degradation Model 

 

HSI data can be denoted by 3-D cube Y of size 

M×N ×B, whose degradation model can be 

described as 

 

Y = X + V    (1) 

 

where X is the ideal noise-free data, V = [v1, v2, . 

. ., vB] is the additive noise with the Gaussian 

distribution and 1 ≤ n ≤ B and 

mean that the noise intensity varies in the nth 

spectra. Hence, the HSI denoising process is to 

estimate the original data X from the noisy 

observation Y. 

 

B. Analysis of the Existing HSI Denoising 

Methods 

 

 

Up to now, there are two main types of HSI 

denoising methods: 1) transform-domain-based 

methods and 2) spatial domain-based methods. 

The transform-domain-based methods attempt to 

separate clear signals from the noisy data by 

various transformations, such as principal 

component 

analysis (PCA), Fourier transform, or wavelet 

transform. For example, Atkinson et al. [11] 

presented an estimator utilizing discrete Fourier 

transform to decorrelate the signal in the spectral 

domain, and a wavelet transform was utilized for 

the spatial filtering. Othman and Qian [12] 

employed a hybrid spatial–spectral derivative-

domain wavelet shrinkage noise removal 

(HSSNR) method. This method depends on the 

spectral derivative domain, where the noise level 

is elevated, and benefits from the dissimilarity of 

the signal nature in the spatial and spectral 

dimensions. The major weakness of this type of 

approaches is that these methods are sensitive to 

the selection of the transform function and cannot 

consider the differences in the geometrical 

characteristics of HSIs. 

 

 

 
Figure 1. Flowchart of the proposed HSID-CNN method for removing noise in HSI data. 
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Figure 2. Structure of HSID-CNN. 

 

Although these HSI denoising methods can 

achieve relatively better results, the good 

performance must precisely tune parameters for 

each HSI [22]. This generates the unintelligent 

and time consuming for different HSI data. 

Therefore, it is significant to build a fast, efficient 

and universal framework to adapt to different HSI 

data with different situations. 

 

A. Deep Neural Networks for HSI Denoising 

 

Several types of deep neural network models have 

beenproposed for HSI processing, i.e., deep brief 

networks,stacked autoencoder, a spectral-spatial 

feature-based classificationframework that jointly 

uses dimension reductionand deep learning 

techniques for spectral and spatial 

featureextraction, deep feature extraction and 

classificationmodel, spectral–spatial classification 

of HSI,and a deep autoencoder-based approach to 

identify signalfeatures. 

 

In addition, the denoising models based on deep 

learninghave achieved significantly better 

performance than othertraditional methods in 

medical imaging. Because the3-D medical image 

with multiple successive layers to representan 

object body is very similar to the HSI with 

multiband, thesame deep learning-based denoising 

techniques of 3-D medicalimages can be utilized 

in HSI, composed of many contiguousand narrow 

spectral bands. Thus, it is natural to introduce 

theCNN to HSIs denoising task. 

 

Also, there have been several methods that exploit 

CNNsto remove HSI noise. However, almost all 

of them directlyextend 2-D convolutions by 

increasing the number of spectralchannels as the 

same way as done for RGB images. The problem 

of the 2-D approach will be more precisely 

discussed in the following. 

 

B. Atrous Convolution 

 

Atrous convolution is a generalization of 

Kroneckerfactoredconvolutional filters that 

enforce exponentiallyexpanding receptive fields 

without reducing the resolution ofthe feature map. 

For pixel-level vision tasks, the image sizeof input 

and output should be consistent, but the 

networkneeds to do up-sampling to amplify the 

feature map sizedue to the pooling layer. The 

drawback of this process isthat complete recovery 

of missing information is hard byup-sampling. 

However, the receptive field of each layer willbe 
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decreased if the pooling layer is removed, and 

thenthe output performance will be greatly 

reduced. The networksin  and employ atrous 

convolution insteadof a down-sampling-based 

pooling layer, which not onlyavoids resolution 

reduction, but also covers the large-scalereceptive 

field. 

 

In low-level vision tasks such as denoising, it is 

crucialto extract more contextinformation around 

each pixel andto predict each pixel according to 

the surrounding context.The atrous convolution 

with various dilated rate can expandthe desirable 

receptive field without increasing the number 

ofparameters and ensure that image information is 

not lost. Forthe same reasons, this strategy of 

capturing a wider area ofcontext information using 

an atrous filter is a feasible approach 

in the denoising process. 

 

 

Figure 3. Difference between 2-D and 3-D 

convolution operations in HSI. (a) Output is a 2-D 

feature map after using 2-D filter convolution. The 

multiband are treated as multichannel. (b) Output 

is a 3-D cube featuremap after using 3-D filters. 

The spectral information in HSI is reserved. 

 

C. 3-D Convolution 

 

Common 2-D convolution computes a feature in 

the spatialdomain only, and its output is presented 

in the 2-D map.However, HSI is represented in 

both spatial and spectral 

domains, so that it could be treated as a 3-D image 

in whichadjacent spectral bands are highly 

correlated. If 2-D convolutionoperations are 

applied to HSI as the same way as toRGB image, 

each output feature map from a convolution 

layeressentially is treated as a conversion result 

from the multibandinput image as in Fig. 1(a). As 

a result, substantial correlationinformation 

between adjacent bands would be lost. That isto 

say, the 2-D convolution reduces the spectral 

resolution,because it aggregates all input 

frequency bands into a singlechannel. Therefore, 

3-D convolution is well-suited for HSI andcan 

preserve the spectral information as much as 

possible. Thisis very important for HSI denoising, 

which still contains richspectral information in the 

3-D cube after removing noise.The proposed 

method performs 3-D convolution to extract 

thefeature maps along both spatial and spectral 

dimensions. 

 

The 3-D convolution is enforced by convolving 

with 3-Dkernels and then outputs a volume 

formed by stacking multiplecontiguous spectral 

bands together as in Fig. 1(b).In addition, the 

network using 3-D filters is flexibly capableof 

receiving HSIs with the arbitrary number of 

bands, while2-D filters could only take care of the 

same fixed number ofbands as they are trained. In, 

they fixed ten channels ofinput and output layers 

as using the 2-D filter. It is unsuitablefor diverse 

HSI data, whose number of spectral bands is 

fromdozens to hundreds. 

 

Recently, however, a novel method has been 

proposedto resolve the limitations of 2-D 

convolution, which takes bothinputs of a single 

band and its adjacent multibands throughtwo 

branches simultaneously. However, the number of 

adjacentbands for extracting spectral information 

is fixed, so that theadjustability in the spectral 

dimension could not be flexiblyconsidered. 

In our opinion, the 3-D atrous convolution is a 

flexible andefficient method which the model 

enlarges the receptive fieldsand extracts 

multiscale information in both spatial and 

spectraldimensions by adjusting the dilated rate 

without increasing parameters. 
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III. PROPOSED DENOISING METHOD 

 

In this section, the proposed 3DADCNN model is 

explainedin detail, including how to design 

network architecture, howto determine the training 

parameters, how to lay out themultibranch and 

multiscale module, and how to obtain trainingdata 

by adding the mixed type of noise. 

 

A. Architecture of Denoising CNN 

 

In the field of computer vision, most problems 

have beensuccessfully solved using deep neural 

networks. However,as the network becomes 

deeper and deeper, the training difficultyincreases 

correspondingly. Recently, however, the 

networkstructures with proper fusion have also 

received researchattention. In comparison with 

deep network, the improvedstructure contains 

much shorter paths and more channels. 

We corrupt clean images with two types of photon 

andthermal noise. The noisy observation is x = y + 

n, wherey and n stand for the corresponding clean 

image and the 

noise, respectively. As shown in Fig. 2, the 

proposed modeladopts residual learning to learn a 

mapping function F(x) ≈ n.The output of the 

network is a residual image, and then weemploy a 

skip connection that adds noisy observation x 

tothe output-end and performs ˆy = x + F(x), 

where ˆy isthe predicted image. Mean squared 

error (MSE) between theestimated clean images ˆy 

and the ground truth y is calculatedas the loss 

function l(θ ) to optimize the network parametersθ 

in the training. In (1), xi and yi represent the ith 

training noise-corrupted input image and output 

target clean image,respectively, 

 

 
 

B. Random Noise Level Training 

 

In the existing HSI denoising methods, some 

models are only for a fixed noise level, and some 

other modelsare only designed for removing 

Gaussian noise.Models for removing noise need to 

apply a priori transformationsuch as variance 

stabilization transform (VST), whichtransforms 

mixed Poisson and Gaussian noises to a 

Gaussiandistribution. 

 

In the training stage, however, the proposed 

method considerstwo typical random photon and 

thermal noises simultaneously,corresponding to 

Poisson and Gaussian noises,respectively. That is, 

n = n p + ng, where ng and n prepresent the 

Gaussian and Poisson noises to be added tothe 

clean image, respectively. To obtain various noise 

levels,the standard deviation σ of zero mean 

Gaussian noise is randomlychosen within the 

interval, i.e., σ ∈ [10, 30]. Parameterλ associated 

with Poisson noise is selected from a range,i.e., λ 

∈ [1, 5]. Given a test image corrupted with two 

types ofrandom noise that belongs to the ranges, 

the trained networkcan be utilized to denoise 

directly without any preestimationof them. It 

provides flexibility in the HSI denoising task. 
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Figure 4. Architecture of out proposed network. The input is a corrupted image by random noise. The output 

is a residual image. The second to fourth blocks (blue blocks) adopt the multibranch structure, and the last 

block (orange block) is a multiscale structure. 

 

 

Figure 5. Comparison of different kernel sizes. (a) Training time. (b) Training loss. (c) Mean PSNR of 300 

test patches. 

 

C. Size and Number of Kernels 

 

The time and MSE of the training on the same set 

of trainingdata are measured with different kernel 

sizes while the numberof filters at each block is 

fixed. Thereafter, the results for a testdata set of 

300 images are compared in terms of mean 

peaksignal-to-noise ratio (PSNR). As shown in 

Fig. 3, the trainingtime increases rapidly as the 

filter size in the spatial domainincreases because 

of the computation complexity. In Fig. 3,the size 

of the 3-D filters is denoted by the d × k × k, 

whered is the depth of the kernel in the spectral 

dimension, andk is the kernel size in the spatial 

dimensions. In terms ofoverall performance and 

efficiency, 5 × 5 × 5 produces thebest result. 

 

D. 3-D Atrous Convolution 

 

The proposed method combines the 3-D filter 

kernels withatrous convolution to enlarge the 

receptive fields in the spatialand spectral bands 

simultaneously. This scheme achieves 

betterperformance by capturing more information 

from pixel-wisefeatures in multiple 

dimensions.For the denoising task, extracting 

large-scale pixel-levelfeatures is crucial to 

improving performance, so the kernel sizeof the 

convolutional should be as large as possible. 

However,the larger 3-D kernel dramatically 

increases computational 

complexity, making the model training more 

difficult. Insteadof directly using a larger kernel, 

the proposed model employsa combination of 3-D 
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filter kernels with atrous convolution,which 

enlarges the receptive field without increasing 

thetraining parameters, which provides less 

chance of over-fitting. 

 

 
Figure 6. Comparison of single branch and two 

branches structure. (a) Training loss. (b) Test 

PSNR of mixed-type Gaussian noise with σ = 20 

and Poissonnoise with λ = 3. 

E. Multibranch Fusion 

 

The proposed method employs multibranch 

modules inthe three blocks. As illustrated in 

Tables I and II 4, 3-Dseparable kernel is 

implemented with two parallel branches,which 

correspond d×k×1 and d × 1 × k kernels, 

respectively,instead of a d × k × k kernel. The 

input and output featuremaps are represented as 

B× H × W ×Ci and B × H × 

W ×Ci+1, respectively. B, H, and W denote the 

numberof bands, height, and width of the feature 

map, respectively.In addition, Ci is the number of 

input feature maps, andCi+1 is the number of 

output feature maps. In our scheme,d and k are 5, 

respectively, so the number of parameters ofeach 

block is 4 × 52 × Ci × Ci+1 rather than53 × Ci × 

Ci+1Therefore, the time complexity of each block 

should beO(4×M×52×Ci ×Ci+1) rather 

thanO(M×53×Ci ×Ci+1),where M represents the 

product of the number of bands,height, and width 

of every feature map. Our method canreduce the 

complexity by 20%, and has been validated in 

theexperiment. 

 

F. Multiscale Fusion 

 

In the deep neural network, the size of the 

receptivefield influences how much context 

feature information canbe utilized to a certain 

extent. Utilizing both local detailsand wider range 

features has an important influence ondenoising 

performance. Global average pooling is a 

goodmethod to describe the global contextual 

information, whichis commonly employed in 

image classification and semanticsegmentation 

models. However, this strategy cannotcover the 

necessary local information. Directly 

concentratinga 3-D HSI cube into a single vector 

may disrupt the spatialand spectral relation. 

Spatial pyramid polling extracts the 

feature map from different scales, which improves 

algorithmrobustness and accuracy of object 

recognition. In,atrous convolution is used to 

capture multiple scale featuresfor encoding the 

context information. 

 

 
Figure 7. Architectures. (a) 3-D. (b) 3DA. (c) M-

3DA. 
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Figure 8. (a) Training time of 3-D and 3DA. (b) 

Training loss of 3-D and M-3DA. (c) PSNR of 3-D 

and M-3DA. 

Fig. 6(b) uses the atrous convolutions instead of 

just 3-Dconvolutions in Fig. 6(a), and Fig. 6(c) 

equips the additionalmultiscale module. From the 

experimental results, in almostall epochs the 

computation time of model 3DA is less than3-D 

see Fig. 7(a)]. The multiscale fusion is employed 

in thelast block of the M-3DA; the overall 

performance has beenrapidly increased. Fig. 7(b) 

and (c) illustrates that the PSNRhas been 

improved considerably as the loss decreases. 

Theexperiments show that multiscale fusion based 

on 3-D atrousconvolution plays a significant role 

in the process for betterdenoising results. 

 

IV. CONCLUSION 

 

We have presented a new learning-based method 

for HIS denoising, called single denoising CNN 

(HSI-SDeCNN). Thismethod considers the 

spatial–spectral correlation present inHSIs, taking 

as input a full data cube instead of a single 

band.The main characteristics of this method are: 

a down samplinglayer that allows the network to 

be faster without losingdenoising performance, 

and a noise-level map that is used togive as input 

to the network an estimation of the amount 

ofnoise. The proposed method outperformed other 

mainstreammethods commonly adopted in HSI 

denoising on synthetic andreal data sets, with only 

one single trained model. In particular,it exhibits 

superior performance both in terms of 

denoisingcapability and computational efficiency. 

The performance ofthe method depends on the 

input noise level map M, thatis, the only 

hyperparameter that needs to be tuned. 

Thisparameter, as demonstrated from the results, 

is flexible in 

handling different levels of noise.As with any new 

approach, there are still some future 

research avenues that can be further explored. 

Specifically,the proposed network makes the 

denoising at only one levelfor all the bands. Such 

a level is specified by the input noise levelmap. 

However, in HSIs, the noise generally differs 

fromone band to another. For this reason, a further 

improvementof the method will focus on adapting 

the input noise level toeach specific band. 
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